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Ischemia is a severe condition in which blood supply, including oxygen (O), to organs

and tissues is interrupted and reduced. This is usually due to a clog or blockage in the

arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage

ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead

to major adverse consequences. Ischemia-reperfusion injury is often prompted by the

local and systemic inflammatory reaction, as well as oxidative stress, and contributes to

organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion

cycles are related to the severity of the damage and could lead to chronic wounds.

Clinical pathophysiological conditions associated with reperfusion events, including

stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure,

are concomitant in due process with a disability, morbidity, and mortality. Consequently,

preventive or palliative therapies for this injury are in demand. Tissue engineering offers

a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by

using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal,

differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors

to drive cell growth, and development; (3) functional biomaterials, to provide defined

microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the

macroscopic environment that interacts with tissues. This strategy allows the production

of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition,

it allows the development of physiological-tissue-mimetics to study this condition or to

assess the effect of drugs. Thus, it provides a sound platform for a better understanding

of the reperfusion condition. This review article presents a synopsis and discusses

tissue engineering applications available to treat various types of ischemia-reperfusions,

ultimately aiming to highlight possible therapies and to bring closer the gap between

preclinical and clinical settings.
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ISCHEMIA

Ischemia is a severe condition that is characterized by
interruption and reduction in blood supply, including oxygen
(O), to organs and tissues. This is usually due to a clog
or blockage in the arteries that feed the affected organ; it
is an intrinsic component of severe peripheral artery disease
and organ transplantation. Ischemia induces an imbalance
between the metabolic supply and demand of tissues, producing
local hypoxia, accumulation of cellular by-products, and
acidification of the cellular environment (Eltzschig and Eckle,
2011; Slegtenhorst et al., 2014; Dua and Lee, 2016). In due
process, adenosine triphosphate (ATP) falls to critical levels.
Thus, membrane pumps fail which leads to intracellular sodium
and calcium build-up. In addition, mitochondrial complexes are
compromised where there is a rise in the production of reactive
oxygen species (ROS) above its physiological levels. Each tissue
can withstand different periods of ischemia prior to displaying
an appreciable dysfunction, or evidencing injury. Brain, heart,
kidney, and intestine are among the most susceptible tissues
with 20–30min being sufficient, while skeletal tissue displays a
critical ischemic period of some hours (Kalogeris et al., 2012).
However, once the critical period is surpassed (depending on cell
type and organ), cell swelling, membrane damage, and/or cell
death follow (Kalogeris et al., 2012; Slegtenhorst et al., 2014).
Consequently, minimizing hypoperfusion duration is essential
to salvage the affected tissues done through the restoration of
blood flow, including O, and nutrient supply. Current therapies
rely on prompt restoration of blood flow through percutaneous
coronary intervention or the use of fibrinolytic agents, among
others (Wu et al., 2018). However, reperfusion itself does not
come disencumbered.

ISCHEMIA-REPERFUSION INJURY

Ischemia-reperfusion injury is often prompted by the profound
local and systemic inflammatory reaction, as well as oxidative
stress, that accompanies reoxygenation and enhances the final
tissue-damage (Eltzschig and Eckle, 2011). Pathophysiological
events associated with reperfusion affect a wide array of organs
and conditions, including heart failure, stroke, myocardial
stunned/hibernating/infarction, wounds, lung, renal, liver, and
intestinal damage or failure, which are concomitant, in due
process, with disability, morbidity, and mortality. In addition,
ischemia-reperfusion injury (IRI) damage is not restricted to
the specific ischemic tissue, a remote organ injury could follow
reperfusion, a systemic inflammatory response syndrome, as well
as multiple organ dysfunction (Kalogeris et al., 2012). It has
been established that the damage produced by longer periods
of ischemia is aggravated by reoxygenation, while an adaptative
response is provided by short courses of preconditioning
ischemia. Through this preconditioning therapy, activation of
intrinsic cell-survival programs makes tissues resistant to the
detrimental effects of reperfusion (Kalogeris et al., 2012). Other
therapeutic strategies for IRI management include antioxidant
therapy, anticomplement therapy, antileukocyte therapy, or the
administration of nitric oxide (NO), which may also be from NO

donors or drugs that boost NO release (Collard and Gelman,
2001). The full mechanism encompassing IRI remains not
fully defined despite the impressive discoveries done through
more than 30 years of research invested in understanding this
condition (Kalogeris et al., 2012). Therefore, novel approaches
for this purpose and pioneer therapies to address this condition
are in need (Wu et al., 2018). Here, tissue engineering (TE)
is proposed as an adequate platform to study, tackle IRI, and
propose the next generation of IRI treatments.

MECHANISMS OF ISCHEMIA AND
ISCHEMIA-REPERFUSION INJURY

Ischemia and IRI differentially induce the expression of a
large number of genes that drive the response across different
tissues. Genome-wide gene expression profiling has been used to
establish ischemic and IRI mechanisms. Deoxyribonucleic acid
microarrays were used to study the genes involved in ischemic
damage and repair different organs in animal models. It was seen
that genes expressed were varied among organs. Despite these
mechanisms being complex and organ-specific (Kalogeris et al.,
2012), around 1,000 sequences were differentially expressed in
most cases when comparing to controls. Between these, more
than 70%were over-expressed, and the rest were repressed (Paoni
et al., 2002; Chang et al., 2015). Among the over-expressed genes,
pathways related to the inflammatory reaction and hypoxia,
such as cell proliferation, were identified. Correspondingly, a
decreased expression of transcripts encoding proteins involved
in mitochondrial activity, adhesion, and contraction were
identified. Similar studies have been done to analyse gene
expression across different organs during IRI. The results
displayed several commonly upregulated genes amongst kidney,
intestine, and skeletal muscle, associated with identifiedmitogen-
activated protein kinase (MAPK), nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB), and extracellular
signal-regulated kinase 1/2 (ERK1/2) pathways (Chang et al.,
2015; Zheng et al., 2017; Shao et al., 2018). These results are
summarized in Figure 1 [modified from Chang et al. (2015)].
A brief summary of the mechanisms driving ischemia and
IRI will be presented. However, the readership should refer to
several excellent reviews for a more in-depth description of these
mechanisms (Collard and Gelman, 2001; Eltzschig and Eckle,
2011; Kalogeris et al., 2012; Wu et al., 2018; Soares et al., 2019).

