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Focal sources are potential targets for atrial fibrillation (AF) catheter ablation, but they
can be time-consuming and challenging to identify when unipolar electrograms (EGM)
are numerous and complex. Our aim was to apply deep learning (DL) to raw unipolar
EGMs in order to automate putative focal sources detection. We included 78 patients
from the Focal Source and Trigger (FaST) randomized controlled trial that evaluated
the efficacy of adjunctive FaST ablation compared to pulmonary vein isolation alone
in reducing AF recurrence. FaST sites were identified based on manual classification
of sustained periodic unipolar QS EGMs over 5-s. All periodic unipolar EGMs were
divided into training (n = 10,004) and testing cohorts (n = 3,180). DL was developed
using residual convolutional neural network to discriminate between FaST and non-
FaST. A gradient-based method was applied to interpret the DL model. DL classified
FaST with a receiver operator characteristic area under curve of 0.904 ± 0.010
(cross-validation) and 0.923 ± 0.003 (testing). At a prespecified sensitivity of 90%, the
specificity and accuracy were 81.9 and 82.5%, respectively, in detecting FaST. DL had
similar performance (sensitivity 78%, specificity 89%) to that of FaST re-classification
by cardiologists (sensitivity 78%, specificity 79%). The gradient-based interpretation
demonstrated accurate tracking of unipolar QS complexes by select DL convolutional
layers. In conclusion, our novel DL model trained on raw unipolar EGMs allowed
automated and accurate classification of FaST sites. Performance was similar to FaST
re-classification by cardiologists. Future application of DL to classify FaST may improve
the efficiency of real-time focal source detection for targeted AF ablation therapy.

Keywords: atrial fibrillation, unipolar electrogram, focal sources, machine learning, catheter ablation

INTRODUCTION

The pathogenesis of atrial fibrillation (AF) is complex, potentially involving localized drivers
and abnormal atrial substrate outside the pulmonary veins (Heijman et al., 2016), which may
account for the poor long-term success of pulmonary vein isolation (PVI) alone (Ganesan et al.,
2013). Using panoramic high-resolution mapping, localized drivers, including focal electrical
sources have been observed to sustain experimental AF (Lee et al., 2013, 2020), but their
relevance in the pathogenesis of human AF is less clear. Detecting focal electrical sources
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in humans is challenging owing to the low spatial resolution
of mapping techniques (Roney et al., 2017) and complex
electrogram (EGM) features (DeBakker and Wittkampf, 2010).

To address these challenges, we have developed a pragmatic
focal source detection algorithm, known as Focal Source and
Trigger (FaST) mapping, where bipolar and unipolar EGMs
are analyzed for periodicity and unipolar QS features as
footprints of centrifugal wave propagation (Gizurarson et al.,
2016; Kochhauser et al., 2017). In a randomized controlled trial,
FaST sites were widely distributed in PV and extra-PV regions in
all patients, and their ablation reduced AF recurrence compared
to PVI alone (Chauhan et al., 2020; Nayyar et al., 2020). In
FaST mapping, the accurate detection of sustained, periodic
unipolar QS electrograms is critical and requires over reading
by the cardiologist after the onset of the unipolar electrograms
has been annotated by the FaST algorithm to guide morphology
classification. This can be challenging when unipolar EGMs
appear fractionated and non-stationary over 5-s recordings.

In this regard, machine learning, and more specifically deep
learning (DL), has been used recently to automate classification
of complex biomedical signals from ECG recordings (Hannun
et al., 2019; Chang et al., 2021), but the utility of DL in raw
EGM classification during AF has not been explored (Feeny et al.,
2020). DL has the advantage of automatically learning features
from raw signals without the need for a priori manual features
engineering. We hypothesized that automating the detection of
sustained, periodic unipolar QS EGMs using DL will improve
the reliability and efficiency of FaST mapping for cardiologists
performing AF driver catheter ablation. Our objective was to
develop a DL model trained on raw unipolar EGMs to allow
automated and accurate identification of FaST sites during AF as
putative focal source targets for ablation.

MATERIALS AND METHODS

Patient Population
The FaST randomized controlled trial evaluated the efficacy of
FaST ablation as an adjunct to PVI in reducing AF recurrence
compared to PVI alone in 80 patients with drug-refractory, high-
burden paroxysmal or persistent AF (Chauhan et al., 2020).
Real-time endocardial mapping of the left atrium (LA) during
sustained AF was completed in 78 patients, who comprised
the cohort for the present study. The study was approved by
the University Health Network Research Ethics Board and all
patients provided written, informed research consent.

