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The glomerulus is a compact cluster of capillaries responsible for blood filtration and 
initiating urine production in the renal nephrons. A trilaminar structure in the capillary 
wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched 
and fenestrated endothelial cells adhering to the glomerular basement membrane 
and specialized visceral epithelial cells, podocytes, forming the outermost layer with 
a molecular slit diaphragm between their interdigitating foot processes. The unique 
dynamic and selective nature of blood filtration to produce urine requires the 
functionality of each of the GFB components, and hence, mimicking the glomerular 
filter in vitro has been challenging, though critical for various research applications 
and drug screening. Research efforts in the past few years have transformed our 
understanding of the structure and multifaceted roles of the cells and their intricate 
crosstalk in development and disease pathogenesis. In this review, we present a 
new wave of technologies that include glomerulus-on-a-chip, three-dimensional 
microfluidic models, and organoids all promising to improve our understanding of 
glomerular biology and to enable the development of GFB-targeted therapies. Here, 
we also outline the challenges and the opportunities of these emerging biomimetic 
systems that aim to recapitulate the complex glomerular filter, and the evolving 
perspectives on the sophisticated repertoire of cellular signaling that comprise the 
glomerular milieu.

Keywords: glomerular filtration barrier, crosstalk, in vitro, podocyte, glomerular endothelial cell, 3D model

“A model is a lie that helps you see the truth” – Dr. Howard Skipper

INTRODUCTION

The glomerular filtration barrier (GFB) is a highly specialized interface responsible for 
blood filtration that is charge and size selective. While its functionality and integrity are 
maintained by a constant interaction between glomerular endothelial cells (GECs), the 
glomerular basement membrane (GBM), and podocytes (Rennke et  al., 1975; Rennke and 
Venkatachalam, 1979), they are also influenced by the milieu and dynamics of the renal 
blood flow. In glomerular diseases, this barrier loses functional integrity, allowing the passage 
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of macromolecules and cells, and results in morphological 
changes, increasing the risk of long-term kidney damage 
that ultimately leads to kidney failure (USRDS, 2020). This 
is a growing worldwide health problem that accounts for a 
substantial economic burden (Honeycutt et al., 2013). Although 
the etiologies differ among glomerular diseases, damage to 
the GFB often has the same clinical manifestations, proteinuria 
or hematuria, and impaired glomerular filtration rate (GFR).

The interconnectivity and structural complexity of the GFB 
have favored the use of experimental in vivo models, where 
these traits are preserved. Using rodent models is regarded as 
the gold standard in GFB research. Mice have been used 
extensively to study the GFB, given the advantage that the 
complexity of the GFB microenvironment can be  fully 
recapitulated, that there are several available genetically defined 
strains and the relative ease of single gene targeting (Becker 
and Hewitson, 2013). Also, transgenic lines with fluorescent 
reporters in different glomerular cell types provide visual readout 
and have been useful for determining the origins and fate of 
glomerular cells in vivo (Hackl et al., 2013). There are however 
significant challenges with mimicking human disease in animals, 
as many models do not completely recapitulate human disease 
manifestations and instead allow only for studies of certain 
disease aspects (Becker and Hewitson, 2013). However, the 
use of animal models is of particular importance for 
pharmacodynamics and pharmacokinetics testing, where the 
effects of pharmaceutical interventions can be  examined at 
the systemic level to determine drug safety and efficacy before 
entering human trials.

The use of transgenic zebrafish strains is growing as a 
vertebrate model for GFB research (Zhou and Hildebrandt, 
2012; Hansen et  al., 2020) and has proven to be  a useful 
tool to investigate glomerular disease development and the 
effects of drugs on GFB (Schiffer et  al., 2015; Müller-Deile 
et  al., 2019). Although studies in zebrafish are more time- 
and cost-efficient compared with rodent models, there are 
some inherent caveats. It can for instance be  difficult to 
detect proteinuria or the clearance of specific markers of 
interest in the urine due to the surrounding water volume. 
Also, zebrafish have numerous duplicate genes (Woods et al., 
2000), which complicates the generation of knockout strains, 
and they also have the ability to regenerate nephrons de novo 
after injury. Other limitations include the need for 
microinjections to the dorsal aorta and cardinal vein for 
certain drugs, which limits throughput. Altogether, animal 
work can be  expensive, has limited throughput, and poses 
challenges for studying intricate crosstalk between the cells 
in the glomerulus. Therefore, there is a need for 
microphysiological systems that can recapitulate the form 
and function of the GFB and offer a controlled environment 
for studies of isolated pathological events. Current model 
systems range from simple to physiologically complex and 
offer opportunities for examining specific mechanisms 
involved in the maintenance as well as damage to the GFB 
(Table  1). Here, we  review and discuss some of the current 
and future experimental in vitro model systems for studying 
the GFB.

