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Purpose: This study aims to investigate the effects of acute cycling on blood pressure
(BP), arterial function, and heart rate variability (HRV) in men living with HIV (MLHIV) using
combined antiretroviral therapy (cART).

Methods: Twelve MLHIV (48.7 ± 9.2 years; 25.2 ± 2.8 kg m−2) and 13 healthy controls
(41.2 ± 9.9 years; 26.3 ± 2.9 kg m−2) performed a cycling bout (ES) (intensity: 50%
oxygen uptake reserve; duration: time to achieve 150 kcal—MLHIV: 24.1 ± 5.5 vs.
controls: 23.1 ± 3.0 min; p = 0.45), and a 20-min non-exercise session (NES).

Results: At rest (p < 0.05), MLHIV presented higher brachial systolic/diastolic BP
(SBP/DBP: 123.2 ± 14.2/76.8 ± 6.3 vs. 114.3 ± 5.1/71.6 ± 2.6 mmHg) and central BP
(cSBP/cDBP: 108.3 ± 9.3/76.5 ± 6.5 vs. 101.6 ± 4.9/71.3 ± 4.4 mmHg) vs. controls
but lower absolute maximal oxygen uptake (2.1 ± 0.5 vs. 2.5 ± 0.3 L min−1) and
HRV indices reflecting overall/vagal modulation (SDNN: 24.8 ± 7.1 vs. 42.9 ± 21.3 ms;
rMSSD: 20.5 ± 8.5 vs. 38.1 ± 22.8 ms; pNN50: 3.6 ± 4.2 vs. 13.6 ± 11.3%).
DBP postexercise lowered in controls vs. MLHIV (∼4 mmHg, p < 0.001; ES: 0.6).
Moreover, controls vs. MLHIV had greater reductions (p < 0.05) in augmentation index
(−13.6 ± 13.7 vs. −3.1 ± 7.2% min−1; ES: 2.4), and HRV indices up to 5 min (rMSSD:
−111.8 ± 32.1 vs. −75.9 ± 22.2 ms min−1; ES: 3.8; pNN50: −76.3 ± 28.3 vs.
−19.0 ± 13.7% min−1; ES: 4.4). Within-group (ES vs. NES; p < 0.05) reductions
occurred in controls for SBP (∼10 mmHg, 2 h), DBP (∼6 mmHg, 20, 30, and 70 min),
cSBP (∼9 mmHg, 30 min), cDBP (∼7 mmHg, 30 and 70 min), augmentation index
(∼10%, 30 min), and pNN50 (∼20%; up to 2 h), while in MLHIV only cSBP (∼6 mmHg,
70 min) and cDBP (∼4 mmHg, 30 min) decreased. Similar increases (up to 5 min)
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in heart rate (∼22 bpm) and decreases in SDNN (∼18 ms) and rMSSD (∼20 ms)
occurred in both groups.

Conclusion: MLHIV under cART exhibited attenuated postexercise hypotension vs.
healthy controls, which seemed to relate with impairments in vascular function.

Keywords: post-exercise hypotension, acquired immunodeficiency syndrome (AIDS), ambulatory blood pressure
monitoring (ABPM), heart rate variability (HRV), autonomic nervous system (ANS), health

INTRODUCTION

The acquired immune deficiency syndrome (AIDS) caused by the
human immunodeficiency virus (HIV) is a major public health
issue. Up to 2020, 35 million people have died because of AIDS
and 1.7 million were newly infected in 2019 (UNAIDS, 2020;
World Health Organization, 2020). Although AIDS mortality
has dramatically decreased since the introduction of combined
antirretroviral therapy (cART), there is compelling evidence
demonstrating that the HIV infection associated to prolonged
cART increases the cardiovascular risk in people living with HIV
(Feinstein et al., 2019).

On the other hand, it is well documented that regular physical
exercise is capable of reducing cardiovascular risk and blood
pressure levels (Pescatello et al., 2004a; Cornelissen and Fagard,
2005). The potential mechanisms of blood pressure decline due
to exercise training seem to be linked to repeated reductions
following single exercise bouts (Carpio-Rivera et al., 2016), which
is referred to as postexercise hypotension (PEH) (Kenney and
Seals, 1993). Although the mechanisms underlying PEH are not
fully understood, it is accepted that this phenomenon results
from a persistent drop in systemic vascular resistance induced
by neural and vascular factors, which is not completely offset by
increases in cardiac output (Halliwill et al., 2013).

People living with HIV usually present impaired autonomic
modulation at rest (Glück et al., 2000; Neild et al., 2000; Correia
et al., 2006; Lebech et al., 2007; Compostella et al., 2008) and
after exercise (Borges et al., 2012). In addition, endothelial
dysfunction has been described in this population (Lopes et al.,
2019), even in early stages of HIV infection (Bush et al., 2019),
which predisposes to increased arterial stiffness (Ferraioli et al.,
2011; Anand et al., 2018). It is therefore feasible to suppose that
blood pressure responses to acute exercise might be altered in
those patients. We could find a single trial investigating this
issue (Domingues et al., 2018), which failed to identify PEH
after resistance exercise in women living with HIV. However, in
what extent a single bout of aerobic exercise might induce blood
pressure reduction among these patients is uncertain. A better
understanding on this matter would be relevant to provide
insights into supporting therapies counteracting cardiovascular
damages induced by HIV infection and cART.