AF Mapping
The FaST mapping protocol and ablation outcomes have been
previously described (Chauhan et al., 2020). Briefly, anti-
arrhythmic drugs were held for 5 half-lives with the exception of
amiodarone which was discontinued 1 month before mapping.
LA mapping was performed during either spontaneous AF
or induced AF using burst atrial pacing at CL 180–250 ms,
and if necessary, intravenous isoprenaline (0.5–1 µg/min).
Electroanatomic data was acquired using the CARTOTM 3
(Biosense Webster, Diamond Bar, CA, United States) system

and a roving 20-pole circular catheter (LassoTM Nav Variable,
15–25 mm diameter, 1 mm electrodes at 2–6–2 mm spacing,
Biosense Webster, Diamond Bar, CA, United States). Stable
catheter-tissue contact and signal quality were ensured before
recording 5-s bipolar (bandpass 30–500 Hz) and unipolar
EGMs (bandpass 0.05–500 Hz) at a sampling rate of 1,000 Hz.
Unipolar EGMs were recorded only from one electrode of
the bipolar electrode pair. All EGMs were exported for off-
line analysis of FaST sites using custom software written in
MatlabTM (MathWorks Inc., Natick, MA, United States). Noisy
EGMs with low signal:noise and EGMs recorded >5 mm
from the LA endocardium were excluded to minimize far-field
signal contamination.

FaST Sites
The hierarchical algorithm for FaST detection has been
previously reported (Dalvi et al., 2016; Gizurarson et al., 2016;
Chauhan et al., 2020; Nayyar et al., 2020) and is summarized
in Figure 1. Briefly, each 5-s bipolar EGM underwent fast
Fourier transformation after bandpass filtering (40–250 Hz
followed by 0.5–20 Hz) and rectification. Periodicity was
present if the spectral frequency with the largest spectral
power contained at least 10% of the total spectral power. The
corresponding periodicity CL was defined as the inverse of
this frequency. Among bipolar EGMs demonstrating periodicity
within a CL ranging from 100 to 250 ms (i.e., physiologic
atrial refractory period), local bipolar periodic activations were
annotated using a graph search function. For this purpose,
candidate local activations were automatically selected provided
their amplitude was above a noise threshold of 0.05 mV and
a slew rate >0.014 mV/ms. Local periodic activations across
the 5-s bipolar EGM were identified as those with the greatest
number of consecutive candidate activations having the extracted
periodicity CL, which satisfied the lowest cost of a matrix
containing the difference between each candidate activation
and the extracted periodicity CL (see Supplementary Methods)
(Dalvi et al., 2016). This ensured that sustained periodic
activations with predefined periodicity CL were identified
regardless of their EGM amplitude, which itself is not a pre-
requisite for defining local activation. These local periodic bipolar
activations were then transposed to the corresponding unipolar
EGMs in order to annotate unipolar EGM onset and thereby
facilitate manual classification of unipolar morphology as QS or
non-QS. FaST was defined based on the presence of sustained
bipolar EGM periodicity and a dominant unipolar QS pattern
(i.e., R/S ratio < 0.1) in >90% of EGMs over the 5-s recording,
which was assigned manually by two cardiologists in real-time
before ablation. Any disagreement in FaST classification by the
cardiologists was resolved by consensus. FaST sites were classified
as PV vs. extraPV and they were considered to be anatomically
distinct if >7 mm from one another.

Patient Cohorts and Data Augmentations
Patients were randomly divided into a training and testing cohort,
and all periodic unipolar EGMs from both cohorts were firstly
down-sampled to 200 Hz using fast Fourier transformation.
Then, their magnitudes were normalized through a min-max
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FIGURE 1 | FaST Algorithm. (A) Hierarchical steps in FaST classification. (B) Representative examples of bipolar and unipolar EGMs from three different left atrial
sites. In each example, the power spectral plot of the bipolar EGM indicates the presence of periodicity (i.e., spectral peak above threshold red horizontal line). The
periodicity cycle length is calculated from the spectral peak (right panels). The first two examples are classified as FaST sites by the FaST algorithm based on the
presence of bipolar EGM periodicity and sustained unipolar QS complexes for the duration of the 5-s recording. The top example shows discrete bipolar EGM
complexes while the bottom example also contains complex, fractionated bipolar EGM complexes. In contrast, the third example is classified as No FaST because
the unipolar EGM does not manifest sustained QS complexes for the duration of the 5-s recording, even though there is bipolar EGM periodicity. The first 1.4 s of the
unipolar EGM manifests RS complexes, followed by QS complexes.

