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Diabetes and heart failure, as important global issues, cause substantial expenses to
countries and medical systems because of the morbidity and mortality rates. Most
people with diabetes suffer from type 2 diabetes, which has an amplifying effect on
the prevalence and severity of many health problems such as stroke, neuropathy,
retinopathy, kidney injuries, and cardiovascular disease. Type 2 diabetes is one of
the cornerstones of heart failure, another health epidemic, with 44% prevalence.
Therefore, finding and targeting specific molecular and cellular pathways involved in
the pathophysiology of each disease, either in diagnosis or treatment, will be beneficial.
For diabetic cardiomyopathy, there are several mechanisms through which clinical heart
failure is developed; oxidative stress with mediation of reactive oxygen species (ROS),
reduced myocardial perfusion due to endothelial dysfunction, autonomic dysfunction,
and metabolic changes, such as impaired glucose levels caused by insulin resistance,
are the four main mechanisms. In the field of oxidative stress, advanced glycation end
products (AGEs), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) are the key mediators that new omics-driven methods
can target. Besides, diabetes can affect myocardial function by impairing calcium
(Ca) homeostasis, the mechanism in which reduced protein phosphatase 1 (PP1),
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and phosphorylated
SERCA2a expressions are the main effectors. This article reviewed the recent omics-
driven discoveries in the diagnosis and treatment of type 2 diabetes and heart failure
with focus on the common molecular mechanisms.

Keywords: diabetes mellitus type 2, heart failure, diabetic cardiomyopathies, metabolomics, oxidative stress

INTRODUCTION

Diabetes mellitus is defined as a major metabolic disorder that is associated with considerable and
long-term microvascular and macrovascular complications (Adeghate and Singh, 2014). Herein,
heart failure (HF) has been identified in patients with diabetes since 1876 (Lee et al., 2019).
Indeed, cardiovascular (CV) disease is a primary cause of disability and death due to diabetes
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(Boudina and Abel, 2010). “Diabetic cardiomyopathy” (DC)
can be manifested by diastolic dysfunction, cardiomyocyte
hypertrophy, and apoptosis along with myocardial fibrosis
(Huynh et al., 2014). Moreover, DC contributes to the higher
incidence of HF in patients with diabetes (Aneja et al., 2008).
Among different underlying mechanisms that are common
between type 2 diabetes mellitus (T2DM) and HF, oxidative stress
is a key contributor. Coenzyme Q (CoQ)10 supplementation
and gene therapy, as well as targeting cardiac phosphoinositide-
3-kinase (PI3K) (p110α) signaling, protein kinase-C (PKC)
signaling, and dysregulated microRNAs (miRNAs), are newer
promising therapeutic approaches (Huynh et al., 2014). On the
other hand, the development of high-throughput techniques
utilizing multi-omics data have provided a holistic study on
complex biological processes, especially in disease subtyping
and providing biomarkers (Subramanian et al., 2020). Although
there are some challenges in utilizing multi-omics technologies,
they are currently being used to uncover underlying biological
pathways of disorder and molecular basis of complex phenotypes
at different dimensions (Chakraborty et al., 2018), which are
applied in different disorders such as cancer (Chaudhary et al.,
2018; Yoo et al., 2018), CV diseases (V et al., 2015; Leon-
Mimila et al., 2019), and diabetes. In this review, we first
stated different aspects of T2DM as a chronic lifelong disease
through its clinical features, consequences, epidemiology, and
prognosis, especially concomitant with HF and CV events.
Then, we explained the coexistence of T2DM and HF, focusing
on their common underlying pathways. Lastly, we introduced
omics studies as promising therapeutic technologies particularly
targeting common mechanisms of these two major disorders.