Adaptation to the hypoxic environment accompanying
ischemia induces dysfunction of the electron transport chain
in mitochondria, which trigger a cascade of events that
cause severe cellular malfunction and tissue damage. The
decrease in mitochondrial ATP prompts anaerobic metabolism,
sodium-potassium/calcium (Na-K/Ca) pumps malfunction, and
ribosomal detachment. The metabolic changes are followed
by decreased ATP production, cellular antioxidants availability,
an increase in lactic acid, and acidification. Due to Na-
K/Ca pumps dysfunction, Na and K exchange is hindered.
The former being accumulated inside the cells and the latter
being kept outside. Sodium-exchanger/calcium pumps failure
ensues, while hydrogen (H), Na, and Ca ions accumulate in
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FIGURE 1 | Schematic depiction of the IRI mechanism, and MAPK pathway modulation.

the cytoplasm. The accumulated ions cause hyperosmolarity,
cell swelling, and further acidification (Bompotis et al., 2016).
Then an impairment in enzyme activity and nuclear chromatin
clumping is induced. In addition, the detachment of ribosomes
reduces protein synthesis (Kalogeris et al., 2012; Forrester
et al., 2018). These events translate into the reduced activity
of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) enzymes, adenosine monophosphate (AMP)-
activated protein kinase (AMPK), and B-cell lymphoma 2 (Bcl2)
proteins. Furthermore, these events translate to the activation
of numerous genes regulators of O homeostasis within cells,
such as hypoxia-inducible factor (HIF), vascular endothelial
growth factor (VEGF), and MAPK, e.g., ERKs, c-Jun N-
terminal kinases (JNKs), and the p38 MAPKs (Jiménez-Castro
et al., 2019). In due process, these alter angiogenesis, vascular
remodeling, cell migration, and produce high ROS yield, ROS-
mediated autophagy, and inflammation (Ziello et al., 2007;
Mokhtari and Lewis, 2014; Forrester et al., 2018; Koeppen
et al., 2018). In addition, the distribution of protein kinase
C (PKC) changes, modifying cell proliferation, and apoptosis
(Mokhtari and Lewis, 2014).

The onset of reoxygenation produces a transition from a
hypoxic to a normoxic environment, which is linked in due
process to a burst of ROS, and oxidative stress. This negative
effect is exerted by oxidants, such as superoxide anion radicals,
or hydrogen peroxide (H2O2). Reactive oxygen species can
bind directly to key regulatory proteins or participate in the
production of reactive nitrogen oxide species (RNOS), such
as peroxynitrite. This then leads to the distribution of cell
signaling and redox circuits. Sources of cellular superoxide
production are xanthine oxidoreductase (XOR) system, NADPH
oxidase system, cytochrome P450 oxidases uncoupled nitric
oxide synthase (NOS) system, hemoglobin, and myoglobin.

These will be implicated depending on the tissues involved and
the severity of the injury (Wu et al., 2018).

The shift to anaerobic glycolysis and reduced mitochondrial
respiration caused by ischemia, along with the resurfacing
of oxygen in the environment, will further increase ROS
production, inflammatory reaction, produce nitrogen reactive
species (NRS), and RNOS (Rodrigo et al., 2013; Forrester et al.,
2018; Barzegar et al., 2019). Nitrogen reactive species, such
as NO, and ONOO−, are formed through the oxidation of
arginine, catalyzed by NOS; the reduction of nitrite, or nitrate,
through the action of XOR; or the action of mitochondrial
cytochrome C oxidase under hypoxia. The low concentrations of
NRS produced by endothelial NOS fulfill physiological functions
and interact with other species to form nitrosyl complexes
with proteins that transport iron and heme. These complexes
prevent the formation of ferryl-heme radicals by H2O2. The
higher concentrations of NRS produced by inducible NOS
are detrimental, resulting in the production of RNOS, and
harmful to macromolecules, i.e., membrane lipids, proteins,
and DNA. These NRS affect cellular signal transduction,
producing pro-inflammatory mediators, activate apoptosis,
necrosis, and autophagy pathways. Ultimately, expanding the
ischemic damage, as well as decreasing the availability of
protective NO (Kalogeris et al., 2012; Chen et al., 2013).

In an attempt to re-establish the normal cytosolic pH after
ischemic acidification, Ca regulation will be altered. Cells will
exchange H ions for Na. These Na ions will subsequently
be exchanged for Ca. Reoxygenation will further increase
the cytosolic Ca overload, producing detrimental alterations
in Ca homeostasis, proton gradients, mitochondrial failure,
hypercontracture, and proteolysis, which will contribute to the
overall ROS production (Bompotis et al., 2016). In addition,
tumor necrosis factor (TNF)-like cytokines, ROS, and Ca
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activate receptor-interacting protein (RIP) kinases; together with
NFκB, they will drive a cascade of events that will induce
the expression of various pro-inflammatory genes, produce an
immune response, and activate necroptosis (Kalogeris et al., 2012;
Liu et al., 2017).

MIMICKING ISCHEMIA-REPERFUSION
INJURY IN 3D EX VIVO SETTINGS

The cues that drive IRI, the complex crosstalk between all
molecular pathways involved, and its tissue-specific features
variability must be fully understood and fine-tuned in order
to provide robust applications and therapeutics. Its intricate
nature has been tried to mimic in two-dimensional in vitro (2D),
and animal-based in vivo models. In general, medical research
heavily relies on these models when testing new therapies and/or
therapeutics. This is also true for IRI research wherein 2D
static monolayered culture systems have allowed the building
of the foundations for the understanding of disease cues. In
these systems, cells are grown attached to a supportive plane in
their basal surface and are exposed to culture media in their
upper face. Consequently, cells in the basal area receive limited
contact with nutrients and signals, developing heterogeneously.
Cells allocated into planar cell culture flasks become flattered,
divide abnormally, and lose their differentiated phenotype
(Baker and Chen, 2012). Thus, many findings in 2D are not
reproducible in vivo or tissue explants. In addition, researching
cells alone, cannot provide a comprehensive, and a suitable
platform tomimic disease. In tissues, cells are enclosed in a three-
dimensional (3D) complex microarchitecture, coordinated by
intricate signaling dynamics. This 3D environment is subjected
to mechanical stresses and in constant interaction with adjunct
tissues. To minimize the gap between the 2D platform, and the
in vivo domain, animal models have been put to use and have
proven to be an irreplaceable source of data for understanding
IRI. Albeit these models represent a critical platform and the gold
standard for disease studies, which are costly, time-consuming,
and often not reproducible in human studies (Meigs et al., 2018).
Additionally, animal testing is associated with ethical concerns;
all ethical committees will require researchers to replace these
studies with other methods, when possible. They are suggested
to reduce the number of animal subjects to the lowest and
refine the studies to minimize the impact on said subjects. Thus,
finding alternative methods to achieve such a benchmark is on-
demand (the 3Rs principles; Festing and Wilkinson, 2007). The
efforts to achieve tissue-mimicry, decrease animal testing, the
development of 3D static, and dynamic culture systems have
derived into the TE principia. This approach employs stem cells
(SCs), 3D scaffolding types of machinery, biological cues, and
bioprocess tools, such as biophysical cues, in an attempt to better-
mimic the host local and global tissue interactions. In addition to
this improved environment for cell expansion and maturation,
nutrients exchange, waste removal between cells, and culture
media could be incorporated through culture media perfusion.
See Figure 2 for schematics of the hierarchical organization of
organs and the building-up of TE-tissue-mimetics. It has already

been demonstrated by several studies that this improved culture
environment allows cells to maintain most of their characteristics
and markers under prolonged culture periods. This is due to a
closer mimicry of tissue features, in comparison with 2D. These
features include cellular heterogeneity and niche, extracellular
matrix (ECM) deposition, cell-cell signaling, cellular interactions,
growth kinetics, and gene expression (Godara et al., 2008; Sailon
et al., 2009; Baker and Chen, 2012; Costa et al., 2016). This
strategy, if provided by tissue-specific features and adequate cells,
then it would deliver experimentally accessible human testing
models to study the biological processes of IRI while limiting the
ethical considerations that animal models elucidate. See Figure 3
for a comparison between 2D and 3D platforms.