FIGURE 2 | Convolutional Neural Network Architecture. The DL model inputs raw unipolar EGM (right) and outputs a binary decision as FaST vs. non-FaST (left).
For robust training, the raw inputs are normalized and augmented as described in the text. The architecture of the proposed network is inherited from ResNet-18,
which has 4 residual blocks. Each block consists of 2 convolutional, 2 batch normalization, and one ReLU layers. Abbreviations: Conv – convolutional layer,
MaxPool – 1-D max-pooling layer.

feature scaling. To improve the generalizability of the model, four
artificial data augmentations were implemented, namely baseline
shifting, Gaussian noise, cropping and resampling. Baseline
shifting added constant noise to the EGM signal, where the
constant is sampled from a normal distribution. Gaussian noise
added normal noise, sampled from a Gaussian distribution, to
the EGM. Cropping randomly replaced a segment of data with

zeros, while resampling further removed a data segment, but
unsampled the shorter signal to the original length (Perez and
Wang, 2017). A hyper-parameter was introduced to track the
probability of augmentation and to ensure that both clean and
noised examples were observed during training. The effectiveness
of augmentation is demonstrated in the Supplementary Methods
and Supplementary Figures 1, 2.

Frontiers in Physiology | www.frontiersin.org 3 July 2021 | Volume 12 | Article 704122

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-704122 July 21, 2021 Time: 17:14 # 4

Liao et al. Automated Focal Source Detection in AF

FIGURE 3 | Consort Diagram for DL Training and Testing Cohorts. Patients
(n = 78) were divided into a training/validation cohort (n = 58) and test cohort
(n = 20). The number of periodic unipolar EGMs in each cohort is indicated.

One-Dimensional Residual Convolutional
Neural Network
The DL model was designed to take the raw periodic unipolar
EGM as input, and then output the probability of FaST on a
continuous scale from 0 to 1. The model is a one-dimensional
(1-D) residual, convolutional, deep neural network (CNN)
which is implemented through PyTorch (Paszke et al., 2019).
The network architecture is inspired by ResNet-18 for image
recognition, which has been credible in a large number of datasets
(He et al., 2016). In brief, it is an 18 layer neural network
consisting of five residual convolutional blocks and one fully
connected layer. Each block abstracts the features gradually
from raw inputs to a higher level representation (LeCun et al.,
2015). Specifically, each residual convolutional block consists of a
convolutional layer, a pooling, a batch normalization, a dropout,
a non-linear activation and a residual connection (LeCun et al.,
2015). Notably, our EGM network replaces the 2-D convolution
filters in each block of ResNet-18 by 1-D filters so that the
architecture becomes suitable for unipolar EGM analysis. Our DL
architecture is illustrated in Figure 2.

Due to similar structure, our DL model shares the same hyper-
parameter settings with ResNet-18, such as kernel size, stride size
and dropout rate (He et al., 2016). Although larger networks
(e.g., ResNet-50, ResNet-101) and different architectures (e.g.,
EfficientNet) were also explored, we found ResNet-18 achieved
the best testing performance in classifying FaST as shown
in Supplementary Table 1. To prevent model overfitting, we
searched a small subset of hyper-parameters, including batch
size, initial learning rate and the learning rate scheduler. The
best hyper-parameter combination was found through grid
search with a three-fold cross-validation, which was then applied
to the whole training cohort to train the DL model. The
trained DL model was finally evaluated in the testing cohort.
In terms of optimization details, the network is initialized by

He-initialization and optimized by Adam (Kingma and Ba, 2014;
He et al., 2015).

In addition, we investigated the performance of classic
machine learning models to classify FaST, including logistic
regression, support vector machine (SVM) and k nearest
neighbor (KNN). Compared to DL, these classic models have
a lower model complexity, which limits their ability to analyze
complex data, such as EGMs. We reported the SVM and KNN
with two different hyper-parameters, where the polynomial
degree is either 3 or 10 for SVM, and the number of k neighbors is
either 10 or 50 for KNN. These classic models were implemented
through scikit-learn (Pedregosa et al., 2011).

DL Model Discretization to Explain
Classification
To explain DL classification as FaST vs. non-FaST, we adopted
a gradient-weighted class activation mapping method (Guided
Grad-CAM) to probe important features (Selvaraju et al., 2017).
Grad-CAM is commonly used in computer vision to provide a
contextual explanation for model decisions. Briefly, Grad-CAM
defines the importance of a feature based on the changes in the
classification output in response to a small variance or gradient in
the feature. A larger change in output indicates that this feature is
more important. For our study, Grad-CAM was applied because
of similar architecture between our model and models in vision.
Specifically, the gradient in the convolutional layer of the residual
blocks of our model were probed. The importance of features
was visualized as a 1-D importance plot where peaks indicated
more importance.

FaST Re-Classification by Cardiologists
Manual classification of FaST using the FaST algorithm at the
time of PVI served as the gold standard. Subsequently, two
cardiologists (VC, SN) independently performed blinded re-
classification of periodic unipolar EGMs as FaST vs. non-FaST
using the FaST algorithm in a subset of 100 EGMs, which
included 50 random EGMs and 50 EGMs falsely classified by
DL. The sensitivity and specificity of FaST re-classification by the
cardiologists was evaluated relative to the gold standard. Inter-
and intraobserver agreement among the cardiologists in FaST
re-classification was assessed using the kappa statistic.