T2DM: A CHRONIC LIFELONG DISEASE

Diabetes mellitus is an old human disorder that was first
mentioned about 3,000 years ago. T2DM, the most common
type of DM, was first reported in 1988 as part of metabolic
syndrome (Olokoba et al., 2012). It is an important cause of
mortality because of its associated CV complications and several
other pathogenetic disturbances (Blaslov et al., 2018). Age, race,
and ethnicity as well as physical activity, diet, and smoking can
be linked to T2DM etiologies (Sami et al., 2017). However, the
underlying direct pathological mechanism of T2DM is complex

Abbreviations: ACE, angiotensin converting enzyme; AGEs, advanced glycation
end products; AIF, apoptosis-inducing factor; ATP, adenosine triphosphate;
BPIFB4, bactericidal/permeability-increasing fold-containing family B member
4 (BPIFB4); CAN, cardiac autonomic neuropathy; CK, creatine kinase; CoQ,
coenzyme Q; CV, cardiovascular; DM, diabetes mellitus; ER, endoplasmic
reticulum; FA, fatty acids; GWASs, genome-wide association studies; HbA1c,
hemoglobin A1c; HF, heart failure; IGF-1, insulin-like growth factor 1; IL,
interleukin; LAV, longevity-associated variant; MiRNAs, microRNAs; MS, mass
spectrometry; NMR, nuclear magnetic resonance; NADPH, nicotinamide adenine
dinucleotide phosphate; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; NO, nitric oxide; NOX, nicotinamide adenine dinucleotide
phosphate- oxidases; O-GlcNAc, O-linked N-acetylglucosamine; PARP-1, poly
[ADP-ribose] polymerase 1; PI3K, phosphoinositide 3-kinase; PKA, protein kinase
a; PKC, protein kinase c; PP1, protein phosphatase 1; RAAS, rennin-angiotensin-
aldosterone system; RNS, reactive nitrogen species; ROS, reactive oxygen species;
SR, sacoplasmic reticulum; T2DM, type 2 DM; TNF tumor necrosis factor.

and has many different elements (Leahy, 2005). More knowledge
of the pathophysiological mechanisms of T2DM can lead to
better prediction, earlier diagnosis, and improved therapeutic
approaches (Ma et al., 2018). Some other features of T2DM
regarding its clinical characteristics, consequences, prognosis,
and epidemiological aspects are explained in the next subsections.

Clinical Features and Consequences
First, there are some metabolic, genetic, and environmental
risk factors that predispose individuals to T2DM. Overweight,
CV events, hypertension, and dyslipidemia are some of the
important risk factors for T2DM (Fletcher et al., 2002; Vijan,
2010). T2DM diagnosis can be performed by the measurement of
venous plasma glucose and hemoglobin A1c (HbA1c), which are
standardized and quality-assured laboratory approaches (Kerner
and Brückel, 2014). As stated, most patients with diabetes have
the T2DM form of the disease, which can have an asymptomatic
and latent period of sub-clinical stages (DeFronzo et al., 2015).
However, T2DM at very high stages of hyperglycemia can be
accompanied by some symptoms such as polyuria, polydipsia,
and polyphagia, which are classic symptoms of the disease
(Ramachandran, 2014). Diabetes has a mentionable association
with microvascular and macrovascular complications that can
lead to organ damage (Cade, 2008; Chatterjee et al., 2017).
It should be stated that cardiovascular autonomic neuropathy
(CAN) has a major role in diabetic autonomic neuropathy
complications (Vinik et al., 2003). Also, endothelium dysfunction
due to DM can lead to other CV events, which predominantly
affect coronary, peripheral, and carotid arteries (Stolar and
Chilton, 2003). It is mentioned that intensive glycemic control
has lesser effect on macrovascular complications compared with
microvascular sequelae (Chatterjee et al., 2017).

Epidemiology and Prognosis
Diabetes mellitus as an epidemic of the century along with its
accompanying complications has a major global health impact
on economies. The number of patients with DM has quadrupled
globally over the last three decades, making it a major concern
worldwide. This estimation is predicted to rise even to 642 million
by 2040 (Zheng et al., 2018). The significantly high burden of
the disease can be seen in some specific regions of the world
(island states of the Pacific, Western Europe) (Khan et al., 2020).
CV complications are mentioned to be the major reasons for
morbidity and mortality due to DM (Zheng et al., 2018). It has
been estimated that 1% higher glycosylation of Hb is associated
with about 8% higher risk for HF (Cas et al., 2015). HF can be
mentioned as an independent risk factor for developing T2DM
(Bell and Goncalves, 2019), and patients with diabetes are also at
higher risk for HF development following myocardial infarction
(Stone et al., 1989). Thus, the increased prevalence of HF can
be seen in patients with diabetes along with worse prognosis
(Lehrke and Marx, 2017; Norhammar et al., 2017; Zareini et al.,
2018; Bell and Goncalves, 2019). Diabetes can also lead to worse
outcomes of acute coronary syndromes in the early and late
stages of the disease (Beckman et al., 2002). Moreover, other
mentioned macrovascular and microvascular complications of
DM can also result in death and reduce the quality of life through
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blindness, kidney failure, peripheral neuropathy, and several
other consequences (Bailes, 2002; Cole and Florez, 2020). T2DM
prevalence and incidence are still increasing, to which serious
attention should be paid because of its severe consequences
(Khan et al., 2020).