THE FUNCTIONAL BARRIER

The glomerulus is the filtering part of the nephron (Figure  1A) 
and consists of three different cell types: podocytes (visceral epithelial 
cells), GECs, and mesangial cells. The filtrate from the glomerulus 
enters the Bowman’s capsule as pre-urine before reabsorption and 
secretion in the tubular system. Glomerular cells are highly specialized 
and interdependent, with fenestrated GECs covering the luminal 
surface of glomerular capillaries, in direct contact with the blood. 
Podocytes tightly wrap around the glomerular capillary vessels, 
with interdigitating foot processes bridged by a slit diaphragm 
(Figure  1B). GECs and podocytes share a common extracellular 
matrix (ECM), the glomerular basement membrane (GBM), and 
together, they form the GFB (Figure  1C). Between the capillaries 
are contractile mesangial cells surrounded by their ECM, providing 
structural support to the glomerular tuft (Brenner et  al., 1978).

The GFB function relies on its three layers: podocytes, GBM, 
and GECs (Figure  1C). Podocytes are terminally differentiated 
epithelial cells that form the architectural backbone of the GFB 
anchored to the GBM through transmembrane receptors, such 
as integrins (e.g., integrin α3 and laminin β2) and dystroglycan, 
and cover the outer aspect of the glomerular capillary (Pozzi 
et  al., 2008; Meyrier, 2011). They have specialized projections 
that interdigitate to form the slit diaphragm, a key element in 
the GFB (Perico et  al., 2016). The slit diaphragm proteins (e.g., 
nephrin and podocin) anchor to the cytoskeleton at the plasma 
membrane and form bridging structures between the interdigitating 
podocyte projections (foot processes; Kestila et  al., 1998; Boute 
et  al., 2000). Additional proteins that maintain slit diaphragm 
proteins, such as CD2AP, play vital roles in GFB maintenance. 
Podocytes are essential in GFB function, underscored by the 
discovery of pathogenic mutations to proteins involved in 
maintaining podocyte structure that are causal to proteinuric forms 
of kidney disease (Vivante and Hildebrandt, 2016; Li et al., 2020a). 

The GBM is formed by secreted products from both podocytes 
and endothelial cells during glomerulogenesis (St John and 
Abrahamson, 2001). Its role in the barrier function is highlighted 
by genetic studies showing that mutations in key components of 
GBM; encoding laminin-α5 and COL4A5, or recessive COL4A3/4, 
results in basement membrane nephropathy due to the absence 
or inadequate assembly of all collagen chains. These mutations 
contribute to the development of nephrotic syndrome in pediatric 
patients and Alport syndrome, respectively (Tryggvason et  al., 
1993; Kashtan, 1999; Quinlan and Rheault, 2021).

Glomerular endothelial cells are highly specialized cells with 
fenestrae and a charged luminal endothelial surface layer, or 
glycocalyx, that is composed of negatively charged networks of 
proteoglycans, glycoproteins, and glycolipids (Ballermann, 2007; 
Fogo and Kon, 2010; Haraldsson and Nystrom, 2012; Khramova 
et  al., 2021) that together with the GBM contribute to the 
maintenance of a charge-selective barrier which is important 
to restrain albumin from the glomerular filtrate (Jeansson et  al., 
2009; Singh et  al., 2011; Öberg and Rippe, 2013; Boels et  al., 
2016; Figure  1C). GEC dysfunction can initiate and contribute 
to GFB breakdown (Haraldsson et  al., 2008; Haraldsson and 
Nystrom, 2012; Sun et  al., 2013; Daehn, 2018). In addition, 
activated podocytes have been shown to influence endothelial 
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glycocalyx remodeling and loss in experimental FSGS and in vitro 
(Ebefors et al., 2019). In diabetic kidney disease, GEC dysfunction 
and glycocalyx damage represent initiating steps in diabetic 
albuminuria in humans and in experimental models (Zhao et al., 
2006; Satchell and Tooke, 2008; Yuen et  al., 2012; Dogne et  al., 
2016; Lassen and Daehn, 2020).

Importantly, bidirectional signaling enables cells in the glomeruli 
to function effectively, where podocytes control GEC growth and 
survival via crosstalk of paracrine vascular endothelial growth 
factor alpha (VEGFA and VEGF-R; Sison et  al., 2010; Jeansson 
et al., 2011). Crosstalk also exists between endothelial and mesangial 
cells (PDGF-B and PDGFR-β) and between podocytes and mesangial 
cells (CCL21 and CCR7; Vaughan and Quaggin, 2008; Schlondorff 
and Banas, 2009). Hence, all components contribute to the overall 
structure and function of this complex barrier, and model systems 
that can recapitulate in vivo biology and microenvironment would 
provide a platform for studying cell crosstalk and feedback regulation 
and open up the new therapeutic strategies specifically targeting 
the GFB.