Statistical Analysis
Continuous variables are presented as mean ± standard
deviation. Comparison between patient cohorts was done using
an unpaired t-test or Mann-Whitney U test where appropriate.
Receiver operator characteristic (ROC) analysis was performed
to evaluate the diagnostic performance of the DL algorithm
for detecting FaST with results presented as area under the
curve (AUC) and 95th percentile confidence interval (95% CI).
Specificity was calculated at prespecified sensitivities of 85, 90,
and 95% as well as the sensitivity of cardiologists re-classifying
a subset of 50 random periodic unipolar EGMs. In order to
complement ROC analysis for class-imbalanced datasets, the
performance of DL was evaluated using the F1-score which is a
harmonic mean of the positive predictive value and sensitivity
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TABLE 1 | Baseline patient characteristics.

All patients (n = 78) Training/ validation cohort (n = 58) Testing cohort (n = 20) p-value

Age, years 61 ± 10 61 ± 10 59 ± 8 0.229

Male, n (%) 58 (74) 42 (72) 16 (80) 0.503

Body mass index, kg/m2 29 ± 5 30 ± 5 29 ± 5 0.598

LVEF,% 59 ± 8 58 ± 9 61 ± 4 0.097

LA dimensions

LA diameter, mm 42 ± 7 42 ± 6 40 ± 8 0.383

LA volume, ml 90 ± 35 90 ± 33 91 ± 39 0.893

LA volume index, ml/m2 44 ± 16 43 ± 16 44 ± 16 0.811

AF characteristics

High-burden paroxysmal, n (%) 40 (51) 29 (50) 11 (55) 0.700

Persistent, n (%) 38 (49) 29 (50) 9 (45) 0.700

Duration of AF, years 5.6 ± 5.0 5.9 ± 5.0 4.6 ± 3.4 0.245

Comorbidities

Diabetes, n (%) 4 (5) 2 (3) 2 (10) 0.270

Hypertension, n (%) 37 (47) 25 (43) 12 (60) 0.192

Sleep apnea, n (%) 25 (32) 19 (33) 6 (30) 0.820

Obesity, n (%) 29 (37) 23 (40) 6 (30) 0.441

Coronary artery disease, n (%) 2 (3) 2 (3) 0 (0) 1.000

Current antiarrhythmic drugs

Flecainide or propafenone, n (%) 29 (37) 26 (45) 3 (15) 0.017

Sotalol, n (%) 6 (8) 5 (9) 1 (5) 1.000

Amiodarone, n (%) 21 (27) 14 (24) 7 (35) 0.345

β-blocker, n (%) 37 (47) 28 (48) 9 (45) 0.800

Calcium channel blocker, n (%) 15 (19) 9 (16) 6 (30) 0.192

Number of failed AAD 1.7 ± 0.9 1.7 ± 1.0 1.6 ± 0.8 0.482

AAD, antiarrhythmic drugs; CL, cycle length; LA, left atrium; LVEF, left ventricular ejection fraction; obesity–BMI > 30 kg/m2; renal dysfunction–eGFR < 50 ml/min/1.72 m2.

(Saito and Rehmsmeier, 2015). A two-tailed p-value < 0.05
was considered statistically significant. Statistical analyses were
performed using scikit-learn (Pedregosa et al., 2011).

RESULTS

Patient and FaST Characteristics
Seventy-eight patients (age 61 ± 10 years, 74% males) were
included with either high-burden paroxysmal AF (51%) or
persistent AF (49%). The LA volume and LV ejection fraction
were 44 ± 16 ml/m2 and 59 ± 8%, respectively (Table 1).
Mapping was performed during spontaneous AF in 36 (46%)
patients and after inducing sustained AF with programmed atrial
stimulation in the remaining 42 (54%) patients. On average,
340 ± 60 LA sites from 60 ± 8 circular catheter acquisitions were
analyzed per patient after excluding overlapping points and those
with poor endocardial contact. FaST sites were identified in all
patients (4.9 ± 1.9 per patient), including 2.1 ± 1.1 PV FaST and
2.8 ± 1.4 extra-PV FaST per patient.