COEXISTENCE OF T2DM AND HF

Heart failure is a life-threatening clinical syndrome in which
the heart is unable to provide blood flow sufficiently and could
not meet metabolic requirements (Kemp and Conte, 2012).
Pathogenesis mechanisms of HF in diabetes can be related
to hypertension, cardiotoxic tetrad related to coronary artery
disease, and extracellular fluid volume expansion (Gilbert and
Krum, 2015). “DC” is the term that is used for the presence
of myocardial dysfunction in the absence of CV associated risk
factors (Lehrke and Marx, 2017). The metabolism, function, and
structure of the cardiac system may be affected by the underlying
pathways of both diabetes and HF (Wallner et al., 2018). In the
early stages of DC, structure and morphology changes are not
considerable, but in the late stages, both systolic and diastolic
function may be affected with greater increases in size and wall
thickness of the left ventricular mass (Jia et al., 2016). In the next
subsections, diabetes and HF as two major diseases are brought
together considering their common mechanisms and underlying
molecular pathways (Figure 1).

Impaired Cardiac Glucose Metabolism
Hyperglycemia is mentioned to have important roles in
triggering molecular and cellular pathways of diabetes (Mortuza
and Chakrabarti, 2014; Borghetti et al., 2018). According to
many reports, diabetes can cause abnormalities in the heart
tissue directly without the necessity of vascular defects. In a
diabetic state, impairments in glucose uptake and glycolysis
and abnormalities in pyruvate oxidation, along with impairment
of insulin function, can promote lipolysis and fatty acid (FA)
release from adipose tissues. Thus, these events could lead to
the development of cardiomyopathy because of the adaption
of cardiac muscle to exclusive utilization of FA for ATP
generation (An and Rodrigues, 2006). Indeed, accumulation of
FA and lipotoxicity can affect heart function due to altered
lipid signaling (Maisch et al., 2011). Taken together, higher FA
metabolism, decreased amount of protective glucose metabolism,
and insulin resistance along with neurohumoral activation can
lead to some perturbations in myocardial energetic functions
(Salabei et al., 2016). Also, activation of other pathways, such
as increased polyol flux, increased advanced glycation end
products (AGEs), and higher activity of PKC, in addition
to higher mitochondrial dysfunction and oxidative stress can
lead to the development of DC as a result of hyperglycemia.
The induction of O-linked N-acetylglucosamine (O-GlcNAc)
modification (through increased hexosamine pathway) may
result in altered Ca2+ sensitivity and cycling and, thus, impaired
cardiac protein contractility (Brahma et al., 2017; Kaludercic
and Di Lisa, 2020). Also, several studies have also suggested
the effects of hyperglycemia in inducing apoptotic cell death

(Cai et al., 2002). All events of glucose metabolism are related
to higher oxidative stress, which contains the basis metabolic
impairments of DC (Mandavia et al., 2013), which is explained
in the following section.