STEM CELLS WITH APPLICATION IN
ISCHEMIA-REPERFUSION INJURY
RESEARCH

Using living cells to produce functional tissue substitutes will
enable to model, replace, repair, and/or regenerate both healthy
and failing tissues; in application to IRI research and treatment,
there is a necessity in growing, fabrication, implantation of tissues
ex vivo, and/or the growth of these in vivo (Langer and Vacanti,
1993). From a cellular perspective, the players involved in IRI
models should be cells, extracellular matrix (ECM), signaling,
cellular dynamics, and the interactions between these.

The straightforward alternative of cells with the potential for
researching IRI would be autologously sourced from patients and
tissue-specific. These cells would not present an immunogenic
reaction from the body and could be further expanded
in vitro to increase their numbers. These would not require
differentiation and would be expected to be fully functional.
Yet these cells are associated with various shortcomings: time-
consuming production; invasive and damaging extraction for the
patient and/or donor; extraction yields low cell numbers; poor
expansion. The scaling-up of these cells is usually shadowed
by senescence and phenotype loss. Moreover, tissue diaschisis
associated with IRI would provide cells with heterogeneous
functionality and quality. Xenogeneic cells could solve some of
the aforementioned hindrances. However, these are related to
immunogenic reactions and phenotypic mismatch. Thus, the
adequate source of cells should (1) not cause any immune
response from the body toward them (or their by-products), (2)
be able to proliferate and yield high cell numbers without losing
quality, and (3) have ease of access and extraction. In addition,
these should have the capability to produce specific functional
cell types through differentiation. Stem cells such as embryonic
stem cells (ESCs), induced pluripotent stem cells (iPSCs), adult
stem cells, i.e., mesenchymal stem cells (MSCs), share some of
these features and are best suited than any kind of somatic cells to
produce 3D ex vivo IRI mimics. These cells can be obtained from
patient donors or cell banks. Nonetheless, the differentiation
and expansion potential differs among them. These features
depending largely on the developmental stage and source of cells,
as some of them are constrained to specific cell lines or a closely
related family of cells. These are classified according to their
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FIGURE 2 | Hierarchical organization of organs, and the building-up of TE-tissue-mimetics.

differentiation potency. First, totipotent stem cells are able to
generate all the cell lineages of a creature, including embryonic,
somatic, and germ cells; in mammalians, only the zygote and the
first cleavage blastomeres are part of this group. Pluripotent stem
cells (PSCs) are capable of indefinite expansion and can give rise
to the three germ layers, such as endoderm,mesoderm, ectoderm,
and any cell lineage further in the developmental stage. Found in
this group are ESCs and iPSCs. The former are derived from the
inner cell mass of blastocyst-stage embryos, as well as embryonic
germ cells from the developing fetal gonadal ridge. While the
latter are manufactured by reprogramming in vitro adult somatic
cells to an embryonic-like state by the introduction, and forced
expression of the main genes and factors of pluripotency (Heng
et al., 2004; Vallier et al., 2009;Walia et al., 2012). Thus, iPSCs can
be obtained frommodified cells from patients or cell banks. These
features make pluripotent cells some of the most useful cells for
TE. Nonetheless, ESCs are associated with teratoma formation,
their differentiation is very difficult to control, which elicits
ethical considerations due to the destruction of the embryos
in their extraction process (Placzek et al., 2009). On the other

hand, iPSCs eliminate ethical constraints but harbor capabilities
underneath ESCs. Second, adult multipotent stem cells are a
heterogeneous group of cells capable of giving rise to multiple cell
types within a specific lineage. In addition, these possess a limited
self-renewal capability. These are undifferentiated cells found
throughout the adult body in specific niches. Mesenchymal stem
cells have been isolated from the connective tissue of almost every
organ, such as bone marrow-derived mesenchymal stem cells
(BM-MSCs), umbilical cord blood-derived mesenchymal stem
cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs),
muscle-derived stem cells (MDSCs), and dental pulp stem cells
(DPSCs), among others (Polak et al., 2008; Placzek et al., 2009).
All these imply a role as a storage and regenerative pool for
the various mesenchymal tissues at the postnatal stage. These
present immunomodulatory effects, both in vitro and in vivo
(Fibbe et al., 2007). See Figure 4 for a depiction of stem cell
sources. Donor parameters such as age, life habits, gender, and
medical record also affect MSCs quality. Third, unipotent stem
cells are able to give rise to one specific cell type, and present the
lowest self-renewal capability, among SCs, i.e., spermatogonial
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FIGURE 3 | Comparison of culture platforms, where scheme (A) represents 2D culture, and (B) 3D culture.

stem cells. In general, the lineage-specific differentiation of SCs
can be directed under specific culture conditions bymanipulating
the microenvironment where they reside and with biological
cues (Walia et al., 2012). These parameters can be managed by
bioprocessing design tools. However, since each source of SCs
differ in expansion and differentiation rate, factors secretion, and
stimulation mechanisms, there is not one defined path to follow
and the selected cell source and the specific tissue to mimic will
ultimately determine the selected culture strategy and the culture
media. Thus, different 3D platforms coupled with SCs, such
as spheroids, organoids, hydrogels, scaffolds, and microfluidic
systems (either suspended or embedded in a matrix culture),
have been pioneered to attempt to mimic aspects of healthy and
sick tissues. Ultimately, these 3D platforms allow to design novel
SCs-based therapies and therapeutics in due process.