Performance of Deep Learning and
Classic Machine Learning Models
Among the 78 patients, a total of 13,184 periodic unpolar EGMs
were recorded of which 1,220 (9.2%) had a dominant, sustained
QS morphology (i.e., FaST) and the remaining 11,964 (90.7%)

were non-FaST (Figure 3). The DL model was trained and
validated using 10,004 periodic unipolar EGMs from a cohort
of 58 patients, where the prevalence of FaST EGMs was 9.2%.
Cross-validation in this cohort was achieved using five different
random seeds, such that each seed produced a different validation
cohort and a different network initialization (i.e., three-fold cross
validation performed five times). The final DL model was then
tested using 3,180 periodic unipolar EGMs from a testing cohort
of 20 patients, where the prevalence of FaST EGMs was 9.4%.
The clinical characteristics of the validation and testing cohorts
were similar as shown in Table 1. The performance of DL in
classifying FaST for the three-fold cross-validation and testing
cohorts is demonstrated by the ROC curve in Figure 4A. The
DL model achieved a high ROC AUC of 0.904 (95% CI 0.884,
0.924) and 0.923 (95% CI 0.917, 0.929) in cross-validation and
testing cohorts, respectively. The AUC variance for the test cohort
was < 0.5% demonstrating robustness of the DL model. In
contrast, the performance of classic machine learning models,
including logistic regression, SVM and KNN, was inferior to that
of DL based on a lower ROC AUC, specificity and F1-score as
shown in Figure 4B and Supplementary Table 2.

The performance of DL in classifying FaST was also evaluated
using different prediction thresholds. Because the DL model has
continuous output, ranging from 0 to 1, the prediction was
classified as FaST when the DL output was above a threshold,
which was based on achieving a predefined sensitivity of 85,
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FIGURE 4 | Performance of DL Model. (A) ROC curve is shown for FaST classification using DL model in the validation and testing cohorts. (B) ROC AUC is shown
for DL and classic machine learning models. The error bars indicate standard deviation of different random seeds. (C) ROC AUC for DL is shown as a function of the
training cohort size. (D) ROC curve is shown for FaST classification using DL model in a random sample of 50 periodic unipolar EGMs. The performance of two
cardiologists for FaST re-classification is also plotted for comparison. AUC – area under curve; KNN – k nearest neighbor (either 10 or 50); LR – logistic regression;
ROC – receiver operator characteristic; SVM – support vector machine (D refers to polynomial degree).

90, or 95% in detecting FaST. The respective specificity, positive
predictive value (PPV), negative predictive value (NPV), F1-
score and accuracy are shown in Table 2. DL had reasonably
high specificity for each predefined sensitivity. In the case of
90% sensitivity, DL achieved a specificity of 81.9% (95% CI
81.8 – 82.0%), PPV of 33.6% (95% CI 33.3 – 33.9%), NPV
of 98.5% (CI 95% 98.4 – 98.6%), F1-score of 0.486 (CI 95%
0.481 – 0.491), and an accuracy of 82.5% (95% CI 82.3, 82.6).
Because DL performance improves with larger training datasets
(LeCun et al., 2015), the performance of our DL model was
further evaluated using smaller training cohorts. As shown in
Figure 4C, the ROC AUC significantly improved when the test
cohort size was increased from 25 to 75% of the original sample
size. However, a further increase from 75 to 100% was associated
with a marginal change in ROC AUC from 0.921 to 0.923,

respectively, suggesting that our training cohort of 58 patients
was adequately sized.

Performance of Deep Learning
Compared to Re-Classification by
Cardiologists
The reliability in FaST re-classification was evaluated in a random
sample of 50 periodic unipolar EGMs from 18 patients by
two cardiologists. In this 50 EGM subset, the proportion with
FaST was modest at 18%. Intra- and interobserver variability
was moderate based on a kappa of 0.43 and 0.46, respectively,
but intraobserver variability improved (kappa 0.81) after the
cardiologists reviewing their disagreements and retrained.
Among these 50 EGMs, the DL model’s classification of FaST had
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FIGURE 5 | False Classification of FaST and non-FaST using DL Model. (A) False negative classification of FaST using DL due to low-amplitude, sustained periodic
unipolar QS complexes near PV ostium (Patient 1, top panel) and broad, slurred unipolar QS complexes (Patient 2, bottom panel). (B) False positive classification of
FaST using DL due to sustained unipolar rS complexes with small r waves (Patient 3, top panel) and near-sustained periodic unipolar QS complexes (red stars – rS
complexes) (Patient 4, bottom panel).

an ROC AUC of 0.927 (95th CI 0.916, 0.938) (Figure 4D), which
was similar to that of the whole periodic unipolar EGM dataset.
In the subset of 50 random EGMs, the sensitivity and specificity
in classifying FaST with DL was 78.1 (95th CI 77.6, 78.7) and
82.2 (95th CI 80.0, 84.4), respectively, which was similar to that
of the cardiologists (sensitivity 77.8, specificity 79.0) (Figure 4D).
Among the EGMs with interobserver agreement (n = 35 of 50),
the DL model’s classification of FaST had a higher ROC AUC of
0.980 (95th CI 0.980, 0.986).