Given this gap in the literature, we aimed to investigate the
effects of acute aerobic cycling exercise on blood pressure, arterial
function, and cardiac autonomic modulation in men living with
HIV (MLHIV) vs. age-matched non-infected counterparts. We
hypothesized that PEH would be more likely to occur in healthy
controls than among MLHIV.

MATERIALS AND METHODS

Ethical Approval
All volunteers provided informed written consent before
participation in the study, which complied with the
recommendations laid on the Helsinki Declaration and
gained approval from the Ethics Review Board of the Pedro
Ernesto University Hospital (Rio de Janeiro, RJ, Brazil, CCAE
87616418.2.0000.5259).

Subjects
Twelve MLHIV [age: 48.7 ± 9.2 years; body mass index
(BMI): 25.3 ± 2.7 kg m−2] followed up at a tertiary-care
university hospital, and 13 men without HIV/AIDS (controls)
(age: 41.2 ± 9.9 years; BMI: 26.3 ± 2.9 kg m−2) were randomly
recruited from the staff of the same institution to participate
in this study. Eligible MLHIV should have been diagnosed
with HIV/AIDS (Centers for Disease Control and Prevention,
1993) but should be asymptomatic and free from opportunist
infections. Exclusion criteria were as follows: (a) use of cART for
less than 6 months; (b) resting blood pressure ≥ 140/90 mmHg;
(c) history of hypertension, coronary artery disease, ischemic
disease, pulmonary disease, diabetes mellitus, Chagas disease,
tuberculosis, or heart failure; (d) malnutrition; and (e) use of
antidepressant or antihypertensive medication. Controls were
screened for items b, c, d, and e.

Experimental Design
The study was conducted during three visits to the laboratory,
interspersed with 72-h intervals. Participants were instructed
to avoid physical exercise in the 48 h and caffeine or
alcohol in the 12 h prior to experimental sessions. All
procedures took place at the same time of the day (7–
8 a.m.) to minimize potential circadian effects on the
outcomes, in a quiet temperature-controlled environment
(21–22◦C).

On the first visit, subjects underwent blood collection after
8 h fasting. After a light standardized breakfast, they were
connected in supine position to an oxygen uptake (VO2)
analyzer. The cuff for blood pressure measurement and belt
for heart rate monitoring were positioned on the participant’s
arm and chest, respectively. Brachial and central (aortic)
blood pressure rates were measured after 30 min of rest,
during which the heart rate variability (HRV) was assessed.
Subsequently, a maximal cardiopulmonary exercise testing
(CPET) was performed.
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FIGURE 1 | Timeline of measurements across submaximal exercise and non-exercise sessions. HRV, heart rate variability; BP, blood pressure; cBP, central blood
pressure, AIx, augmentation index; ABPM, ambulatory blood pressure monitoring.

On second and third visits, non-exercise and aerobic exercise
sessions were performed in a random counterbalanced order.
Initially, the experimental setup of the first visit was mounted,
with participants remaining at rest for 10 min. HRV, brachial,
and central blood pressure assessments were repeated. Aerobic
exercise sessions consisted of pedaling on cycle ergometer at
intensity corresponding to 50% of oxygen uptake reserve (VO2R).
The exercise went until energy expenditure of 150 kcal. In the
non-exercise sessions, participants remained seated for 20 min
mimicking the duration of the aerobic bout. Immediately after
the experimental sessions, brachial blood pressure (10, 20, 30,
and 70 min), central blood pressure, augmentation index (AIx)
(30 and 70 min), and HRV (each 60 s up to 5 min) were
assessed in supine position throughout 70-min recovery. The
ambulatory blood pressure monitoring (ABPM) and Holter ECG
System devices were placed 2 h after the end of the experimental
sessions and returned 16 h later (next morning). Figure 1
summarizes the timeline of assessments during exercise and
non-exercise sessions.

Resting VO2 Assessment and
Cardiopulmonary Exercise Testing
Breath-by-breath pulmonary gas exchanges were determined
using a VO2000 analyzer (Medical GraphicsTM, Saint Louis, MO,
United States). Data were 30-s stationary time averaged, which
provided a good compromise between removing noise while
maintaining the underlying trend (Midgley et al., 2007). Prior
to each test, the gas analyzers were calibrated according to the
manufacturer’s instructions, using a certified standard mixture
of oxygen (17.01%) and carbon dioxide (5.00%), balanced
with nitrogen (AGATM, Rio de Janeiro, RJ, Brazil). Ambient
temperature and relative humidity ranged from 20 to 24◦C
and 50–70%, respectively. Resting and maximal VO2 were
determined to calculate the percentage of VO2R, as described
elsewhere (Fonseca et al., 2018; Cunha et al., 2020). The VO2
at rest was assessed following strict recommendations (Compher
et al., 2006). Maximal CPET was performed on an electronic
braked cycle ergometer (Cateye EC-1600, CateyeTM, Tokyo,
Japan), using a ramp protocol designed to elicit maximal
volitional effort within 8–12 min (Cunha et al., 2015a). Tests were
considered maximal in the presence of at least three of the five

following criteria (Howley et al., 1995): (a) maximum voluntary
exhaustion; (b) ≥95% predicted maximal heart rate (HR) (220—
age) or presence of heart rate (HR) plateau (1HR between two
consecutive work rates ≤ 4 beats min−1); (c) presence of VO2
plateau (1VO2 between two consecutive work rates < 2.1 ml
kg−1 min−1); (d) respiratory exchange ratio > 1.1; and (e) score
of 10 on the Borg CR -10 scale.