Altered Oxidative Stress
Oxidative stress is stated as one of the most important causes
for DC pathophysiology, which contributes to both onset and
complications of diabetes (Khullar et al., 2010; Liu et al., 2014;
Ding et al., 2019). Increased production of ROS and reactive
nitrogen species (RNS) in mitochondria can be derived from
hyperglycemia in both main types of diabetes. Also, lack of
insulin-mediated glucose metabolism can result in increased
FA concentrations that can cause higher production of ROS
from nicotinamide-adenine-dinucleotide-phosphate (NADPH)-
oxidases (NOX). The activation of NOX results in higher
production of superoxide, which, in combination with nitric
oxide (NO), can produce damaging peroxynitrite (Liu et al.,
2014). Indeed, transport of FA through CD36 can activate PKC-
2β, leading to NOX2 activation and promoting recruitment of
NOX2 catalytic subunits, and superoxide production, inducing
a positive feedback loop of ROS production (Hansen et al.,
2018). Cardiac dysfunction can be also related to mitochondria
uncoupling along with mitochondrial-electron transport chain
leakage. Also, the activation of PKC, xanthine oxidase, and
lipoxygenases has a role in ROS production in a diabetic
heart (Varma et al., 2018). PKC-dependent activation of the
reduced form of NADPH has roles in inducing cellular ROS
(Lee et al., 2004). Indeed, promoting recruitment of NOX2
catalytic subunits and superoxide production have positive effects
on ROS production (Hansen et al., 2018). Activation of GTP-
binding protein Rac-1 takes part in this induced NAD(P)H
oxidase activation (Inoguchi et al., 2003). Xanthine oxidase, a
cytoplasmic enzyme, catalyzes the oxidation of hypoxanthine
and xanthine (its substrates) to uric acid utilizing O2 (as an
electron acceptor), leading to O2

− and H2O2 production. This
may present as an important source of ROS production in
cardiomyocytes (Kayama et al., 2015). Lipoxygenases contain
lipid-peroxidizing enzymes that form hydroperoxy derivatives
by oxidizing free and esterified polyunsaturated FAs (Kühn
and O’Donnell, 2006). Herein, oxidative damage of proteins,
lipids, and DNA resulted from an imbalance in ROS production
(Varma et al., 2018). Other abnormalities associated with
ROS production include some dysfunctions in (Na,K)-ATPase,
Ca2+ ATPase, and pump activities in addition to depressed
creatine kinase (CK) activities of the heart. On the other
hand, in diabetic rats, CoQ, which has a potential antioxidant
activity, is shown to be decreased (particularly CoQ9 and
CoQ10) in cardiac mitochondria (Cai and Kang, 2001).
Additionally, toxic molecules in the oxidative stress state
affect Ca2+ handling and subcellular remodeling. Impaired
left ventricular function can be the result of decreased Ca2+
sensitivity, reduced sarco(endo)plasmic reticulum Ca2+ -ATPase
(SERCA2a) activity, and shifting myosin heavy chain. All of
these could as a result lead to DC (Trost et al., 2002; Suarez
et al., 2008; Goyal and Mehta, 2013; Zarain-Herzberg et al.,
2014). The SERCA pump plays a part in muscle relaxation

Frontiers in Physiology | www.frontiersin.org 3 August 2021 | Volume 12 | Article 705424

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705424 August 6, 2021 Time: 11:3 # 4

Tayanloo-Beik et al. Diabetes and Heart Failure

FIGURE 1 | Underlying pathways of diabetic cardiomyopathy. Impaired cardiac glucose metabolism (Mortuza and Chakrabarti, 2014), altered oxidative stress
(Khullar et al., 2010), cellular damage (Cai and Kang, 2003), and autonomic dysfunction are the main pathological mechanisms that are common between T2DM
and HF (Rodriguez-Saldana, 2019). Several other alterations, such as hyperglycemia, hyperlipidemia, hyperinsulinemia (Borghetti et al., 2018), higher AGEs,
increased PKC activity (Brahma et al., 2017; Kaludercic and Di Lisa, 2020), FA accumulation, lipotoxicity (Maisch et al., 2011), damaged endothelial cell layer,
attraction of inflammatory responses (IL-6, TNFα) (Lorenzo et al., 2011), higher NF-κB activity (Faria and Persaud, 2017), dysfunctions in (Na,K)-ATPase, Ca2+
ATPase, and pump activities, depressed CK activities (Cai and Kang, 2001), increased levels of ROS, RNS, NOX (Liu et al., 2014), mitochondria dysfunction (Varma
et al., 2018), ER stress, hypertrophy and necrosis of myocytes (Jia et al., 2018), PARP-1 activation, increased angiotensin II, and IGF-1 impairment, are also related
to these pathways (Bugger and Abel, 2014). These alterations can lead to diabetic cardiomyopathy as a result. HF, heart failure; AGEs, advanced glycation end
products; ATP, adenosine triphosphate; CK, creatine kinase; ER, endoplasmic reticulum; FA, fatty acids; IGF-1, insulin-like growth factor 1; IL, interleukin; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; NOX, nicotinamide adenine dinucleotide phosphate-oxidases; PARP-1, poly [ADP-ribose] polymerase
1; PKC, protein kinase C; RNS, reactive nitrogen species; ROS, reactive oxygen species; T2DM, type 2 DM; TNF, tumor necrosis factor.