Characterizing False Classifications by
Deep Learning
In order to evaluate the basis for the false classification
of FaST and non-FaST by DL, a subset of 50 periodic

unipolar EGMs were selected, which comprised 25 false negative
EGMs with the lowest DL predicted probability for FaST,
and 25 false positive EGMs with the highest DL predicted
probability for FaST. False positive classification by DL was
commonly due to borderline EGMs with small rS complexes
or non-sustained periodicity. In contrast, false negative cases
by DL were most often the result of EGM fractionation
or low amplitude/slewed QS complexes, such as near the
PV ostium as shown in Figure 5. Given the complexity
of these EGMs, the reliability in FaST re-classification was
assessed by two cardiologists. In this 50 EGM subset, the
proportion with FaST was 50%, which included all 25 false
negative EGMs. Intra- and interobserver variability in FaST re-
classification was poor based on a kappa of −0.08 and −0.02,
respectively, which was concordant with the false classification or
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FIGURE 6 | Discretization of DL model to explain classification. (A) FaST site defined by the FaST algorithm based on sustained, periodic unipolar QS for 5-s. Bipolar
EGM and unipolar EGM are shown with dashed, red vertical lines annotating periodic activations. The DL model inputs the raw unipolar EGM without annotations
and the importance plot from convolutional layer 3.0 demonstrates peaks corresponding to the majority of atrial unipolar QS complexes, but not the far-field
ventricular complexes during the 5-s recording. (B) Non-FaST site defined by the FaST algorithm based on non-sustained periodic unipolar QS. The first 8
complexes are unipolar RS, while the rest are unipolar QS. The importance plot from the DL model’s convolutional layer 3.0 demonstrates peaks corresponding to
the majority of atrial unipolar QS complexes, but not the atrial unipolar RS complexes. (C) Non-FaST site defined by the FaST algorithm based on the absence of
unipolar QS complexes. Accordingly, the importance plot from the DL model’s convolutional layer 3.0 demonstrates virtually no peaks. There are 2 peaks which
correspond to atrial unipolar rS complexes, similar in morphology to QS complexes.
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disagreement with DL. However, intraobserver agreement among
the two cardiologists improved (kappa 0.71) after they reviewed
disagreements and retrained.

Discretization of Deep Learning to
Explain FaST Classification
From the subset of 100 periodic unipolar EGMs used above to
evaluate observer reliability and false classification of FaST, a
random sample of 10 EGMs were input into Grad-CAM in order
to determine which convolutional layers of the DL model best
tracked unipolar QS complexes. Our results suggest that Grad-
CAM’s importance plot from convolutional layer 3 identified
atrial unipolar QS complexes most consistently in all 10 EGMs.
Figure 6 shows three examples of periodic unipolar EGMs from
FaST and non-FaST sites where EGM onset is annotated with
a vertical red line using the FaST algorithm. In each example,
the importance plot from convolutional layer 3 demonstrates
periodic peaks of importance that coincide temporally to most
atrial unipolar QS complexes, while ignoring atrial unipolar
RS complexes and far-field ventricular unipolar QS complexes.
These importance plots provide a visual explanation of DL’s
classification of FaST vs. non-FaST.

DISCUSSION

Our DL model automatically classified periodic unipolar EGMs
with sustained QS complexes (i.e., FaST) during AF without
the requisite for EGM segmentation or annotation. The DL
model’s accuracy in FaST classification was 82.5% (ROC AUC
of 92.3), which is high considering the low prevalence of
FaST EGMs (9%) and the spatiotemporal variability in unipolar
EGM morphologies. False detection of FaST was attributed to
ambiguous, time-varying unipolar EGM signal features, but in
these instances the reliability in re-classifying FaST was also poor
among cardiologists, indicating that DL’s performance was on par
with that of the cardiologists. For select EGMs, introspection of
the DL convolutions identified the layer that tracked individual

periodic unipolar QS EGMs, thereby providing visual verification
of DL performance.

Focal sources are a well-established mechanism of AF,
and have been demonstrated in a canine model of vagal
AF (Lee et al., 2013, 2020) as well as in human AF (Lee
et al., 2015, 2017). Using 512-electrode, high-density, biatrial
activation mapping, Lee et al. (2015, 2017) demonstrated focal
sources lasting up to 30 s during AF. At their epicenter,
focal sources manifested fairly discrete, periodic unipolar QS
EGMs. Our FaST algorithm searches for similar signal features
to identify putative focal sources, but to improve specificity,
unipolar QS periodicity must be sustained for 5-s. To avoid
ambiguity in unipolar morphology classification, the onset of
the unipolar EGM is annotated based on a graph search
function whose input is the respective periodic bipolar EGM.
However, unipolar QS classification is still performed manually
and therefore susceptible to interpretation by the cardiologist,
especially when morphology features are ambiguous, albeit
periodic. This accounts for the moderate intra- and interobserver
agreement in FaST re-classification in a random subset of
periodic unipolar EGMs (kappa 0.43–0.47), and essentially no
intra- or interobserver agreement in a subset falsely classified
by DL. However, intraobserver agreement did improve (kappa
0.71–0.81) after cardiologists were retrained. These findings
highlight the modest precision in the manual interpretation and
classification of periodic unipolar QS EGMs during AF.