Submaximal Exercise Bout
Cycling bouts were performed at an intensity corresponding to
50% VO2R. The absolute VO2 corresponding to a given%VO2R
was used to calculate the associated cycling power by applying
the equation: VO2 cycling = 3.5 + 12.24 × power × body
weight, where VO2 is in milliliters per kilogram per
minute, power is in Watts, and body weight is in kilograms
(American College of Sports Medicine, 2018). Cycling
cadence was kept at 65 rpm, and the power output was
adjusted whenever necessary to maintain the target intensity.
The energy expenditure was calculated individually from
the VO2 and VCO2 in liters per minute, using the Weir
equation: Energy expenditure in kcal = [(3.941 × average
VO2) + (1.106 × average VCO2)] × exercise time in
minutes (Weir, 1949). The exercise bouts were terminated
when participants achieved a total energy expenditure of
150 kcal, which represents the minimum threshold per
session recommended by the ACSM to promote health
(American College of Sports Medicine, 2018).

Outcomes
Brachial Blood Pressure
At-office measurements of brachial blood pressure were
performed in triplicate with 1-min intervals by the same
trained professional, using a digital sphygmomanometer
(OmronTM, HEM 7200, Matsusaka, Japan). ABPM was
assessed on the non-dominant arm to obtain records
from 2- to 18-h postinterventions (Welch Allyn model
6100, Poznań, Poland), every 20 min during daytime and
every 30 min at night. Participants were instructed not to
shower, perform physical exercise, or change their daily
activities during the test, which was considered satisfactory
when at least 70% of blood pressure readings were valid.
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All participants were given a standardized activity diary
to register any unusual physical or emotional events.
Patients were also asked to record the sleep and wake times
during the recording.

Central (Aortic) Blood Pressure and Augmentation
Index
Central blood pressure and AIx were assessed non-invasively
by applanation tonometry, using the SphygmoCor System
(AtCor MedicalTM, Sydney, NSW, Australia). Radial artery
waveforms were recorded from the radial artery at the
wrist, and the sensor transmitting the pulse of the radial
artery was placed over the radial artery for 10 s. The
corresponding aortic waveforms were automatically generated
from the radial artery waveform by a validated transfer
function. The central blood pressure was computed from the
radial artery pressure curve and calibrated with brachial blood
pressure, as previously reported (Miyashita, 2012). Briefly, central
augmentation pressure (AP) was calculated as the difference
between the first and second systolic peaks on the central
pressure waveform. The AIx—a measure of composite vascular
function (Wilkinson et al., 1998, 2000; Ring et al., 2014)—
was calculated as AP divided by central pulse pressure × 100
to give a percentage. The quality of the recordings was
assured by discarding all SphygmoCor recordings with an
operator index below 90.

Autonomic Modulation
Beat-to-beat HR was continuously recorded using a Polar
RS800CX monitor (Polar ElectroTM, Kempele, Finland), and
signals were transferred to the Polar Precision Performance
Software (Polar Electro, Kempele, Finland). After replacing the
non-sinus beats by interpolated data derived from adjacent
normal RR intervals, times series data were exported to a
HRV analysis software (KubiosTM HRV software, Biosignal
Analysis and Medical Imaging Group, University of Kuopio,
Kuopio, Finland). A Holter ECG system (CardioLight DigitalTM,
Cardio Sistema Ltda, São Paulo, SP, Brazil) was used to obtain
HRV between 2- and 18-h postinterventions, through the
CardioSmartTM Institutional CS 550 software (Cardio Sistema
Ltda, São Paulo, SP, Brazil).

In the present study, the following indices in time domain
were assessed: standard deviation of the NN intervals (SDNN),
square root of the mean squared successive differences from
adjacent RR intervals (rMSSD), and percent number of pairs of
adjacent RR intervals differing by more than 50 ms (pNN50).
The SDNN reflects total variability, while rMSSD and pNN50
are estimates of short-term components of HRV reflecting
the parasympathetic modulation (Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology, 1996). HR recording and HRV analysis
were performed as previously recommended (Task Force of
the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996; Bourdillon et al.,
2017; Shaffer and Ginsberg, 2017). All devices were installed
by the same trained professional, and data were analyzed on a
single computer.

Statistical Analysis
A total of eight individuals in each group was estimated
as necessary, according to sample size a priori calculations
performed using the G∗PowerTM 3.0.10 software (Kiel
University, Kiel, Germany) considering 80% power, 5%
significance level, and effect size of 0.44 based on acute
exercise-induced change in blood pressure of −3.1 mmHg
(Carpio-Rivera et al., 2016). Data normality was ratified by
Shapiro–Wilk statistics, and therefore data were expressed as
mean± standard deviation.