Modeling the Glomerular Filtration Barrier
The unique environment and complex interactions between the 
specialized cells in the GFB make modeling glomerular disease 
particularly challenging. Podocytes are a key target cell for injury 
in the evolution of segmental sclerosis lesions of proteinuric 
diseases, and their morphology is critical for glomerular filtration. 
However, once isolated, podocytes rapidly dedifferentiate and lose 
their specialized morphology, making it difficult to study their 
function in vitro. Immortalized mouse and human podocyte cell 
lines have played a fundamental role in advancing podocyte 
research, but they lack defined foot processes as well as slit 
diaphragms. Efforts have been made to improve podocytes in 
culture to more closely recapitulate their in vivo phenotypic 
characteristics. By modulating the ECM, which affects most 
aspects of cellular behavior, researchers have established that 
growing primary rat podocytes in the presence of heparin and 
all-trans retinoic acid on laminin-coated plates resulted in podocytes 
with primary processes that further bifurcated and interdigitated 
with adjacent cells (Yaoita et  al., 2018). Growing podocytes in 

TABLE 1 | Comparison of in vivo and in vitro models currently used or under development for studies of the glomerular filtration barrier (GFB).

  In vitro In vivo

2D monolayer Static  
co-culture

Microfluidic  
co-culture

Spheroids 
organoids

Animal models

All GFB cell types (Nishinakamura, 2019) No No No No Yes

GBM (Slater et al., 2011; Chew and Lennon, 2018; 
Hale et al., 2018; Petrosyan et al., 2019)

No Limited Limited Limited Yes

Glycocalyx (Singh et al., 2007; Petrosyan et al., 
2019; Koning et al., 2020)

Limited Limited Yes Limited Yes

Allows cell differentiation (relevant phenotype; Musah 
et al., 2017; Bao et al., 2018; Nishinakamura, 2019; 
Veissi et al., 2020)

No No Limited Limited Yes

Permselectivity (Li et al., 2016; Petrosyan et al., 
2019; Li et al., 2020b)

No Yes Yes Limited Yes

Recapitulation of microenvironment (Huh et al., 2013; 
Bhatia and Ingber, 2014; Veissi et al., 2020)

No Limited Limited Limited Yes

Controlled microenvironment (Anandakrishnan and 
Azeloglu, 2020)

Yes Yes Yes Yes No

Shear stress (Slater et al., 2012; Musah et al., 2017; 
Yang et al., 2017; Homan et al., 2019)

No Limited Yes Limited Yes

Bidirectional crosstalk (Li et al., 2016; Casalena et al., 
2020; Veissi et al., 2020)

No Yes Yes Limited Yes

Material of human origin (Little and Takasato, 2015; 
Musah et al., 2017; Anandakrishnan and Azeloglu, 
2020)

Yes Yes Yes Yes No

High throughput (Boreström et al., 2018; 
Anandakrishnan and Azeloglu, 2020)

Yes Limited Limited Limited No

Development of personalized/precision medicine 
(Anandakrishnan and Azeloglu, 2020)

Yes Yes Yes Yes No

Timeline for experiment Short Short Long Long Long
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a gelatin microbial transglutaminase platform tuned to the stiffness 
of healthy glomeruli promoted the differentiation and maturation 
response of podocytes (Hu et al., 2017). Other approaches involve 
culturing podocytes on nanoporous surfaces with grooves. This 
method showed that podocytes were better differentiated, had 
organized actin cytoskeleton stress fibers, and developed vinculin-
positive focal adhesions (Zennaro et al., 2016). Microscale curvature 
surfaces have also been shown to promote podocyte differentiation 
in vitro (Korolj et al., 2018). By growing podocytes on topographic 
substrates, the authors showed augmented nephrin expression 
and structured F-actin arrangement within cells. The curved 
surfaces promoted process formation with interdigitation and 
improved barrier function compared to podocytes grown on flat 
substrates (Korolj et al., 2018). Bioengineered surfaces that artificially 
induce branch formation have been developed by growing podocytes 
on a 3D geometry that mechanically enforces the arborization 
of individual podocytes (Ron et  al., 2017). The formation of 
peripheral projections showed increased slit diaphragm proteins 
(nephrin, podocin, and NEPH1) and synaptopodin, as well as 
actinin-4 cross-linked actin stress fibers properly localized within 
these peripheral processes. In addition to observing slit diaphragm-
like cell-cell junctions, the authors also demonstrated that on 
these surfaces, podocytes had a significant increase in expression 
of genes related to podocyte function, hence a more mature 
physiological phenotype (Ron et  al., 2017). The next steps are 
already underway involving the derivation and generation of 
human pluripotent stem cells into podocyte-like cells (Yaoita 
et  al., 2018; Ge et  al., 2020). These will be  instrumental for 
future studies and high-content screening for podocentric therapies, 
and for integration into more complex model systems 
discussed below.