Despite this inherent limitation, DL achieved reasonable
performance in classifying FaST based on an ROC AUC > 90%
in the training and testing cohorts. This performance was similar
when assessed in 75% of the training cohort indicating that data
satisfaction was reached and that a larger training cohort would
be unlikely to significantly improve classification accuracy. Based
on ROC AUC, this performance was also comparable to re-
classification by the cardiologists. False negative classification of
FaST by DL was commonly due to fractionation at unipolar EGM
onset and low amplitude/slew unipolar EGMs near the PV ostia.
In false positive cases, periodic unipolar EGMs manifested small
rS complexes or were non-sustained for only a few beats such that

TABLE 2 | Performance of DL model.

FaST Prevalence Predefined
Sensitivity

Specificity PPV NPV F1-score Accuracy

Cross-
Validation
Cohort

9.2% (n = 1,220) 78* 87.3 (81.0 – 93.5) 40.0 (30.9 – 49.1) 97.4 (97.0 – 97.9) 0.528 (0.448 – 0.607) 86.4 (80.7 – 92.1)

85 81.2 (75.9 – 86.6) 32.1 (28.7 – 35.6) 97.9 (97.6 – 98.3) 0.464 (0.429 – 0.499) 81.5 (76.8 – 86.2)

90 73.7 (69.7 – 77.7) 26.3 (22.9 – 29.8) 98.5 (98.3 – 98.6) 0.406 (0.365 – 0.447) 75.2 (71.7 – 78.7)

95 60.3 (54.9 – 65.7) 20.0 (18.8 – 21.2) 99.0 (98.7 – 99.3) 0.330 (0.313 – 0.347) 63.6 (58.9 – 68.2)

Testing
Cohort

9.4% (n = 300) 78* 88.8 (87.4 – 90.3) 42.3 (39.1 – 45.5) 97.5 (97.5 – 97.6) 0.549 (0.522 – 0.576) 87.9 (86.5 – 89.2)

85 85.0 (83.2 – 86.9) 36.7 (34.2 – 39.2) 98.0 (97.7 – 98.3) 0.509 (0.486 – 0.532) 84.9 (83.3 – 86.4)

90 81.9 (81.8 – 82.0) 33.6 (33.3 – 33.9) 98.5 (98.4 – 98.6) 0.486 (0.481 – 0.491) 82.5 (82.3 – 82.6)

95 68.7 (61.4 – 76.1) 24.1 (19.8 – 28.4) 99.1 (99.1 – 99.2) 0.383 (0.330 – 0.437) 71.1 (64.6 – 77.7)

*Sensitivity of cardiologist re-classifying FaST from a subset of 50 random periodic unipolar EGMs; NPV, negative predictive value; PPV, positive predictive value; 95%
confidence intervals presented in parentheses.
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the prespecified criteria of >90% temporal stability for 5-s was
not met.

Comparison With Previous Machine
Learning Studies
Deep learning has recently been applied to arrhythmia
classification, but primarily in ECG recordings. Hannun
et al. (2019) used residual CNN to classify a finite number of
arrhythmias from a single-lead ECG strip, while Chang et al.
(2021) employed the bi-directional long short term memory
(LSTM) network to classify the same arrhythmias from a 12-lead
ECG. To our knowledge, our study is the first application
of DL to classify raw, intracardiac EGMs during AF. Similar
to Hannun et al. (2019), we adopt residual CNN because all
EGM signals were of the same duration, so that LSTM was not
required. Machine learning models have also been developed
to detect rotational activation during human AF, but the input
training dataset was either color-coded phase maps (Alhusseini
et al., 2020) or EGM frequency spectral features (Zolotarev
et al., 2020) from a multielectrode array, and not raw EGMs
as in our study. In the CNN model by Alhusseini et al. (2020),
rotational activation was detected with an accuracy of 95%,
while more classic machine learning models by Zolotarev et al.
(2020) achieved an accuracy of 80–90% depending on size of
the multi-electrode mapping array input into the model. In our
study, the performance of classic machine learning models, such
as logistic regression, SVM and KNN, in classifying FaST sites
was inferior to that of DL, which highlights the computational
proficiency of DL in EGM classification without the requisite for
discrete feature input, such as unipolar EGM onset.