Differences between MLHIV and controls at baseline
were tested by unpaired t-tests. Linear mixed models
adjusted for baseline values were fitted to evaluate the
effects of exercise on changes from baseline in MLHIV and
controls. The following approaches were adopted: (a) within-
between group analysis, with models including group, time,
session (non-exercise or aerobic exercise) as fixed effects
and group × time × session interaction (power: 60%);
(b) within-group analysis, with models including time and
session (non-exercise or aerobic exercise) as fixed effects, and
time × session interaction (power: 76%). The adjustment of
models were evaluated based on Bosker/Snijders R-squared
values (Recchia, 2010), and rate of changes between sessions
was expressed by β coefficients. Additionally, Cohen’s d
effect sizes (ES) were calculated for significant differences
between sessions.

Due to the probable insufficient statistical power of the
three-way interaction model, between-group analysis was
complemented by comparing the areas under the curves (AUCs)
of exercise net effects [(post-pre-exercise session) - (post-pre-
non-exercise session)] on outcomes in MLHIV and controls,
using unpaired t-tests. In all cases, statistical analyses were
performed using the Stata 13.0 software (StataCorp, College
Station, TX, United States), and significance level was fixed at
p ≤ 0.05.

RESULTS

Baseline Sample Characteristics and
Submaximal Exercise Bouts
Clinical, cardiovascular, and autonomic variables at rest are
presented in Table 1. No difference was detected between
groups for age, height, body mass, body mass index, abdominal
circumference, LDL cholesterol, triglycerides, relative maximal
VO2, HR at rest, and AIx. However, MLHIV presented higher
glucose and lower absolute maximum VO2, total cholesterol,
and HDL cholesterol than controls. As for cardiovascular
and autonomic outcomes, MLHIV exhibited higher brachial
and central blood pressure and lower SDNN, rMSSD, and
pNN50 than controls. Moreover, 66% of patients were using
nucleoside reverse transcriptase inhibitors, 66% non-nucleoside
reverse transcriptase inhibitors, 41% protease inhibitors, and 25%
integrase inhibitors.

Table 2 depicts data for total duration, HR, and VO2 elicited
by the acute exercise bouts, which were similar between groups.
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TABLE 1 | Clinical, cardiovascular, and autonomic parameters at rest in controls
and men living with HIV (MLHIV).

Controls (n = 13) MLHIV (n = 12) p-value*

Clinical parameters

Age (years) 41.2 (9.9) 48.7 (9.2) 0.07

Height (cm) 177.9 (4.9) 178.6 (5.4) 0.75

Body mass (kg) 83.4 (11.9) 80.9 (11.2) 0.59

Body mass index
(kg m−2)

26.3 (2.9) 25.2 (2.8) 0.39

Abdominal
circumference (cm)

90.1 (9.1) 92.3 (9.3) 0.60

Glucose (mg dl−1) 89.4 (9.8) 97.2 (6.2) 0.05

Total cholesterol
(mg dl−1)

205.2 (34.7) 170.6 (28.7) <0.01

LDL cholesterol
(mg dl−1)

126.2 (29.1) 107.5 (28.9) 0.12

HDL cholesterol
(mg dl−1)

52.5 (10.8) 37.5 (7.9) <0.01

Triglycerides (mg
dl−1)

132.6 (81.8) 180.5 (86.7) 0.17

Maximal oxygen
uptake (L min−1)

2.5 (0.3) 2.1 (0.5) 0.03

Maximal oxygen
uptake (ml
kg−1 min−1)

30.4 (6.1) 26.4 (4.3) 0.07

Years diagnosed
with HIV

– 17.3 (6.6) –

Years taking cART – 17.1 (7.4) –

T CD4 (cell mm−3) – 683.6 (271.7) –

T CD8 (cell mm−3) – 857.2 (419.8) –

Undetectable viral
load (n, %)

– 12 (100) –

Cardiovascular and autonomic parameters

Heart rate (bpm) 64.9 (8.8) 71.2 (12.5) 0.15

Systolic blood
pressure (mmHg)

114.3 (5.1) 123.2 (14.2) 0.04

Diastolic blood
pressure (mmHg)

71.6 (2.6) 76.8 (6.3) 0.01

Central systolic
blood pressure
(mmHg)

101.6 (4.9) 108.3 (9.3) 0.03

Central diastolic
blood pressure
(mmHg)

71.3 (4.4) 76.5 (6.5) 0.03

Augmentation
index (%)

14.3 (10.7) 15.2 (12.3) 0.85

SDNN (ms) 42.9 (21.3) 24.8 (7.1) 0.01

rMSSD (ms) 38.1 (22.8) 20.5 (8.5) 0.02

pNN50 (%) 13.6 (11.3) 3.6 (4.2) 0.01

*Student t-test. Data expressed as mean (SD). cART, combined antiretroviral
therapy; SDNN, standard deviation of normal to normal intervals; rMSSD,
root mean square of successive differences between normal intervals; pNN50,
percentage of differences between adjacent normal intervals. p-values in bold
denote statistical significant differences.