There are also challenges in obtaining, culturing, and maintaining 
GECs in vitro. GECs differ in anatomy to most other endothelial 
cells in the body and are defined by their fenestrations, which 
are important for the function of the filtration barrier (Satchell 
and Braet, 2009; Fogo and Kon, 2010). The fenestrations lack 
diaphragm but are covered with a glycocalyx. Mimicking GEC 
function in vitro has been challenging as they lose fenestrations 
in culture. This may be  due to their dependence on podocyte-
derived growth factors for their viability through intercellular 
crosstalk and interactions with the GBM. However, the very first 
human glomerular endothelial cell (GEnC) line, developed by 
Satchell et al. (2006), was shown to have fenestrations in response 
to VEGF, and over the years, it has proved to be  a useful tool 
in GFB research, including in studies of glomerular cell interactions 
(Boor et al., 2010; Byron et al., 2014). The importance of VEGF-C 
on GEC monolayer permeability has been demonstrated through 
the measurement of trans-endothelial electrical resistance (TEER) 
as an indicator of the integrity of GEC’s intercellular junctions 
(Ramnath and Satchell, 2020) and the passage of fluorescence-
labeled BSA (Foster et al., 2008). The authors found that VEGF-C 
increased TEER and limited albumin passage, in contrast to the 
effect of VEGF-A, suggesting that these podocyte-derived growth 
factors regulate the permeability of GECs in the GFB (Foster 
et al., 2008). Although quantification of the glomerular endothelial 
glycocalyx in vivo has been achieved by direct labeling or indirect 
measurements (Hjalmarsson et  al., 2004; Dane et  al., 2015), 
measuring the glycocalyx in cultured GECs has been challenging 
due to the nature of this invisible layer. Recently, atomic force 
microscope elastography was used to successfully measure 3D 
biomechanical properties of the glycocalyx on murine GECs 
through direct contact by deflection of a cantilever, without 

A B C

FIGURE 1 | Schematic drawing of a single nephron and glomerulus, a glomerular capillary vessel, and the glomerular filtration barrier (GFB). (A) A single nephron 
comprising the blood-filtering glomerulus, enveloped by Bowman’s capsule that connects to the proximal tubule at the start of the urine-modifying tubular system. 
(B) The luminal surface of the glomerular capillary vessel is covered by glomerular endothelial cells (GECs), while podocytes wrap around the outside of the vessel 
with primary and foot processes (FT), forming an interdigitated pattern. Neighboring FPs are bridged by the slit diaphragm, one of the several essential components 
for glomerular permselectivity. The blood is filtered over this capillary barrier, and the pre-urine produced is forwarded from the Bowman’s capsule into the lumen of 
the proximal tubule. (C) The schematic cross section of the GFB displays the GEC fenestrae attached to the basement membrane (BM) and covered luminally by 
glycoproteins, proteoglycans, and glycosaminoglycans of the glycocalyx, important for maintaining the charge selectivity of the GFB. On the opposite side of the 
BM, the podocyte FPs are attached. The FPs interlink by slit diaphragm proteins, such as nephrin and podocin, are important for the restriction of albumin by the 
GFB. The arrow shows the direction of plasma filtration over the barrier.
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exposing cultured cells to fixation or staining procedures that 
alter the fragile structure (Ebefors et  al., 2019). An additional 
requirement of GECs function is fluid flow, which is absent in 
monocultures, leading to loss of the influence of shear stress on 
cell shape and signal transduction that is present under physiological 
conditions (Ballermann et  al., 1998). One shear stress-inducible 
transcription factor is Krüppel-like factor 2 (KLF2; Lee et  al., 
2006), an important regulator of hemodynamic signals in endothelial 
cells that has been shown to be  dysregulated in diabetic kidney 
disease. Importantly, the endothelial cell-specific knockout of 
KLF2 results in worsened endothelial cell and podocyte injury 
in an experimental model of type 1 diabetes (Zhong et al., 2014).

In addition to the challenges of providing a favorable 
biophysical environment for glomerular cells, ideal models of 
the GFB should allow for adjustment of the GFR, given that 
hyperfiltration occurs under physiological conditions, such as 
during pregnancy, and is commonly observed in DKD, polycystic 
kidney disease, and sickle-cell anemia (Helal et al., 2012; Cheung 
and Lafayette, 2013). A physiological decline in GFR is conversely 
associated with advancing age (Musso and Oreopoulos, 2011). 
Hence, adjustable GFR is an important consideration for the 
physiological relevance of in vitro GFB models that can 
be  addressed by using microfluidic devices. Innovative tools 
are still needed to account for tubuloglomerular feedback (TGF) 
that is regulated via macula densa cells in the distal tubule 
and the myogenic response (Vallon, 2003). TGF has mostly 
been studied in vivo due to the challenges of studying the 
intricate signaling between these cells in vitro.

Despite some of the challenges mentioned, in vitro models 
are making substantial progress as an alternative or complement 
to in vivo experimental models for mechanistic studies of the 
GFB components and intercellular crosstalk. In the following 
sections, we review the recent developments in this evolving field.

STUDYING GLOMERULAR CELL 
CROSSTALK

Two-dimensional (2D) cultures are a simple culture system to 
study glomerular cell-specific effects, as they provide screening 
of large numbers of conditions and treatments that would 
otherwise not be possible in vivo (Table 1). To study glomerular 
crosstalk, conditioned medium transfer is necessary when using 
2D cultures. Despite the inherent limitations of 2D cultures, 
this system allows to chronologically separate cellular signaling 
events of pathogenic stimuli that ultimately lead to cell and/
or organ dysfunction.