SPHEROIDS AND IRI

Spheroids are micro-size cell aggregates that make use of the
cell-to-cell adhesion features of SCs. These features allow cells to

form 3D constructs which lack any type of anchorage medium
(non-scaffold-based) and are mainly comprised of ECM. Thus,
this platform can replicate some of the main characteristics of
tissue microarchitecture. Spheroids can be formed by different
techniques such as liquid overlay, hanging-drop, rotating wall
vessels/spinner flasks generated, microfluidic-based assembly,
and magnetic levitation (Ryu et al., 2019). Applications based
on spheroids can be customized by selecting the adequate cells,
fine-tuning size, culture media composition, and by modulating
biophysical cues. This technique can be automated to enable,
scalability, reproducibility, and minimize manual handling
(Bartosh et al., 2010). In addition, by modulating spheroid size,
oxygen availability (and thus, normoxia/hypoxia) in the spheroid
core can be modulated to a certain extent. Such platforms have
been used to study the mechanism of IRI, the role of SCs in
the regeneration process, and to produce biologics with potential
therapies in renal (Xu et al., 2016; Zhang, X. et al., 2021), hepatic
(Sun et al., 2018; Olander et al., 2019), intestinal (Gonzalez et al.,
2019), cardiovascular (Chen et al., 2007; Suzuki et al., 2019; Li
et al., 2020; Sfriso and Rieben, 2020), lung (Pagano et al., 2017),
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FIGURE 4 | Stem cell sources.

skin (Park et al., 2017), fat (Mineda et al., 2015), and neural
(Davenport Jones et al., 1998; Serganova et al., 2004; Fu et al.,
2015; Liu et al., 2015; Chen et al., 2019) reperfusion damage.

A myocardial IRI kidney model, utilizing porcine coronary
artery endothelial cells (PCAECs) and spheroids in vitro and
in vivo in mice, was established to recapitulate the IRI-ROS
mechanism (Chen et al., 2007). The model allowed us to explore
the protein kinase B (Akt), ERK1/2 activationmechanism, as well
as the onset of angiogenesis/VEGF expression (before and after
reoxygenation). In addition, it allowed the studying of the role
of NADPH oxidase as a modulator and potential therapeutic for
IRI treatment.

An acute kidney injury (AKI) model, utilizing raw human
ADSCs from liposuction aspirates, and spheroids in vitro, and in
vivo in rats, was established to assess their effect in reperfusion
injury (Xu et al., 2016). In vitro results highlighted that spheroid
culture produced higher levels of ECM proteins, such as collagen
I, fibronectin, and laminin, as well as better anti-apoptotic and
anti-oxidative capacities, compared with 2D. Additionally, the
paracrine secretion of cytokines, such as angiogenic factors
VEGF and FGF2, anti-apoptotic factors endothelial growth
factor (EGF) and HGF, anti-oxidative factor IGF, and the anti-
inflammatory protein TNF-alpha induced protein 6, was higher
than 2D. In vivo results followed a similar trend and displayed
increased survival and paracrine effects than 2D. Notably,
when spheroids were transplanted into IRI-AKI rat models,

these proved to perform better against apoptosis, reducing
tissue damage, promoting vascularisation, and improving renal
function compared with 2D.

To study intestinal IRI, porcine intestinal epithelial stem cells
(ISCs) were harvested after a prolonged duration of vascular
occlusion to guarantee deep epithelial loss. Afterward, spheroid
cultures were established to determine the impact of different
durations IRI (1–4 h) on ISCs in vitro and in the ischemic crypt
and the contribution of these cells to mucosal repair (Gonzalez
et al., 2019). This study highlighted a closely related behavior
of ISCs in both 3D in vitro and in vivo platforms based on the
expression profile of the genes leucine-rich repeat-containing G
protein-coupled receptor 5 (Lgr5), SOX9 Lrig HOPX. It also
allowed to establish that ISCs are likely to play a critical role
during the reparative events that occur after IRI. In addition, it
is suggested that the ISCs-mediated epithelial repair mechanism,
probably depends on the degree of epithelial loss produced by
the injury.

In a different approach, spheroid culture was used to provide
exosomes to ameliorate kidney IRI damage in C57BL/6 male
mice (Zhang, X. et al., 2021). Using a 3D platform allowed the
provision of a higher number of exosomes, with defined size,
compared with 2D. The exosomes produced, were harvested
from culture media and then administrated via renal intra-
capsular, within a 72 h reoxygenation period. Histological,
immunohistochemical, and ELISA analyses of kidney samples
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FIGURE 5 | Scaffold biomaterials.

were performed to assess cell death and inflammation; serum
creatinine and urea nitrogen were measured to assess kidney
function. The study concluded that the strategy managed to
significantly attenuate renal injury in AKI mice, alleviate tissue
apoptosis, and decrease pro-inflammatory cytokine production.

In general, spheroid-based models are fit for single-
cell, short-term cultures, molecular evaluation, and drug
screening. Nonetheless, when long-term culture and/or multi-
cellular approaches are required, their limitations become
evident. Spheroid growth is concomitant with the formation
of heterogeneous environments, uncontrolled oxygen/nutrient
gradients, and thus inconsistent proliferation slopes, and even
necrotic areas (Zhang, X. et al., 2021). The critical thickness for
viable spheroid culture has been established by several authors
to be around 150–200µm and up to 25 days long (Katt et al.,
2016; Shi et al., 2018). To tackle these limitations, scaffold-based
models become necessary.

SCAFFOLD-BASED MODELS AND IRI

In scaffold-based 3D cultures, cells are grown, and developed
anchored to biocompatible 3D structures that resemble the

ECM of the tissues they are devised to mimic. These matrices
are designed to supply cells wherein an auxiliary and often
temporary niches were to adhere, migrate, grow, and differentiate
for ECM deposition. Consequently, scaffolds define a template
for normal cell-cell interactions, cell-ECM interactions, and
specify the mass transfer coefficient for nutrients and signal
delivery. Thus, their functionalization to drive cell fate, attract
cells from the surroundings, and form a direct interface between
the scaffold and the injury site is desired (Zanoni et al.,
2016). Scaffolds are restrictive semi-permeable environments, as
cells get physically isolated from the exterior, which allow the
diffusion of essential molecules and leave outside the undesired
ones (Nicolas et al., 2020). Also, these provide shape, internal
structure, pore architecture, mechanical properties, and a place
for neovascularization and neo-tissue formation (Uludag et al.,
2000). In other words, scaffolds play the role of an artificial
3D ECM. Interestingly, the aforementioned features share a
degree of customizability through the selection of materials and
fabrication strategy. Scaffolds can be temporary, biocompatible,
and bioresorbable matrices that are slowly resorbed by cells
during their growth and development, either ex or in vivo
or permanent, synthetic cell niches. Their selection is strongly
defined as per the tissue to mimic and the application. There
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is a wide range of materials with desirable features that
have been studied, such as acellularized-ECM, ceramics, and
polymers from natural and synthetic origins. See Figure 5

for a comparison between different scaffold biomaterials.
Different manufacturing and post-processing approaches allow
the modulating of parameters such as cell-binding sites, surface
topography, thickness, porosity, pore size, shape, tortuosity,
interconnectivity, mechanical properties, and scaffold shape
(Uludag et al., 2000; Chan and Leong, 2008). Electrospinning,
air-jet spinning, centrifugal spinning, salt leaching, freeze-drying,
stereolithography, self-assembly, phase separation, gas foaming,
melt molding, fiber mesh, solvent casting, photo-polymerization,
laser sintering, encapsulation, and 3D bioprinting are some of
the scaffold fabrication techniques available. For a more in-depth
investigation of scaffold fabrication techniques, the readership
should refer to several excellent reviews (Angelopoulos et al.,
2020; Haider et al., 2020). This tunability is key for tailor-making
specific scaffolds features for each ischemia/IRI tissue to model.
This is a very important aspect of this platform; unique aspects
of different tissues/organs can be provided. Thus, these come in
different forms, from simple-shaped organoids, and hydrogels,
to more complex architectures like 3D bioprinted. In addition,
scaffold-based 3D constructs have the advantage to allow the
generation of single-cell or multi-cellular models. Consequently,
these allow better-mimicry of the cellular heterogeneity found in
vivo in regular tissues (Loh and Choong, 2013).