Acute Effects of Submaximal Aerobic
Exercise
Residual plots for all models were visually examined and did
not demonstrate deviations from the regression assumptions. As

TABLE 2 | Characteristics of submaximal exercise session in controls and men
living with HIV (MLHIV).

Controls (n = 13) MLHIV (n = 12) p-value*

Duration (min) 23.2 (3.1) 24.9 (5.6) 0.45

Heart rate (bpm) 122.7 (10.2) 125.3 (14.4) 0.61

Oxygen uptake (% reserve) 53.2 (3.9) 55.7 (4.9) 0.19

*Student t-test. Data expressed as mean (SD).

expected, the linear model including group as fixed effect (three-
way interaction) lacked significance for all outcomes (p ≥ 0.08),
while the approach including time and session proved to be
significant (p ≤ 0.03). Bosker/Snijders R-squared for within-
group models discriminated by outcome were always non-
negative (controls: 0.13–0.85; MLHIV: 0.45–0.96), indicating
low chances of misspecification giving the explanatory variables
added to the models. Detailed R-squared data per outcome and
group are presented in Supplementary Table 1.

Brachial Blood Pressure
Resting blood pressure measured on the first visit and before the
experimental conditions (exercise and non-exercise) was similar
in controls (114.3/71.6 vs. 112.3/69.9 vs. 112.9/71.4 mmHg,
respectively; p > 0.38) and MLHIV (123.2/76.8 vs. 121.2/75.5
vs. 121.1/76.0 mmHg, respectively; p > 0.59). Figure 2 presents
absolute values of at-office and ambulatory brachial blood
pressure after the experimental sessions in controls (Figure 2A)
and MLHIV (Figure 2B), and exercise net effects on systolic
blood pressure (SBP, Figure 2C) and diastolic blood pressure
(DBP, Figure 2D). In both groups, no difference between sessions
was detected for SBP, except for controls that presented lower
values 2 h postexercise vs. non-exercise sessions (123.6 ± 9.3 vs.
132.7± 8.7 mmHg; β =−9.73; 95% CI =−18.6 to−0.8; p = 0.03;
ES: 1.5). Controls showed lower DBP after 20 min (115.2 ± 4.0
vs. 118.3 ± 8.0 mmHg; β = −6.69; 95% CI = −11.4 to −1.9;
p < 0.01; ES: 0.55), 30 min (115.4 ± 5.0 vs. 118.0 ± 8.6 mmHg;
β =−5.84; 95% CI =−10.5 to−1.1; p = 0.01; ES: 0.80), and 70 min
(115.6± 9.5 vs. 118.6± 10.1 mmHg; β =−6.53; 95% CI =−11.2
to−1.7; p < 0.01; ES: 1.3) after exercise vs. non-exercise sessions,
while no difference was detected for MLHIV.

There was no difference between controls and MLHIV with
regard to AUCs of exercise net effects on SBP (Figure 2C)
(overall: −11.3 ± 23.0 vs. −4.5 ± 12.8 mmHg min−1; p = 0.37).
On the other hand, greater reductions in DBP (Figure 2D) were
found in controls vs. MLHIV along the first 70 min of recovery
(−19.6 ± 12.5 vs. −5.0 ± 7.0 mmHg min−1; p < 0.01; ES: 0.7),
ABPM (−16.0 ± 18.1 vs. 7.6 ± 6.8 mmHg min−1; p < 0.001; ES:
0.4), and total follow-up (−42.8 ± 22.8 vs. 0.9 ± 11.3 mmHg
min−1; p < 0.0001; ES: 0.6). This corresponded to an overall
average difference of−4 mmHg between groups.

Central Blood Pressure and Augmentation Index
Figure 3 depicts absolute values and exercise net effects on central
(aortic) blood pressure (Figures 3A–F) and AIx (Figures 3G–I)
in controls and MLHIV. In the within-group analysis, controls
had lower cSBP at 30 min (100.8 ± 4.3 vs. 108.4 ± 13.6 mmHg;
β = −8.21; 95% CI = −15.6 to −0.7; p = 0.03; ES: 0.7), and lower

Frontiers in Physiology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 685306

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-685306 July 10, 2021 Time: 13:17 # 6

Barros et al. Postexercise Hypotension and HIV Infection

FIGURE 2 | Blood pressure after submaximal exercise or non-exercise sessions in controls (A) and men living with HIV (B) and exercise net effects on systolic (C)
and diastolic (D) blood pressure. SBP, systolic blood pressure; DBP, diastolic blood pressure. *p < 0.05 for changes from baseline (exercise vs. non-exercise
session) using linear mixed models. #p < 0.05 for differences between areas under the curves of controls vs. MLHIV.

cDBP at 30 min (72.5± 3.3 vs. 78, 8± 9.0 mmHg; β =−7.58; 95%
CI = −12.6 to −2.4; p < 0.01; ES: 0.8), and 70 min (72.6 ± 6.8
vs. 77.5 ± 6.3 mmHg; β = −6.18; 95% CI = −11.2 to −1.0;
p = 0.01; ES: 2.0) after exercise vs. non-exercise sessions. In
MLHIV, reductions in postexercise vs. non-exercise sessions were
detected for cSBP at 70 min (116.7± 11.1 vs. 113.9± 9.4 mmHg;
β = −6.53; 95% CI = −12.6 to −0.3; p = 0.03; ES: 0.3) and cDBP
at 30 min (78.3 ± 8.1 vs. 82.5 ± 7.7 mmHg; β = −4.20; 95%
CI = −7.6 to −0.7; p = 0.01; ES: 0.95). Lower AIx was found
for controls at 30 min postexercise vs. non-exercise sessions
(4.7 ± 14.7 vs. 15.7 ± 13.1%; β = −10.53; 95% CI = −18.9 to
−2.0; p = 0.01; ES: 1.0), while no difference between sessions
occurred for MLHIV.