There are different strategies used for the conditioned medium 
transfer, and these have been well described by Hanspal et  al. 
in the context of amyotrophic lateral sclerosis research (Hanspal 
et  al., 2017). The simplest strategy consists of whole medium 
transfer from one monoculture to another in separate culture 
vessels. There can also be  an intermediate step of extraction 
or enrichment of specific media components before medium 
transfer to the acceptor cell culture. Insights from this approach 
have provided evidence for the pathologic effects of the milieu 
in women with preeclampsia, where factors including 

endothelin-1 from GECs exposed to the serum from patients 
with preeclampsia resulted in shedding of nephrin from podocytes 
cell surface via endothelin receptor A after media transfer 
(Collino et  al., 2008). Another study utilized the transfer of 
purified exosomes from high glucose-treated GECs to podocytes 
and found that TGFβ mRNA, carried by the extracellular 
vesicles, contributed to podocyte dedifferentiation epithelial-
mesenchymal transition (Wu et  al., 2017). The authors found 
the same mechanism of exosomes containing TGFβ mRNA 
to contribute to mesangial cell proliferation and matrix production 
through a similar experimental setup, as well as through tail-
vain injections of the purified exosomes from high glucose-
treated GECs in C57BL/6 mice (Wu et al., 2016). Furthermore, 
the studies of TGFβ-containing exosomes by another group 
supported the involvement of these extracellular vesicles in 
glomerular crosstalk following high glucose stimulation (Wang 
et  al., 2018b). Exosomes have emerged as a novel vector for 
cell-cell communication in the kidney, and they are beginning 
to be  recognized more and more as a critical player in the 
pathogenesis of kidney disease and decline in renal function.

Co-culture of two or more cell types offers increased complexity 
over monocultures when studying glomerular crosstalk. Open 
microfluidics systems allow simultaneous paracrine signaling 
between two separated cell populations by sharing culture medium 
and hence allow for exchange of soluble factors and transient 
signals (Zhang et  al., 2020). In transwell systems, two distinct 
cell types are separated by a porous membrane (Hanspal et  al., 
2017), where a bidirectional exchange of signaling molecules can 
occur with or without direct cell-cell contact (Table  1). Li and 
colleagues demonstrated the applicability of their co-culture model 
of the GFB for studies of drug testing and intracellular signaling, 
using murine podocytes and GECs on opposite sides of a collagen 
IV-coated polyethylene terephthalate membrane (Li et  al., 2016). 
More recently, the same research group successfully exchanged 
the murine glomerular cells for human immortalized GECs and 
podocytes, and reported an increase in albumin leak after exposure 
to sera from patients with recurrent FSGS, compared to genetic 
or non-recurrent forms (Li et  al., 2020b). Casalena et  al. have 
demonstrated that both high glucose and serum from diabetic 
mice susceptible to developing diabetic kidney disease disrupt 
mitochondrial function and cause oxidative stress in GECs. 
Interestingly, the transfer of factors released by the stressed GECs 
mediated podocyte cell death in transwell co-cultures, as well as 
in media exchange (Casalena et al., 2020). Given that bi-directional 
communication can still occur while cells are physically separated, 
this approach allows for subsequent interrogation of cell-specific 
responses. This approach has also been used to define podocyte-
to-GEC-to-podocyte crosstalk in the pathogenesis of FSGS by 
shedding light on the role molecules, such as endothelin-1/
endothelin receptor type A-mediated glomerular endothelial cell 
dysfunction, which was shown to be required for podocyte depletion 
and progression of glomerulosclerosis (Daehn et  al., 2014).

Exposure of GECs to laminar shear forces found in vivo 
adds physiological relevance to the transwell co-culture model 
of the GFB. Studies by Slater et  al. used both conditioned 
medium transfer and co-culture of human GECs and podocytes 
to investigate how ERK5 activation and KLF2 transcription 
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(associated with endothelial cell shear stress in large vessels) 
affected the glomerular microvasculature (Slater et  al., 2012). 
Their findings demonstrated the existence of intercellular signaling 
from GECs exposed to chronic laminar shear stress that affects 
podocytes. In another study by the same research group, GECs 
and podocytes were co-cultured on opposite sides of a 
polycaprolactone/electrospun collagen membrane to closer mimic 
the GBM, which was shown to enable cell-cell contact (Slater 
et  al., 2011). Differences in between the conditioned medium 
transfer and the co-culture settings suggest that spatial separation 
between crosstalking cell types is an important consideration.

The models described so far provide robust high-throughput, 
high-content reductionist assay systems. They have provided 
a wealth of information on the fundamental biological and 
disease processes of the GFB. Nevertheless, they provide a 
limited physiological context of the filtration barrier. Since 
there is growing awareness of the interconnections between 
cells and the ECM surrounding them, there is substantial effort 
by the community to develop model systems that can better 
reflect the complex microenvironment cells encounter in a tissue.