ORGANOIDS

An organoid is a self-organized 3D cellular platform in which
a simple miniature version of tissues is provided. As such, they
are engineered to display specificmicro-anatomical features from
the tissues they mimic. Organoids are the closest scaffold-based
models to the spheroid platform. However, their use allows
the establishment of long-term cultures. In a study made to
recapitulate the intestinal epithelium, six cycling Lgr5+ SCs
obtained from the small intestinal crypt from mice, produced
3D cultured in Matrigel R© organoids (Gupta et al., 2020). It was
possible to reach a 1.5 years-long culture, that formed basic
mini-guts with crypt-villus physiology without a mesenchymal
niche. Wingless-related integration site (Wnt), EGF, and Noggin
modulation were critical for this feat. Organoids can be fabricated
by techniques like suspension culture, magnetic cell levitation,
ECM hydrogel/scaffold-based, i.e., Matrigel R©, Culturex BME,
alginate, etc., and spinning-flask culture. Herein, cells are
attached, which then develop into mini tissues. Depending on
cell type, these could form embryoid bodies prior to their
final development (Sato et al., 2009). Such platforms have been
used to study the mechanism of IRI, the role of SCs in the
regeneration process, and the production of biologics with
potential therapies for the treatment of renal (Ashok et al., 2020;
Shiva et al., 2020), hepatic (Kishi et al., 2019), and intestinal
(Chen et al., 2016; Matsumoto et al., 2017; Zhou et al., 2017;
Stieler Stewart et al., 2018; Koike et al., 2020; Kip et al., 2021),
cardiovascular, lung, skin flap, fat, and neural (Chen et al., 2014)
reperfusion damage.

One related study featured proteomic profiling of human
intestinal organoids models during hypoxia and reoxygenation,
to study the protein dynamics and molecular mechanisms
of IRI (Kip et al., 2021). Interestingly, the model featured a
differentiated organoid phenotype provided with two defined
regions, crypt, and villus, and presence of mucus-containing
goblet cells and enterocytes. This was confirmed by Alcian
blue and Alizarin red staining, which was further confirmed
by the upregulation of I-FABP and MUC2 and a deregulation
of OLF4 compared with undifferentiated, among other such
techniques. The model allowed the study of the differential
molecular response of these two defined regions. The organoid
was selectively induced to produce either a villus-like or a
crypt-like phenotype. After reoxygenation, the most significantly
enriched biological process in both phenotypes was related to the
energy production in the mitochondria and the mitochondrion
organization process. Several subunits of the mitochondrial
respiratory chain complexes were altered. Protein translation
was enhanced in the crypt-like group (increment of multiple
60 S ribosomal proteins of RPL4, RPL6, RPL7a, RPL13, RPL35,
RPL18, etc.), while it was reduced for villus-like (RPL13, RPL4,
etc.). Protein synthesis and ribosome biosynthesis are energy-
consuming routes that get repressed during hypoxia to save
energy. With the reoxygenation onset, these processes restart
differentially for both systems due to different proliferative stages
of the villus- and crypt-like organoids. Processes associated
with lipid metabolism were enriched for both models. For
instance, several proteins involved in fatty acid β-oxidation
showed a decreased expression, a mechanism related to cell
death. In addition, increased transcript levels of the HIF1A
target gene, VEGF confirmed hypoxic signalling, and support
regulation of cellular stress signalling for both villus- and crypt-
like. In addition, a relationship between the hypoxic stress was
established, as regulation of immune response-related processes
was observed despite the lack of immune cells in the system.
Thus, this study validates the models developed as adequate
platforms to study IRI response, as their in vitro behavior was in
concordance with what is seen in vivo.

Another study introduced the use of an iPSCs-produced
neural organoid model to assess the therapeutic potential of
exosomes produced from neural progenitor cells (NPCs) from
newborn mice following experimental strokes in vitro, and to
compare the effect in vivo (Chen et al., 2014). Their results
highlighted how exosomes significantly reduced cell injury in
organoids when compared with controls, in dosage-dependent
effect. These were then applied in vivo, where enhanced
neurological recovery and neuroregeneration were seen for as
long as 3 months. Analyses of blood and brain samples 7
days post-ischemia displayed an increase in the concentration
of lymphocytes B and T in blood, without affecting cerebral
cell counts.

These studies support the idea that patient-based organoids
can capture cellular heterogeneity, as well as the cellular niche
from tissues, recapitulating the cellular phenotypes from the
donor. Thus, these provide an adequate mimicry to post-
stroke immunosuppression and represent a decent contender
to close the gap between the in vitro and in vivo podiums.
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However, organoids are not free from constraints because their
shape, size, internal structures, and interactions are not true
to tissues. Thus, there are several aspects of tissue homeostasis
and in vivo principles that are not fulfilled properly. Organoid
cultures yield cell constructs with unsatisfactory cell density,
fate, and heterogeneity (especially compared to adult tissue).
These further yield unmatched mass transport properties, lack
of vascularization, and interorgan communication (Zheng et al.,
2021). To cope with these limitations, creating a more sizable
template which able to capture the complexities of tissues
is required.

SIZEABLE SCAFFOLDS AND IRI

Polymeric soft scaffolds, foams, and hydrogels can be built
through most of the techniques described above. Throughout
these methods, tissue constructs can be designed in more
complex shapes, compared with spheroids and organoids (Kim
et al., 2020). In addition, composite scaffolds and multicellular
tissues can be manufactured. Such platforms have been used to
study the mechanism of IRI, the role of SCs in the regeneration
process, and to produce biologics with potential therapies in renal
(Dankers et al., 2015; Soranno et al., 2016; Liu et al., 2020), hepatic
(Gao et al., 2012; Xiao et al., 2018), cardiovascular (Ahmad et al.,
2013; Song et al., 2014; Shan et al., 2017; Xiao et al., 2017; Li et al.,
2021; Xing et al., 2021; Zhang, Y. et al., 2021), lung, skin (Salimath
et al., 2012), retinal (Uehara et al., 2019), and neural (Lee et al.,
2012) reperfusion damage. Still, the versatility of techniques used
tomanufacture and functionalize scaffolds pushes the boundaries
found in organoid and spheroid methods, and allows for the
development of wider applications.