No statistical difference between controls and MLHIV
occurred for AUCs of exercise net effects on cSBP (−12.5 ± 15.7
vs. −6.5 ± 7.8 mmHg min−1; p = 0.24) and cDBP (−10.7 ± 9.0
vs. −5.0 ± 4.9 mmHg min−1; p = 0.06). On the other hand, the
AIx reduction was greater in controls vs. MLHIV (−13.6 ± 13.7
vs.−3.1± 7.2% min−1; p = 0.02; ES: 2.4).

Heart Rate and Heart Rate Variability
Figure 4 shows HR and HRV data from baseline up to
5 min (300 s) following the experimental sessions. Both groups
presented higher HR and lower SDNN and rMSSD in all time

points after exercise vs. non-exercise sessions, but only controls
exhibited lower pNN50. Figure 5 presents absolute values for HR
and HRV between 2 and 18 h after the experimental conditions.
In both groups, HR, SDNN, and rMSSD were similar in exercise
and non-exercise sessions. The only exception was the lower
pNN50 in controls vs. MLHIV after 2 h postexercise vs. non-
exercise sessions (14.5 ± 7.2 vs. 17.9 ± 9.4%; β = −11.27; 95%
CI =−20.5 to−1.9; p = 0.01; ES: 0.4).

Exercise net effects for HR and HRV are presented in Figure 6.
Comparisons of AUCs in the first 300 s revealed that controls
had greater reductions vs. MLHIV in rMSSD (−111.8 ± 32.1
vs. −75.9 ± 22.2 ms min−1; p < 0.01; ES: 3.8) and pNN50
(−76.3 ± 28.3 vs. −19.0 ± 13.7% min−1; p < 0.0001; ES: 4.4).
On the other hand, the Holter analysis showed greater rMSDD
reduction postexercise in MLHIV than controls (−45.7 ± 26.1
vs.−13.6± 24.5 ms min−1; p < 0.01; ES: 0.7).

DISCUSSION

The present study compared the blood pressure, vascular
function, and cardiac autonomic modulation after exercise and
non-exercise sessions in MLHIV and non-infected controls. To
the best of our knowledge, this is the first controlled trial
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FIGURE 3 | Absolute values and exercise net effects of central systolic blood pressure (A–C), central diastolic blood pressure (D–F), and augmentation index (G–I)
after exercise and non-exercise sessions in controls and men living with HIV (MLHIV). cSBP, central systolic blood pressure; cDBP, central diastolic blood pressure.
*p < 0.05 for changes from baseline (exercise vs. non-exercise session) using linear mixed models. #p < 0.05 for differences between areas under the curves of
controls vs. MLHIV.

describing cardiovascular responses to acute aerobic exercise
in MLHIV, since prior studies addressing vascular function in
these patients reported only data at rest (Leite et al., 2017).
The major finding was that PEH was attenuated in MLHIV
vs. healthy controls—while reductions after exercise have been
detected in brachial diastolic blood pressure in controls, changes
did not occur in MLHIV. Postexercise decreases in AIx and
HRV markers reflecting vagal modulation were also greater in
controls vs. MLHIV.

Our data concur with a prior study (Domingues et al.,
2018) that failed to identify PEH after resistance exercise in
women living with HIV. In that study, five responders out of
12 patients (decreases in SBP > 4 mmHg) had lower CD4/CD8
ratio and used cART for shorter periods. This suggests that
the attenuated PEH presently observed in MLHIV might have
been influenced by the prolonged use of cART. The average
blood pressure reduction in the first 2 h of postexercise recovery
was approximately 3.0/4.5 mmHg (SBP/DBP) in controls, which
is consistent with values reported for individuals with normal

blood pressure (∼4.5/2.6 mmHg) (Perrier-Melo et al., 2020)
and higher than decreases in MLHIV (∼0/1 mmHg). Prior
research has suggested that the length and magnitude of
postexercise hypotension may be influenced by exercise session
characteristics, such as duration, intensity, or volume (Brito
et al., 2018; Fonseca et al., 2018). Therefore, at least in theory,
longer (>25 min) and more intense (>50% of VO2R) exercise
would elicit greater hypotensive responses (de Brito et al., 2019).
Our exercise protocol was defined based on recommendations
from the ACSM for minimum energy expenditure during health-
oriented exercise sessions (American College of Sports Medicine,
2018). Nevertheless, from a clinical perspective, epidemiological
studies indicate that a decrease of 2 to 5 mmHg in SBP could
reduce the mortality due to cardiovascular causes by 6–14%
(Carpio-Rivera et al., 2016).