by means of lowering Ca2+ and also in restoration of
sarcoplasmic reticulum (SR) Ca2+ load for muscle contraction.
SERCA2a pump function is affected by inhibitory peptide
phospholamban. Increasing the levels of this inhibitory function
along with higher activity of protein phosphatase 1 (PP1)
may result in inactivation/dephosphorylation of protein kinase
A (PKA) targets related to SR Ca2+ uptake dysfunctions
(Lipskaia et al., 2010; Zarain-Herzberg et al., 2014). On
the other hand, increased ROS along with higher glucose
levels and lipid changes leads to damaged endothelial layer

and attraction of inflammatory responses. Cytokines such as
interleukins (IL)-6 and tumor necrosis factor (TNF)α, adhesion
molecules, and angiotensin-II are released from the endothelial
cell layer, which causes migration of more leukocytes to
subendothelial layers of inflammation. It could result in fibrosis
and atherosclerotic plaque in which nuclear-factor kappa-light-
chain-enhancer of activated B cells (NF-κB) has an important
regulatory role (Lorenzo et al., 2011). Thus, NF-Kb can also
be activated following oxidative stress, which causes cardiac
fibrosis and hypertrophy. It can also lead to inflammation and
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excessive oxidative stress related to DNA and membrane injury
(Faria and Persaud, 2017).

Cellular Damage
Myocardial cell death has important effects on the
pathophysiology of different cardiomyopathies, such as
endothelial dysfunction, myocardial infarction, and DC. In
this regard, ROS and RNS have important roles in inducing
different apoptotic signaling pathways (Cai and Kang, 2003).
Also, biochemical changes such as hyperglycemia in DC can
lead to thickening of capillary-basement membrane as well as
hypertrophy and necrosis of myocytes (Farhangkhoee et al.,
2006). On the other hand, endoplasmic reticulum (ER) stress
can result in unfolded protein reaction and its proteasomal
degradation. ER stress could promote apoptosis and cellular
damage and lower the function of sarcoplasmic reticulum-
calcium pump, which takes part in Ca2+ sequestration (Yang
et al., 2015; Jia et al., 2016). Indeed, ER stress in combination
with oxidative stress and impaired calcium handling may
lead to apoptosis, autophagy, and cellular necrosis (Jia et al.,
2018). Moreover, normal autophagy can be affected by some
impairments of autophagosome and lysosome fusion, which
influences both the diastolic and systolic functions of the diabetic
heart (Xie et al., 2011). The renin-angiotensin-aldosterone
system (RAAS) also has notable roles in the progression of DC
through higher oxidative damage along with cellular necrosis
and apoptosis of diabetic heart (Murarka and Movahed, 2010).
On the other hand, apoptotic cell death can be explained by
higher inflammatory cytokines as well as Fas receptor-dependent
apoptosis pathways. Excessive activation of poly [ADP-ribose]
polymerase 1 (PARP-1) and impairment of insulin-like growth
factor 1 (IGF-1), in addition to higher levels of angiotensin II,
can also induce cellular necrosis pathways (Bugger and Abel,
2014). It should be noted that PARP-1 is involved in different
physiological pathways such as cell death and DNA repair.
Impaired DNA can activate PARP-1, which results in the cleaving
of NAD+ into nicotinamide and ADP-ribose. Overactivation
of PARP-1 can lead to irreversible cytotoxicity, cellular damage,
and even death as a result of higher NAD+ and ATP depletion
(Qin et al., 2016). On the other hand, caspase-independent cell
death can be triggered by this enzyme, termed parthanatos,
which is mentioned to be distinct from apoptosis/necrosis (or
autophagy). This PARP-1-mediated cell death can be induced
by apoptosis-inducing factor (AIF) nuclear translocation
(Bugger and Abel, 2014).