Injectable hydrogels containing biotherapeutic agents were
used to pioneer treatment for chronic myocardial infractions
in vivo in rat models (Xiao et al., 2017). Hyaluronic acid
hydrogels loaded with Stromal-derived factor-1 (SDF-1) and
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) were injected
directly into the ischemic area. The proteins used in the
scaffold were selected to provide stem cell homing an
angiogenic effect, ultimately aiming to regenerate the infarction
and lessen IRI. After 4 weeks of treatment, histology and
immunostaining showcased a significant increase in myocardial
regeneration (including the increased formation of arterioles),
cell recruitment, and recovery of heart function, while preventing
heart hypertrophy, compared with no treatment or the
application of single factors (SDF-1 or SDKP). However, the
mechanisms that produced such results were not established and
more research should follow. Another related study developed
a polycaprolactone-based fibrous scaffold via electrospinning
which is capable of releasing functional biomolecules in a
controlled manner under physiological conditions (Rajkovic
et al., 2018). The device was designed to deliver hydrogen
sulfide (a signaling molecule with cytoprotective action) directly
into the injury site to protect cells from ROS damage.
These studies highlight the relevance of scaffold design, and
functionalization, to improve the in vivo healing factor of
scaffold-based implants.

A composite scaffold consisting of decellularized
human myocardium, with preserved microarchitecture and
biomechanics, and fibrin hydrogels, seeded with TGF-β-
conditioned human MSCs, was established. The study was
conducted in vitro, and in a nude rat in vivo model. Molecular,
structural, and functional parameters were assessed (Feng et al.,
2015). The scaffold was devised considering large, interconnected
pores and smooth channels to promote a prompt permeation of
cells. In addition, TGF-β-conditioning of cells was used to aid
the formation of neovasculature throughout the pore network
to encourage an overall better integration to the surrounding
tissues. Their in vivo results displayed cell migration into the
infarct bed and the scaffold; recovery of the ability of cells
to secrete SDF-1. Consequently, cell migration was further
improved, as well as revascularization of the infarct bed and
recovery of tissue function.

A tuneable size multicellular scaffold consisting of
decellularized human lung fibroblast-derived matrix (hFDM)
and collagen hydrogel and containing human umbilical
vein endothelial cells (HUVECs) and MSCs, was established
in vitro. The model was engineered with the aim to evaluate
its therapeutic efficacy for IRI treatment in a mouse hindlimb
ischemia model (Godier-Furnémont et al., 2011). In this
platform, multiple angiogenic-related factors were significantly
upregulated, compared to single-cell scaffolds. In addition, the
treatment significantly improved blood reperfusion and reduced
the fibrosis level of the ischemic tissue. These studies highlight
the importance of adding complexity to our models through
composite materials and a multicellular approach to producing
implant-grade tissue mimetics.

An interesting strategy to accomplish an in vitro ischemic
culture onset would be to couple a rapid oxygen consumption
reaction to the scaffold fabrication stage. For instance, the study
of Lewis et al. (2017) devised a protocol that links a laccase-
mediated crosslinking reaction to the production of a gelatin-
based hydrogel that is suitable to mimic such ischemic start
(Du et al., 2020). Thus, an oxygen gradient is established when
reperfusion begins; such an oxygen gradient depends on the
distance from oxygen-carrying blood vessels.

In a different approach, ischemic preconditioning (IPC), a
non-invasive drug-free procedure normally used to ameliorate
the ischemic insult, and IRI has been used to promote
vascularization and increase the TE therapy success. Ischemic
preconditioning consists of providing transitory periods of
ischemia to tissues, to prepare them for the subsequent
insult (Lewis et al., 2017). In this process, endogenous repair
mechanisms are induced by the action of several paracrine,
angiogenic factors, such as VEGF, and nitric oxide synthase.
Additionally, IPC has been seen to provide an SCs homing
effect (Tomai et al., 1999; Lim et al., 2012; Wang et al.,
2018). The study of Lim et al. (2012) engineered polyacrylic
chambers positioned surrounding the femoral vessels of adult
Sprague-Dawley rats, where fibrin scaffolds seeded with neonatal
rat ventricular cardiomyocytes (rCMs) were implanted. The
chambers were able to provide a controlled IPC setting, thus
allowing to study the effect of IPC in the development of TE neo-
tissues in vivo. Their results displayed that IPC applied to empty
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FIGURE 6 | Global interactions involved in tissue homeostasis and its scale.

chambers allowed the femoral vessels to naturally deposition
a fibrin scaffold. Inflammatory cells, fibroblasts, pericytes, and
vascular progenitors migrated heterogeneously to the scaffold;
they were assembled into vascularized granulation tissues in
due time. When IPC was applied to chambers with cell-seeded
scaffolds, the developed tissue had higher weight and volume,
which then produced higher neo-vascularization and cardiac
muscle volume. In addition, rCMs were protected from apoptosis
(Tomai et al., 1999). These results, along with other similar
studies (Bo et al., 2013; Chen and Vunjak-Novakovic, 2019),
sustain the idea that IPC or in vitro hypoxia preconditioning
could be key for increasing the success of TE therapies.

Rigid scaffolds and IRI have not been studied significantly
to include them here. However, this does not imply that such
platforms could not be useful in the field. Rigid porous scaffolds
are commonly studied in TE, as these provide adequate mimicry
for bone implants. Furthermore, models for bone diseases
research and bone IRI models/implants could be established
with such materials. Between these materials, graphene and bio-
inspired ceramics, e.g., bioactive glass, β-tricalcium phosphate,
hydroxyapatite, calcium silicate, etc., are commonly studied (Oh
et al., 2010).

Although traditional scaffold manufacturing techniques
have been successful in providing numerous solutions
and tissue-mimicry, the difficulty to scale fully functional
scaffold-based organs for critical-size therapy is still
in demand. In order to disentangle the true potential
of scaffold-based models, it is fundamental to address
the challenges that arise. These include adequate inner
architecture (controlled pore size, porosity, tortuosity, and
pre-vasculatures), mass transport properties, full-thickness,

external shape-accuracy, and mechanical properties (Gao et al.,
2014).