An important aspect of our study is the inclusion of a non-
exercise session to control time effects on blood pressure (de
Brito et al., 2019). Due to the circadian variation, blood pressure
increases progressively in the morning before showing a decrease
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FIGURE 4 | Heart rate (A,B) and heart rate variability indices (C–H) from baseline to 5 min after exercise or non-exercise sessions in controls and men living with HIV
(MLHIV). SDNN, standard deviation of normal to normal intervals; rMSSD, root mean square of successive differences between normal intervals; pNN50, percentage
of differences between adjacent normal intervals. *p < 0.05 for changes from baseline (exercise vs. non-exercise session) using linear mixed models.
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FIGURE 5 | Heart rate (A,B) and heart rate variability indices (C–H) during 18 h ambulatory blood pressure monitoring after exercise or non-exercise sessions in
controls and men living with HIV (MLHIV). SDNN, standard deviation of normal to normal intervals; rMSSD, root mean square of successive differences between
normal intervals; pNN50, percentage of differences between adjacent normal intervals. *p < 0.05 for changes from baseline (exercise vs. non-exercise session) using
linear mixed models.
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FIGURE 6 | Exercise net effects on heart rate (A) and heart rate variability indices (B–D) in controls and men living with HIV (MLHIV). SDNN, standard deviation of
normal to normal intervals; rMSSD, root mean square of successive differences between normal intervals; pNN50, percentage of differences between adjacent
normal intervals. #p < 0.05 for differences between areas under the curves of controls vs. MLHIV.

(Hermida et al., 2007). This is consistent with our data from non-
exercise sessions in both groups. Apparently, the exercise session
lowered this circadian effect on blood pressure in controls, as
previously reported (Cucato et al., 2015; de Brito et al., 2015;
Queiroz et al., 2017). It is also worth mentioning that the exercise
bouts have been matched for the overall energy expenditure,
therefore negating the influence of exercise volume on the
magnitude and duration of acute blood pressure reduction (Jones
et al., 2007; Fonseca et al., 2018). This strategy resulted from the
premise that central baroreflex plays an important role in eliciting
PEH. During exercise, vascular smooth muscle (myogenic tone)
(Phan et al., 2021) and muscle afferent fibers (exercise pressor
reflex) contribute to reset the blood pressure to a higher level
(Halliwill et al., 2013). When exercise is terminated, a decrease
in sympathetic activity resets the baroreflex to a lower level,
contributing to the acute blood pressure reduction (Chen and
Bonham, 2010; Halliwill et al., 2013). A greater amount of muscle
work—in other words, exercise volume—increases the exercise
pressor response (Halliwill et al., 2013). Thus, it is feasible to
speculate that the exercise volume would be a major determinant
of the PEH phenomenon.

Several studies investigating PEH did not match exercise
sessions performed with different intensity for the total
amount of work (Forjaz et al., 2004; Pescatello et al.,
2004b; Eicher et al., 2010; Casonatto et al., 2011), and
this helps on explaining why one of them failed to detect
hypotensive responses (Casonatto et al., 2011), while others
claimed that intensity would be more determinant than
duration to produce PEH (Forjaz et al., 2004; Pescatello
et al., 2004b; Eicher et al., 2010). Trials assessing the blood

pressure after acute aerobic exercise bouts performed with
different intensities, but similar volume (energy expenditure,
time × intensity, etc.) have consistently reported similar
hypotensive effects (Jones et al., 2007; Fonseca et al., 2018;
Cunha et al., 2020).

It is well accepted that PEH is more likely to occur
in individuals with high than normal blood pressure (Brito
et al., 2014). However, although MLHIV presented higher
brachial and central blood pressure at rest than controls, in
both groups, those outcomes felt within the normal range
(Reboussin et al., 2018). According to the American Heart
Association, studies are inconsistent on whether the prevalence
of hypertension is higher in patients with treated HIV vs.
uninfected individuals (Feinstein et al., 2019). However, less
controversial is the association between HIV infection and
autonomic dysfunction—the accumulated evidence suggests a
shift toward sympathetic dominance (McIntosh, 2016), which
concurs with our data.

Besides predisposing patients to higher cardiovascular risk
(McIntosh, 2016), autonomic dysfunction also seem to influence
parasympathetic reactivation after exercise (Cunha et al., 2015b).
In this sense, Cunha et al. (2015b) reported that individuals
with lower vagal modulation at rest tend to exhibit slower
postexercise parasympathetic reactivation. We could not confirm
a delayed vagal reactivation and sympathetic withdrawal within
5 min of recovery after the exercise performed by MLHIV,
but rather an attenuated vagal withdrawal. Borges et al.
(2012) observed that people living with HIV exhibited lower
vagal modulation during the first 30 min of postexercise
recovery in comparison with healthy controls. However, since
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the vagal modulation at rest was already different between
groups, and no data have been provided demonstrating in
what extent vagal modulation was reactivated in comparison
with baseline, assumptions on how fast vagal reactivation
and sympathetic withdrawal occurred after exercise could
not be made. Our results indicate that the time course
of autonomic responses during recovery did not affect the
effects of acute exercise on blood pressure. However, the
contribution of autonomic dysfunction in precluding the
occurrence of PEH among MLHIV cannot be discarded,
since only the parasympathetic modulation has been indirectly
assessed. Further research is warranted to confirm these
findings, including direct assessments of both sympathetic and
parasympathetic activities.