3D Culture Models of the GFB
Organs-on-a-chip have been developed for complex organs 
such as liver (Beckwitt et  al., 2018), heart (Agarwal et  al., 
2013), gut (Kim et  al., 2012; Kim and Ingber, 2013), lungs 
(Huh et  al., 2010, 2012), and brain (Moreno et  al., 2015). The 
goal has not been to mimic the whole organs, but rather to 
study complex parts of an organ in a more physiological context. 
In the renal field, chips for modeling the proximal tubules 
(Jang et  al., 2013; Hoppensack et  al., 2014; Wilmer et  al., 
2016) as well as the filtration barrier are being developed. An 
ideal model of the GFB would include cell-to-cell and cell-
to-ECM interactions, biomimetic micromechanical properties, 
shear flow, oxygen and nutrient/waste exchange, and a functional 
permselective filtration barrier. In the last decade, the 
development of microfluidic platforms that allow co-culture 
of cells under flow (Bhatia and Ingber, 2014) and stretch (Huh 
et  al., 2013) has emerged (Table  1) and these continue to 
evolve. Here, we  describe some examples.

To study the effect of hypertension on the filtration barrier, 
Zhou et  al. developed a glomerulus-on-a-chip using murine 
immortalized GECs and podocytes. The cells were separated 
in the chip by a polycarbonate membrane coated with basement 
membrane extracts, and the authors increased the flow in the 
upper channel of the chip harboring the GECs (Zhou et  al., 
2016). Increasing the mechanical force led to cell damage, loss 
of junctions, and changes to the cell’s cytoskeleton, leading to 
increased leakage (Zhou et  al., 2016). In an in vitro model of 
diabetic kidney disease, Wang et  al. developed a glomerulus-
on-a-chip using glomeruli isolated from rats. The chip consisted 
of five channels, a capillary in the middle and collection channels 
on the outside, with the channels in between filled with gel. 
Isolated glomeruli were injected in the capillary channel and 
allowed to attach for the cells to spread and form a barrier 
under flow. GECs and podocytes were identified by CD31 and 
synaptopodin staining, respectively. High glucose treatment 

enhanced the permeability to proteins and increased reactive 
oxygen species production and podocyte detachment (Wang 
et  al., 2017). Musah et  al. developed a glomerulus-on-a-chip 
with fluidics and strain by using vacuum channels on the side 
of the channel harboring the GECs and podocytes (Musah 
et  al., 2017). The authors developed podocytes derived from 
human induced pluripotent stem cells (iPSCs) and used them 
in combination with human GECs separated by a porous 
polydimethylsiloxane membrane coated with laminin. The 
mechanical strain was shown to increase the expression of 
nephrin and secretion of VEGF-A by the podocytes. Albuminuria 
and podocyte damage were observed with adriamycin treatment, 
underscoring the resemblance to the in vivo setting (Musah 
et al., 2017). These models however lack GBM; hence, Petrosyan 
et  al. developed a glomerulus-on-a-chip without an artificial 
membrane between GECs and podocytes (Petrosyan et  al., 
2019). The authors allowed both cell types to interact and to 
generate a layer of ECM components. Human GECs and 
podocytes were obtained from the same donor; cells were 
separated by collagen I  and eventually formed a basement 
membrane between the cell layers. GECs were further shown 
to develop a glycocalyx layer. The cells could be  maintained 
in the chip for at least a month, enabling long-term experiments. 
Exposure of chips to puromycin aminonucleoside induced 
podocyte injury and loss of permselectivity for albumin. Adding 
serum from patients with membranous nephropathy (MN) 
resulted in albumin leakage, which was prevented by treatment 
with α-MSH. Using podocytes derived from a patient 
with Alport syndrome rendered improper filtration, supporting 
the chips potential for the use in personalized medicine 
(Petrosyan  et  al., 2019).

Given that the glomerulus in situ has a complex structure 
with intricate microvascular capillary networks in a unique 
geometry that could play a role in the development and function 
of podocytes (Falkenberg et al., 2017), there have been significant 
efforts to generate 3D models with complex microvascular 
networks using 3D bioprinting technology. Rayner et  al. 
demonstrated the use of a multiphoton microscopy-guided 3D 
printing technique to generate perfusable vascular networks 
with diameters as small as 10  μm (Rayner et  al., 2021). 
They  further demonstrate bioprinting of a glomerular-like 
microvascular network that supports endothelial lumen 
formation; however, they still require the incorporation of 
podocytes and mesangial cells to recapitulate the glomerular 
physiology and to study cell-cell crosstalk. Other developments 
include the glomerulus-on-a-plate, recently developed by using 
a microfluidic topographical hollow fiber (Xie et  al., 2020). 
This system uses a tubular-like perfusable channel to seed 
GECs in a glomerulus-like knot with microconvex topography, 
filled with hydrogel and covered with murine podocytes. The 
fibers were mounted in specialized 96-well plates with inlet 
and outlet wells allowing flow to be  applied by either gravity 
or syringe pump. Perfusing the lumen with albumin showed 
no leakage of over the barrier, while small molecules could 
readily pass. However, adriamycin treatment was shown to 
increase the passage of BSA over the barrier, but only mildly 
damaged podocytes (Xie et  al., 2020).
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Current GFB 3D culture model technologies have a number 
of drawbacks, such as recirculating instead of a continuous 
flow, long culture times to achieve fully confluent layers, 
lack of a basement membrane, and limited throughput. 
However, these models still hold great promise for improving 
our understanding of glomerular crosstalk and their potential 
use for personalized and precision medicine. In the future, 
chips where cells can form a basement membrane without 
separating gels or man-made membranes will emerge, and 
the inclusion of mesangial cells, pericytes, and parietal epithelial 
cells to the chips would enable all the intricate signaling 
which takes place in the glomerulus.