3D BIOPRINTED SCAFFOLDS AND IRI

Undoubtedly, the search for the perfect tissue-mimicry would
require a technique able to solve the mentioned challenges;
3D bioprinting seems to be the adequate technology for the
task. Bioprinting is the assembly of 3D arrangements with
cell-laden biomaterials in defined architectures in a layer-
by-layer approach. It is a versatile additive manufacturing-
based tool which allows the production of heterogeneous
scaffolds with high resolution and control, that is based
on computer-aided design models (CAD) and on patient
imaging. It allows the manufacture of constructs that assume
the external shape of tissues and organs, with their internal
structure and pore microarchitecture (Chan and Leong, 2008).
In addition, bioprinting allows certain regulation over the
transport properties of scaffolds throughout the selection of
materials and curing methods. Moreover, by tailoring multi-
material composite geometries with defined pores (defined
pore quantity, tortuosity, and size), microchannels and/or
regions with different densities and multiple tissue-specific
features can be achieved (Chan and Leong, 2008). In addition,
different deposition methods provide versatility, including inkjet
bioprinting, extrusion bioprinting, laser-assisted bioprinting,
multiphoton excitation based fabrication, spheroid extrusion,
spheroid bio-assembly, and 4D bioprinting, the use of stimuli-
responsive materials (Mohanty et al., 2016).

Since the creation of this technique ∼15 years ago, it has
been used as a platform to generate functional tissue models to
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study regeneration, for drug screening, and as a disease model.
Nonetheless, it has yet to be established as a platform to study
IRI. Numerous research groups have been working to establish
bioprinted platforms, especially in regenerative medicine and
cancer research, to create clinically accurate ex vivo tissues and
tumor models of different tissues. Their efforts have produced
studies related to neovascularization, hypoxia, as well as oxygen-
releasing scaffolds (Farina et al., 2017; Ong et al., 2018; Erdem
et al., 2020; Sun et al., 2020), that support the idea that bioprinting
could improve IRI models tissue-mimicry, especially to minimize
preclinical trials.

MICROFLUIDIC
SYSTEMS/BIOREACTORS/ORGAN-ON-A-
CHIP AND IRI

In order to unravel the entire potential of the TE approach
and its full-fledged contribution to support IRI studies, it is
fundamental to cater to yet another extra layer of mimicry.
Hitherto, it has been established as a platform that considers
the cellular material involved in IRI, the microarchitecture for
these cells to inhabit and the interactions these cells would
have in this synthetic residence. The last frontier in mimicry
would be placing these neo-tissues in a system that depicts
the normal macroscopic or global Interorgan communication,
as well as the blood flow. This, then, provides a holistic
model that recapitulates all aspects of physiological IRI, in
patient-derived models, with the capability to provide the
homeostasis of healthy tissue, and the hypoxia and reoxygenation
involved in IRI. In Figure 6, schematics portraying the global
interactions of tissues are shown. This level of interactions
could be implemented with media perfusion and the delivery
of controlled culture conditions and biophysical cues. Media
perfusion could be accomplished by employing microfluidic
devices; while the delivery of controlled conditions and signals
by the use of bioreactors. This induces cues through scaffolds
that mimic interorgan interactions, blood flow, blood flow-
induced shear stress, and providing yet another source of
local transport properties tunning, i.e., oxygen and nutrients.
Additionally, this setting allows waste removal of the culture
(Giraud et al., 2020). Perfusion could be performed through
an open or a closed loop system, as well as throughout gas
permeable tubes. Oxygenators and/or gas-permeable membranes
could be provided for better oxygenation. Flow mode could
be modulated to be steady, pulsatile, or oscillated. These, then
produce dynamic shear stress, hydrostatic pressure, mechanical
modulation of SCs, and tailored diffusivity (Adamo and García-
Cardeña, 2011; Estrada et al., 2011; Ali et al., 2020). In addition,
biophysical cues, such as optic and magnetic/electric, could be
provided to culture chambers to further influence SCs fate (Wang
et al., 2020). This consequently minimize the use of expensive
biochemical signals. One related model was established by Chen
and Vunjak-Novakovic; it was used for the study of human
myocardial IRI (Bo et al., 2013). The model utilized hydrogel-
encapsulated hIPS-differentiated cardiomyocytes cultured in a
tissue engineering bioreactor. Their study managed to mimic

IRI, showing through cell death, histology, immunostaining,
and western blot how ischemia damaged the established normal
tissue and how reperfusion further increased the damage. In
this setting, different cardioprotective strategies were evaluated.
A similar study which used bioreactor-based IRI models was
able to recapitulate important hallmarks of IRI, considering
cardiomyocyte viability, disruption of cellular ultrastructure,
angiogenic potential and secretion of key proangiogenic,
and pro-inflammatory cytokines. Furthermore, quantitative
whole-proteome analysis was performed to assess the injury,
upregulation of proteins associated with migration, proliferation,
paracrine signaling, and stress response-related pathways; these
were observed when compared with the control condition
(Sebastião et al., 2020).

Establishing a platform like the ones described above,
especially when sizeable or bioprinted scaffolds are used,
could require large quantities of biological materials, more
so cues could be very time-consuming and expensive. Thus,
its application in patient-specific studies could be challenging;
rendering this platform is mostly useful for long-term research
projects. Organ-on-a-chip technologies, or multi-channeled 3D
microfluidic cell culture chips, can be provided with all the
aforementioned in a micro-sized setting. Thus, these are able
to deliver patient-specific whole-organ functionality devices
in a fast-paced, more reproducible, and cheaper pipeline,
compared with bioreactors. This platform would provide an
adequate platform for the assessment of the effect of target
drugs or treatments for IRI. Such a strategy has been used
to establish a porcine cardiomyocytes-based heart-chip able
to assess the effect of shear stress in IRI (Khanal et al.,
2011). The setting was able to provide the tissue with an
ischemic state, to then deliver reperfusion in a controlled
manner. The study followed mitochondrial membrane potential,
early-stage apoptosis, cell adhesion, and morphology of cells.
A cycle of 4 h-long ischemia, followed by a 2 h-period of
reperfusion, produced the cell blebbing formation typically seen
in physiological IRI.

In another study, a microfluidic IRI model was established
utilizing a vascular compartment containing human endothelial
cells, which allowed its obstruction with human blood clots and
then its re-perfusion via thrombolytic treatment (Nemcovsky
Amar et al., 2019). This novel IRI model provided an ischemia
and reperfusion mechanism closely related to what is seen
in vivo. Thus, it represents a key feature to include in
future embolic based IRI models. Such design assets could
allow in the future the better understanding of IRI and the
potential service as platforms for the development of novel
therapeutic methodologies.

In general, multi-channeled chips can be established to
assess several treatments in a single experiment. As such, these
represent a very interesting scenery for the study of patient-
specific IRI and a simplified version of the full-size bioreactor
pipeline. Both settings represent the staple technologies that TE
could deliver to serve the purpose of IRI research.

See Table 1 for a summary of the presented
strategies, and the technological approaches to enhance
their success.
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TABLE 1 | Summary of none-scaffold- and scaffold-based strategies and the technological approaches to enhance their success.

None-scaffold-based

Exploit the cell-to-cell adhesion features of SCs. Cells form 3D constructs which lack any type of anchorage medium and are mainly comprised of ECM.