Autonomic Dysfunction
Cardiovascular autonomic dysfunction can be defined as
impaired autonomic control of the CV system in the diabetic
state when other causes are excluded. Damages to nerve
fibers can cause this abnormality of the CV system. There
are several interactions of pathogenic pathways that have
roles in CAN in which hyperglycemia is introduced as a
major and initial cause. Oxidative/nitrosative stress, ER stress,
impaired mitochondrial function and membrane permeability,
inflammation, and calcium imbalance can be involved in
this CAN pathway (Rodriguez-Saldana, 2019). Taken together,

autonomic diabetic neuropathy as an important complication
of DM can affect different organs (especially the CV system).
As mentioned earlier, CAN can cause some clinical/functional
manifestations that can be brought about by some alterations
in vascular dynamics and uncontrolled heart rate (Flotats and
Carrió, 2010). Hypertension, exercise intolerance, QT interval
prolongation, and higher arterial stiffness are also associated with
CAN. The peripheral vascular function can be also affected by this
autonomic process (Rodriguez-Saldana, 2019). This autonomic
dysfunction can predict CV risk and contributes to poor
prognosis, higher mortality rates, and sudden death (Flotats and
Carrió, 2010; Stables et al., 2013; Vinik et al., 2013). It has been
found that there is an association between the dysfunction degree
of the left ventricle and levels of cardiac autonomic dysfunction
(Poirier et al., 2003). It has also been found that metabolic
factors have important effects on this autonomic process (Valensi
et al., 1997). Indeed, CAN could be seen early in the diabetes
state, which can be a prognostic factor for microangiopathic
complications (Valensi et al., 2003).

BRIEF REVIEW OF OMICS STUDIES

“OMICS” strategies are defined by providing high-throughput
interfaces (in global-unbiased ways) to investigate millions
of markers that represent similar biochemical identities
simultaneously. These technologies can be used to find out
the underlying molecular properties that exist behind complex
phenotypes (Chakraborty et al., 2018; Conesa and Beck,
2019). There are several data types of omics technologies
including genomics, transcriptomics, microbiomics, proteomics,
epigenomics (Hasin et al., 2017; Manzoni et al., 2018), and
metabolomics (Sun and Hu, 2016; Figure 2). Among the omics
technologies, genomics, the most mature field, is the study of
associated genetic variants to identify new therapeutic responses
or disease prognosis. The human genome has important roles
in personalized medicine with the aims of disease treatment
and prevention considering genetic susceptibility (Burke
and Psaty, 2007; Hasin et al., 2017; Ahmed, 2020). In this
regard, the effects of genetic variant knowledge regarding
genome-wide-association-studies (GWASs) along with omics
findings have been found (Akiyama, 2021). Transcriptomics,
another high-throughput technology, is responsible for the
simultaneous examination of defined mRNA species qualitatively
and quantitatively (Hegde et al., 2003). Proteomics is also
another omics-related technology with the ability to examine the
protein content of an organism, tissue, or cell with the aim of
understanding the function or structure of a specific protein. This
technology can be used in various research settings with different
capacities to find diagnostic markers, vaccine production, and
even interpretation of protein pathways of disorders (Aslam
et al., 2017). Herein, large-scale protein characterization in this
high-throughput proteomics strategy may benefit from MS-
based technique (Bruce et al., 2013; Zhang et al., 2014). Moreover,
other related technologies have been found to measure other
biomolecules. For instance, epigenomics (for epigenetic markers)
or metabolomics (for low-molecular-weight metabolites) can
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FIGURE 2 | Multi-omics data. Multi-omics technologies through different layers of omics data (genomics, transcriptomics, microbiomics, proteomics, epigenomics,
and metabolomics) can provide a multidimensional analysis network to develop knowledge of interactive molecular basis and complex underlying pathophysiology of
disorders. Electronic health records, imaging, and other integrative software tools can be helpful in integrative processes (Sun and Hu, 2016; Hasin et al., 2017).