Scaffold-Free 3D Cultures
Scaffold-free 3D cultures are anchorage-independent models that 
rely on the self-aggregation of cells in specialized culture plates 
with ultra-low attachment coating that promotes spheroid formation. 
Multicellular spheroids have been shown to recapitulate 
physiological characteristics of tissues and tumors with regard 
to cell-cell contact, and allow for natural cell-ECM interactions 
(Sutherland, 1988). Glomeruloid spheres have been developed 
using human mesenchymal stem cells, HUVECs, and HEKs (Abe 
et al., 2019). These spheroids expressed several podocyte markers 
and were stable for at least 5  days. Adding serum from patients 
with FSGS resulted in the collapse of the spheres (Abe et  al., 
2019). In 2020, Cho et al. demonstrated a novel pressure-assisted 
network for droplet accumulation method for high-throughput 
generation of uniform microtissues. As a proof of principle, they 
generated glomerulus-like microtissues using immortalized mouse 
podocytes and mesenchymal stem cells (Cho et  al., 2020). More 
recently, Sobreiro-Almeida et  al. observed that the addition of 
retinoic acid to an organotypic model of human renal progenitor 
cells resulted in spheroids with a preferential glomerular 
differentiation. Using a hanging drop culture technique to form 
spheroids, they showed that these spheroids remain viable over 
a period of 28  days and display an elevated expression of PAX2 
and NPHS1 in the presence of retinoic acid. Further, co-culture 
with microvascular endothelial cells resulted in more compact 
organization of the spheroids (Sobreiro-Almeida et  al., 2021).

These scaffold-free 3D cultures are not barrier models, and 
many questions remain: in particular, about the composition 
of the spheres. And improvement in oxygenation through 
integration of endothelial cells has not been examined in this 
setting. Today’s glomeruloid spheres can provide insights for 
podocyte-ECM interactions and can be adapted to medium- or 
high-throughput screening assays. There is still the need for 
culture optimization to enhance reproducibility of spheroids 
in culture and to study GFB components, while maintaining 
a small enough size for sufficient nutrient exchange. However, 
this area of research is moving fast, and we  will undoubtedly 
see advances in the years to come.

Organoids
Attempts to fully culture organs in vitro have led to the development 
of organoids, self-organized 3D aggregations of cells. Over the 
last few years, these developments have provided researchers the 

opportunity to establish near-physiological models to study human 
development and diseases. Organoids can be derived from embryonic 
stem cells or iPSCs. The kidney is an anatomically complex organ 
with numerous different cell types, which makes it difficult to 
get organoids containing all renal structures including a functional 
filtration barrier. As of today, organoids are premature, and as 
such, they do not represent ideal modeling systems for studies 
of the GFB; however, they hold promise to be  so in the future.