Spheroids

Micro-size cell aggregates.

None-anchorage medium.

Spheroid size affects oxygen availability.

Pros: Cons:

Adequate for single-cell, short-term cultures,

For molecular evaluation, and drug screening.

Scalability, reproducibility, and minimize manual-handling.

Not adequate for long-term culture, and/or for multi-cellular approaches.

Formation of heterogeneous environments,

uncontrolled oxygen/nutrient gradients,

inconsistent proliferation slopes,

and necrotic areas.

Critical thickness for viable spheroid culture has been established around 150–200 um, and up to 25 days-long.

Scaffold-based

Cells are grown and developed anchored to 3D ECM-like constructs.

Template for normal cell-cell interactions, cell-ECM interactions.

Specific mass transfer coefficient for nutrients, and signal delivery

Organoids

Self-organized 3D scaffold.

Simpler, miniature version of a tissue.

Closest models to the spheroid.

Pros: Cons:

Multicellular, long-term cultures.

Formation of specific micro-anatomical features.

Scalability, reproducibility, and minimize manual-handling.

Shape, size, internal structure, and interactions are not true to tissues.

tissue-homeostasis and in vivo principles are not fulfilled properly.

Cell-constructs with unsatisfactory cell density, fate, and heterogeneity.

Unmatched mass transport properties.

Lack of vascularization.

Lack of interorgan communication.

(Continued)
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TABLE 1 | Continued

Critical thickness for viable organoid culture has been established around 400–450 um, and up to 1.5 years-long, forming basic mini-tissue-features

(e.g., crypt-villus physiology)

Sizable scaffolds

Provide shape, internal structure, pore architecture, mechanical

properties, and a place for neovascularization.

Functionalisation.

Pros: Cons:

Multicellular, long-term cultures.

Formation of anatomical features.

Soft, rigid, or composite materials.

Allows to provide controlled heterogeneity

Less scalability, reproducibility.

More manual-handling.

Cells grow slower due to impeded transport properties and interactions

Critical thickness and duration of culture are defined specifically by the macrostructure of the construct and application, formation of multiple tissue-features,

and potentially full-organs.

Strategies that improve mimicry

Complex sizable scaffolds require technology

3D Bioprinting Bioreactors Microfluidics

Assembly of cell-laden multi-material heterogenous scaffolds

Defined architectures in a layer-by-layer approach.

High resolution, and control

CAD models/ patient imaging.

External shape, with internal structure.

Systems that emulate the macroscopic/global Interorgan communication, as well as the blood flow.

Holistic models that recapitulate all aspects of physiological IRI

Hypoxia, and reoxygenation involved in IRI

FINAL REMARKS AND CONCLUSIONS

Comparisons between the 2D and 3D platforms have
systematically given credit to the postulate that 3D environments
provide a better-matched mimicry to the in vivo tissues. The
same can be said for dynamic culture over static culture. This
is a novel platform to tackle with in vitro IRI protocols. As
such, there is plenty of space for future research and many
aspects of this condition have to be addressed. In particular, to

address the consideration of the unique aspects of IRI associated
with different organs, as well as multiorgan responses. Tissue
engineering has made sufficient research to provide tissue-
mimics that could be adjusted to research IRI and its organ-
and tissue-specific aspects. Selection of cells, scaffold materials,
and differentiation cues represent a start. In addition, different
types of research call for providing platforms with akin levels of
complexity. Spheroids could be used to perform fast screening
studies for patients in a clinical setting, while organoids could
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bring an extra layer of mimicry for longer studies that require
cellular heterogeneity. More intricacy could be provided through
the design of internally- and externally-accurate composite
scaffolds, allowing the highest level of mimicry while providing
a template for angiogenesis. In addition, an ex vivo ischemia
and reperfusion onset that resembles the in vivo homologous
condition has to be established through hypoxia and normoxia
culture cycles. A strategy combining bioprinting, culture
chambers, and microfluidic systems would allow the delivery
of closer-to-physiology devices and increase the sophistication
of the fundamental research that the in vitro setting could
provide. This strategy would provide both tailor-made and
off-the-shelf organs that could be stored in cell banks to be
ready-available for treatments, and research on demand (Sato
and Clevers, 2013). Through this review, different settings were
able to address different research outcomes, as well as different
IRI platforms for different tissues have been discussed. Thus,
establishing the great level of customizability that follows the TE
bid on IRI. However, the flexibility it presents, along with the

heterogeneity of all the organs that can suffer IRI, is concomitant
with innumerable design choices, cell, and biomaterial selection,
type of scaffold, biological, and physical cues, fluid flow profiles,
etc. Henceforth, thorough testing to ensure reproducibility,
quality, and safety of the products has to be done, and specific
configurations for each tissue/organ have to be established.
Medical devices must adhere to stringent regulatory frameworks
and quality standards of production to translate into future
clinical therapeutics/therapies.
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GLOSSARY

ATP, Adenosine triphosphate; ROS, Reactive oxygen species;
NRS, Reactive nitrogen species; IRI, Ischemia-reperfusion injury;
NO, Nitric oxide; TE, Tissue engineering; MAPK, Mitogen-
activated protein kinase; NFκB, Nuclear factor kappa-light-
chain-enhancer of activated B cells; ERK1/2, Extracellular signal-
regulated kinase ½; JNKs, c-Jun N-terminal kinases; HIF,
Hypoxia inducible factor; PAS, Per-ARNT-Sim; ODD, Oxygen-
dependent degradation domain; PHD-2, Proline-hydroxylase-
2; TAD, Transactivation domains; VEGF, Vascular endothelial
growth factor; PKC, Protein kinase C; NADPH, Nicotinamide
adenine dinucleotide phosphate; NOX, NADPH oxidase; AMPK,
AMP-activated protein kinase; NOS, Nitric oxide synthase;
Dusp, Dual-specificity phosphatase; Adm, Adriamycin; IL-1b,
Interleukin 1 beta; EGF, Epidermal growth factor; Hbegf,
Heparin-binding EGF-like growth factor; Socs3, Suppressor of
cytokine signaling 3; Cos2, Costal2; NFκbiz, NFκB inhibitor, zeta;
Btg2, BTG Anti-Proliferation Factor 2; Rhob, Rho-related GTP-
binding protein; Tfpi2, Tissue factor pathway Inhibitor 2; Verge,
Vascular early response gene; Plk2, Serine/threonine polo like
kinase 2; Kif6, Kinesin family member 6; Nr4a1, Nuclear receptor
subfamily 4 group A member 1; Jun, Transcriptional factor Jun;
JunB, Transcriptional factor JunB; Fos, Transcriptional factor
Fos; Atf3, Activating Transcription Factor 3; ERK5, Extracellular
signal-regulated kinase 5; p38, Protein kinase p38; JNK, Jun
n-terminal kinase.
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