be utilized in these fields (Sun and Hu, 2016). Microbiomics is
another developed omics-related technology that investigates all
different microorganisms simultaneously in a given environment
(Wong et al., 2015; Hasin et al., 2017). Thus, omics technologies
have different layers for a comprehensive study on a specific type
of involvement, whereas human disorders consist of complex
biological processes and diverse metabolic pathways, which
have an interactive molecular basis and are affected by some
environmental factors (Bersanelli et al., 2016; Sun and Hu,
2016). Therefore, these studies are relatively simple for that
kind of analysis (Chen et al., 2012). Multi-omics technologies
can help to achieve a holistic view and information on these
complex mechanisms by studying different layers of omics
information in a multidimensional network simultaneously.
Multi-omics provides an analysis system to develop knowledge
of the underlying interactive molecular basis to determine the
pathophysiology of disorders and their associated longitudinal

effects more accurately (Figure 2; Sun and Hu, 2016). Indeed,
precision medicine may benefit from integrative omics providing
data along with other helpful methods such as electronic health
records, imaging, and other integrative software tools (Huang
et al., 2017). Multi-omics may help to access novel approaches
for diverse phases of the disorder including prevention, early
diagnosis, and treatment. For instance, in the field of cancer
treatment, the comprehensive single-cell survey may be effective
to clarify underlying different biological and molecular basis
finding in regional subdivisions of it (Sun and Hu, 2016).
Integrative omics data derived from the cancer genome atlas
have been shown to be helpful in profiling the druggability of
cancer comprehensively (Sengupta et al., 2018). In addition,
multi-omics data can provide novel approaches targeting drug
resistance, which can be related to personalized medicine (Bock
et al., 2016). In the next part, we are going to explain multi-omics
technologies targeting T2DM and HF as two major human
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disorders in addition to stating five different layers of it, namely,
genomics, metabolomics, transcriptomics, proteomics, and
epigenomics.

MULTI-OMICS STUDIES TARGETING
T2DM AND HF COMMON MECHANISMS

Multi-omics technologies have promoted the knowledge of
pathways of different disorders such as T2DM, obesity, cancer,
and many others. Measurement of some relevant biomolecules
can be helpful in the investigated environment. For instance,
in metabolic disorders, important metabolites such as relevant
biomolecules can reflect metabolic states (Chen et al., 2020).
One of the growing fields for studying different metabolites (low
molecular weight molecules) is metabolomics. Metabolomics
assay techniques such as nuclear magnetic resonance (NMR)
spectroscopy, MS, and chromatography help us to investigate the
expression and posttranslational modification of transcription
factors during different pathologic conditions (Kappel et al.,
2016). Biologically, according to energy requirement, alterations
in cardiac function occur. Herein, systems biology approaches
such as metabolomics provide data to reveal how these
metabolic changes during T2DM affect myocardial redox
function (Cortassa et al., 2020). Indeed, both environmental
influences and individual predisposition could be reflected
by metabolite profiling, which makes it a useful method for
investigating the pathophysiology of different diseases (Padberg
et al., 2014). Herein, a study on multi-omics analysis on T2DM
db/db mice aimed to characterize alterations in cardiac function,
by investigating the effects of transferring longevity-associated-
variant (LAV) of the human bactericidal/permeability-increasing
fold-containing-Family-B member 4 (BPIFB4) gene. It was
shown that alterations in heart lipid metabolism considering
elevated levels of FA, acyl-carnitine, sphingolipid, ceramides,
diacylglycerol, and triacylglycerides were notable metabolic
changes in metabolic phenotyping investigations. Also, they
were associated with impaired mitochondrial function with
exertion of some effects on insulin sensitivity pathways (Faulkner
et al., 2020). According to the results of previous studies,
any disruption in lipid metabolism leads to deleterious effects
on the diabetic heart. Understanding and managing this
complication become possible by lipidomics profiling, which
means observing lipids and providing an insight into their
interactions. Indeed, lipidomics, which quantitatively analyzes
lipids, is considered a subset of metabolomics (Tham et al.,
2018). In recent times, a clear correlation between abnormal
triglyceride accumulation and heart dysfunction, which are
more prevalent in patients with obesity and diabetes, has
been demonstrated. Lipidomics analysis of a diabetic heart
demonstrated the important role of phospholipids in the
development of this pathological condition (Dong et al., 2017).
Lipid classes were also affected by the alterations in some lipid
metabolites of the cellular membrane (glycerophospholipid and
cardiolipin lipid classes), which suggests membrane composition
changes with notable influences on cardiac functions. For
instance, impaired cardiolipins have been shown to contribute to