Embryonic kidneys are divided into the metanephric mesenchyme 
and the ureteric bud. Nephron progenitor cells in the metanephric 
mesenchyme are the origin of the glomeruli, Bowman’s capsule, 
and the renal tubules, and stromal progenitor cells give rise to 
interstitial cells. The ureteric bud is the origin of the collecting 
ducts. During development, intricate signaling leads to differentiation 
of cells and the formation of a mature kidney. In order to form 
kidney organoids, this signaling needs to be applied to embryonic 
or pluripotent stem cells. With this in mind, the development 
of differentiation protocols for embryonic and iPSCs toward renal 
cells (Xia et  al., 2013; Taguchi et  al., 2014; Takasato et  al., 2014) 
was rapidly followed by the first reports of kidney organoids 
(Morizane et  al., 2015; Takasato et  al., 2015). Kidney organoids 
have been characterized via single-cell sequencing and have been 
found to contain developing podocytes, parietal epithelial cells, 
tubular cells, collecting ducts, and interstitial and stromal cells. 
Missing or underrepresented cells with current methods are GECs, 
mesangial cells, principal and intercalated cells (Czerniecki et  al., 
2018; Wu et  al., 2018; Combes et  al., 2019), and immune cells. 
Although glomerulus-like structures are formed, they mainly consist 
of early podocytes, and these have the potential to be  explored 
further to study podocytopathies (Sharmin et al., 2016; Kim et al., 
2017; Hale et al., 2018). Hale et al. describe a protocol for kidney 
organoids from iPSCs and compared the expression to human 
immortalized podocyte cell lines. Podocytes derived from organoids 
were shown to have an improved expression profile, as well as 
a GBM (Hale et al., 2018). Genetic modifications targeting podocytes 
have also been used in kidney organoids to explore congenital 
nephrotic syndrome (Kim et al., 2017; Hale et al., 2018; Tanigawa 
et  al., 2018). In addition, to better study the GFB, improvements 
in methods that promote maturation and vascularization of the 
organoids have been reported recently, such as culturing kidney 
organoids on millifluidic chips (Homan et  al., 2019), or 
transplantation of human kidney organoids into the subcapsular 
of mouse kidneys (van den Berg et  al., 2018). In the latter, the 
authors demonstrated an improvement in the formation of a GBM 
with the development of a fenestrated endothelium in glomeruli 
(van den Berg et al., 2018). By modulating biophysical cues, such 
as ECM stiffness, Garreta et  al. were able to accelerate kidney 
organoid generation from iPSCs (Garreta et al., 2019). They showed 
that implantation of kidney organoids into chick chorioallantoic 
membrane (CAM) resulted in vascularization of the organoids 
within 5  days. They further generated soft hydrogels that display 
similar mechanical properties as CAM to study if soft substrates 
drive kidney organoid generation compared to stiffer substrates. 
They observed that soft matrix environment resulted in kidney 
organoids that display similar protein expression as a fetal human 
kidney. Although the kidney organoids still are embryonic in 
development and need an in vivo environment for vascularization, 
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further characterization of the role of substrate stiffness can improve 
kidney organoid differentiation. Another limitation of the current 
organoid systems is the heterogeneity and batch-to-batch variation 
during initial formation and maturation. To address this, Dr. 
Little’s group have employed two different approaches for scaling 
up the generation of kidney organoids with less heterogeneity 
and higher reproducibility. Kumar et  al. demonstrated a method 
to scale up the generation of kidney micro-organoids in suspension 
culture (Kumar et  al., 2019). Using this method, they were able 
to generate 8,000–10,000 kidney micro-organoids in an even size 
range. These organoids are less than 200–300  μm in final size, 
much smaller compared to standard organoids, which allows 
efficient nutrient diffusion to the core of the organoids. However, 
they showed limited utility with respect to extended long-term 
cultures due to the absence of vascularization. Lawlor et  al. 
employed extrusion bioprinting method to plate cell aggregates 
that mature into kidney organoids, which partially eliminates 
organoid heterogeneity and enables scaling up of throughput 
(Lawlor et  al., 2021). Using this technique, they were able to 
generate 200 organoids in 10 min. In addition to reducing variability, 
extrusion bioprinting can also be  used to alter the conformation 
of the organoids, to generate a spheroid or a rectangular cell 
aggregate patch based on the extruding tip movement. The authors 
observe that the rectangular conformation yielded a greater number 
of nephron units compared to the spheroid conformation (Lawlor 
et  al., 2021), which with further improvements may be  useful 
for the development of transplantable kidney tissues.

Despite the many challenges that still remain for organoids 
to fully resemble mature human kidneys, including less off 
targets cells as described in detail in the review by Geuens 
et al. (2020), organoid biobanks as repository for drug screening 
and development are emerging (Calandrini et  al., 2020) and 
have the potential for applications in precision medicine.

FUTURE PERSPECTIVE

The lack of specific treatments for diseases of the GFB is a 
worldwide health issue. The need for new explorative in vitro 
models is paramount to elucidate the intricate signaling of cells 
in the GFB. Today, there is greater recognition that components 
of the GFB work as an integrated functional unit. As more and 
more new tools become available, such as iPSCs in culture and 
3D model systems, we shall look to integrate these human-relevant 
in vitro models with data-driven and mechanistic modeling as 
well as artificial intelligence-driven methods that can assist with 
in silico drug discovery and modeling (Azeloglu  et  al., 2014), 

which will inevitably streamline time-consuming and costly 
experiments. As we gain our understanding on other aspects that 
influence GFB function, such as tubuloglomerular crosstalk (Tasnim 
and Zink, 2012; Wang et  al., 2018a), opportunities to “plug-in” 
modules will provide insights from the whole nephron’s perspective 
and even distant organ crosstalk. Together with the increasingly 
quantitative precision medicine approaches that can collate and 
combine clinical data with genomic information, these joint efforts 
can help guide the design of novel drug candidates and move 
the field toward the common goal of treating patients with better 
therapies for diseases of the GFB.

CONCLUSION

As these experimental model systems continue to evolve and 
improve in terms of their physiological context and throughput, 
model systems have a huge potential to help unravel the 
molecular mechanisms of GFB breakdown and the pathogenic 
crosstalk signaling that may drive disease. These developments 
should minimize the use of animal models and accelerate 
discoveries by enabling the platforms for personalized and 
precision medicine to lower drug-induced adverse events, 
and identify new targets for treatments of kidney diseases 
that affect the filtration barrier.
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