Explainability of DL Model
Several techniques have been proposed to interpret machine
learning classification in electrophysiology. We used Grad-CAM
to evaluate explainability because the whole EGM signal is
considered and the contribution of DL convolutional layers
are weighted to generate visually interpretable importance plots
(Selvaraju et al., 2017). Other approaches have been described,
such as “occlusion mapping,” where portions of the signal are
systematically deleted to assess the effect on DL performance
(Bleijendaal et al., 2021), but this cannot be applied to our dataset
because the entire 5-s EGM recording requires classified. Our
findings with Grad-CAM suggested that the higher convolutional
layers are more relevant in periodic unipolar QS classification,
and in distinguishing atrial EGMs from far-field ventricular
EGMs. These layers also detect the presence of sustained
periodicity, which adds temporal dimensionality to the detection
of individual unipolar QS complexes (Figure 6).

Clinical Implications
Focal sources may be a relevant mechanism sustaining AF
in some patients, which provides the rationale for accurate
mapping. Given the complexity and non-stationarity of AF
EGMs, automating focal source detection is difficult using
multisite EGM recordings and conventional time-frequency
domain analysis. Manual overreading may improve the

robustness of focal source detection, but this is time-consuming
and still susceptible to imprecision. In our randomized controlled
trial, FaST sites were identified manually from an automated list
of candidate periodic unipolar EGMs. FaST ablation terminated
AF in 30% of patients, prolonged AF cycle length by 20 ± 14 ms
among those with AF termination, and reduced AF recurrence
by 48% at 1-year follow (Chauhan et al., 2020), suggesting that
FaST sites defined with our non-DL FaST algorithm may identify
focal sources. In the present study, FaST detection with DL using
a training set of periodic unipolar EGMs was accurate, and the
fully automated approach will ultimately improve interobserver
variability and reduce FaST mapping time. As a clinical mapping
tool, high sensitivity is important to identify the majority of
putative focal sources, but equally important is the need to
visually verify the EGM output so false positives are discarded.
At a prespecified sensitivity of 90%, the specificity and accuracy
of FaST detection with DL was high at 82 and 83%, respectively.
Thus, DL has the potential to improve clinical AF mapping
workflow by efficiently generating a comprehensive list of FaST
sites, which can then be manually overread by the cardiologist.
In addition, explainability of DL is essential to demystify the
“black box” and facilitate adoption as a bone fid mapping tool
in AF given the ambiguity of many EGMs and the uncertainty
in their classification. Explainability was demonstrated with
the importance plots using Grad-CAM for a subset of periodic
unipolar EGMs in our study. Ultimately, our DL model may
provide a more standardized approach to FaST detection as an
adjunctive ablation strategy to PVI.

Limitations
There are several limitations to acknowledge. First, FaST sites
were defined based on a single recording site and not the
activation pattern from a multielectrode array, but this was
intentional to avoid the ambiguity of activation mapping
in AF. Although unipolar QS are markers of focal sources,
passive activation from epicardial-endocardial breakthrough or
source-sink mismatch may also produce similar unipolar EGM
morphology, but sustained periodicity would be unlikely. It is
possible that DL training with neighboring unipolar EGMs from
a multielectrode array will improve the specificity focal source
detection (Zolotarev et al., 2020). Second, EGMs were rcorded
for 5-s, but longer recordings could increase the sensitivity and
specificity of FaST detection as putative AF sources. This was
not performed to avoid circular catheter instability and poor
EGM quality in some mapping region. Prior studies with ≥ 30 s
recordings have been performed with a 64-electrode basket
catheter, but this approach is disadvantaged by poor electrode-
tissue contact and lower spatial resolution compared to FaST
mapping. Third, our study population and periodic unipolar
EGM dataset is relatively small and sourced from a single center.
The performance of our DL model requires external validation
in a larger patient cohort. The prevalence of FaST was also low,
which can create class imbalance and a lower PPV and F1-score.
To address this, we evaluated the performance of the DL model
based on a number of predefined sensitivities and benchmarked
this performance to cardiologists with good results as shown
in Table 2 and Figure 4D. Fourth, our DL model, although
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comprehensive, has limitations in robustness and explainability,
which are common to other DL algorithms (LeCun et al., 2015).
Robustness was optimized by training the DL model on different
sets of patients each with different random seeds, but this may
still not be sufficient to address systematic noise (e.g., far-field
ventricular EGM) or adversarial EGMs (e.g., borderline unipolar
QS cases) (Papernot et al., 2016). For explainability, Grad-CAM
was applied to probe the importance of features, but the analysis
was qualitative because there are no clear metrics for quantitative
benchmarking. Finally, DL was not used to guide real-time FaST
ablation, however its reliability and efficiency will be evaluated in
a future multicenter, randomized trial.

CONCLUSION

Our novel DL model trained on raw unipolar EGMs in
AF accurately identified FaST EGMs in patients with drug-
refractory AF. Performance was similar to FaST re-classification
by cardiologists. Explainability analysis showed that our DL
model temporally tracked the hallmark periodic unipolar QS
complexes that define FaST. DL is a promising computational
tool to automate AF EGM classification and improve the
efficiency of FaST detection, which may facilitate focal source
mapping and ablation.
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