The role of changes in cardiac autonomic control to produce
PEH remains controversial even among uninfected individuals.
While some studies reported a reduction in sympathetic activity
associated with increased vagal activity (Park et al., 2006), others
reported no changes (Park et al., 2008; Anunciacao et al., 2016)
or observed increased sympathetic activity (Teixeira et al., 2011;
Cunha et al., 2016). It has been suggested that an increase in
sympathetic outflow concomitant to PEH would be a reflex
response to counteract the reduction in blood pressure and the
baroreflex resetting (MacDonald, 2002). Our findings partially
concur with this premise, since during postexercise recovery the
HR was higher and indices reflecting vagal modulation were
lower vs. pre-exercise in both MLHIV and controls. Moreover,
the greater decrease in DBP was concomitant with lower RMSSD
and pNN50 in controls vs. MLHIV. It is therefore feasible
to speculate that PEH among controls was not mediated by
increased vagal activity (or by opposition, lowered sympathetic
activity). In this case, the hypotensive response to exercise would
rely on the ability of local vasodilator mechanisms to override
the effects of sympathetic activation (Fonseca et al., 2018). This
is again in agreement with our results in regards to AIx. Acute
reductions in sympathetic vasoconstrictor activity have been
reported in exercising muscles (i.e., functional sympatholysis)
(Moynes et al., 2013). This phenomenon is thought to be
mediated by locally released substances that modulate the effect
of noradrenaline on α-receptors, such as histamine, opioids,
nitric oxide, prostaglandins, or ATP (Halliwill, 2001), which are
yet to be properly assessed in MLHIV.

There is strong accumulated evidence indicating a decrease in
arterial stiffness following acute aerobic exercise (Mutter et al.,
2017; Pierce et al., 2018). Arterial stiffness depends on several
factors, such as endothelial function, smooth muscular vascular
tone, and structural features (Martinez-Ayala et al., 2020). It
has been proposed that a relaxation of vascular smooth muscle
transfers stress from the less extensive collagen fibers to elastin,
which could partially account for decreases in arterial stiffness
after exercise (Mutter et al., 2017). Evidence demonstrates that
changes in immune activity due to HIV infection may increase
the pulse wave velocity (Boccara et al., 2006; Rider et al., 2014),
disrupting the activity of the matrix metalloproteinase (MMPs)
(Misse et al., 2001) and degrading collagen, elastin, laminin,
and fibrillin within the arterial wall (Martinez-Ayala et al., 2020).
The consequent increasing in vascular resistance limits the

vasodilation response during exercise. Accordingly, in the present
study, greater postexercise reduction in AIx was found in controls
vs. MLHIV. This is suggestive that vascular mechanisms could
partially explain the PEH detected in controls, but not in MLHIV.

The major limitation of the present study was the lack
of data regarding additional hemodynamic outcomes (e.g.,
stroke volume, cardiac output, and peripheral resistance), which
precluded further analysis on whether the attenuated PEH
in MLHIV resulted from central or peripheral mechanisms.
Second, despite being compatible with health-oriented exercise
prescription (American College of Sports Medicine, 2018), the
exercise bout was of relatively short duration and moderate
intensity, which limits the generalization of our findings to
exercise settings with greater volume (vigorous intensity and/or
longer duration). Another important feature refers to the
relatively small sample of men only. The small sample probably
contributed to the lack of significance of the linear mixed
model including “group” as fixed effect, which would be the
optimal approach. The exclusive participation of men in the study
limits its external validity. However, the inclusion of women
might introduce a confounding factor due to differences in sex
hormones affecting the autonomic nervous system and blood
pressure responses to acute exercise (Carpio-Rivera et al., 2016).

CONCLUSION

An aerobic cycling bout performed with moderate intensity
and relatively short duration seemed to be capable to induce
PEH in non-infected controls, but not in MLHIV using cART.
Although MLHIV presented autonomic dysfunction at rest, no
evidence was found of delayed vagal reactivation and sympathetic
withdrawal within 5 min after exercise in this group. The
acute reduction in DBP among controls was concomitant with
greater postexercise decreases in HRV indices reflecting vagal
modulation vs. MLHIV. Although no changes between groups
were detected for central blood pressure, controls exhibited
greater reductions in AIx after exercise than MLHIV.

Overall, these data are indicative of the role of vascular
responses to produce PEH, and that the attenuated postexercise
blood pressure reduction in MLHIV may have resulted
from vascular dysfunction limiting vasodilation. In practical
terms, our findings suggest that aerobic exercise sessions with
appropriate volume may contribute to reduce blood pressure
and cardiovascular risk in MLHIV. However, further studies
investigating the effects of acute exercise performed with
different intensities and durations on cardiovascular responses in
people living with HIV under cART are warranted, to provide
information to optimize exercise prescription aiming to reduce
blood pressure, improve autonomic control, and prevent vascular
dysfunction in those patients.
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