reduced contractility with effects on the mitochondrial electron-
transport chain. Other associated changes were sarcomere
rearrangement and loss of mitochondrial cristae and matrix
volume (Paradies et al., 2019). One of the proposed mechanisms
between DM and HF is attributed to excess activation of
renin/angiotensin as well as sodium-glucose transporter 2,
which can lead to exacerbation of overload volume in HF.
Increased systemic inflammation is an additional common
mechanism in DM and HF pathogenesis that results in an
exacerbation of cardiac extracellular matrix remodeling and
endothelial dysfunction. Decreased bioavailability of nitric
oxide and microvascular dysfunction are consequences of
hyperglycemia that are accompanied by production of glycated
end products. Impaired function of myocyte mitochondria
occurs following insulin resistance-induced increase in free FA
consumption in the myocardium and toxic lipid intermediates
accumulation (Hanff et al., 2021). Although several data on
cellular and molecular mechanisms underlying cardiovascular
disease have been obtained using genomics analysis techniques,
more promising results are provided by proteomics technology.
Proteomics outcomes together with genomics data broaden the
knowledge of specific pathways involved in heart failure. For
instance, identifying the alterations that occur in association
with mitochondrial energy metabolism, stress response, and
mitochondrial signaling is performed by proteomics. Indeed,
cardiac proteome changes serve as an indicator of DC
and are useful in assessing the consequences of different
therapies for DM complications associated with heart disorders.
Altogether, proteomics approaches have the potential to be
applied in different study disciplines, from animal studies to
cell culture systems, to address different questions (Karthik
et al., 2014). Regarding multi-omics technology, utilizing LAV-
BPIFB4 with stromal cell-derived factor-1/C-X-C chemokine
receptor-type4 dependent effects influences cardiac contractility
of diabetic db/db mice. Mitochondrial metabolism and function
can be affected in this intervention with cardioprotective
effects. RNA-seq analysis has also been performed to find
transcriptional changes in metabolism- and immune-related
genes, but alterations in protein level could not be observed
in the progression of DC, which suggested the limited effects
of metabolic enzyme expression at the time point of the
study. Taken together, this study reveals the possible therapeutic
benefits of LAV-BPIFB4 gene transfer due to its positive
effects on mitochondrial FA handling along with energy
production in treated mice (Faulkner et al., 2020). In the
other multi-omics study, the effects of environmental glucose
levels on the miRNA–mRNA dynamics have been shown by
using high-throughput sequencing and qRT-PCR. The results
suggest that miRNA-mediated gene regulation can be a useful
biomarker for treatment and can promote knowledge of the
development of diabetes (Chen et al., 2020). As mentioned
before, cardiac dysfunction in the diabetic state can be related
to mitochondria uncoupling along with mitochondrial-electron
transport chain leakage (Varma et al., 2018). In this regard, multi-
omics approaches regarding lipidomics and proteomics with
functional investigations can be promising tools to understand
the cause of mitochondria dysfunction and to use the underlying
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knowledge for personalized treatments of different disorders
such as diabetes and HF (Kappler and Lehmann, 2019).
On the other hand, as stated earlier, inflammatory responses
have effects on CAN (Rodriguez-Saldana, 2019). In another

study on the identification of key genes involved in DM, it
was established that underlying immunity and inflammation
pathways have important roles in DM. This analysis using the
Linked Omics database has shown that MMP9 (an important

TABLE 1 | Examples of recently performed multi-omics studies on diabetic heart disease.

Article title Type of studied
disease model

Omics technique Result References

1 Posttranslational modulation of FoxO1
contributes to cardiac remodeling in
post-ischemic heart failure

Acute myocardial
infarction mice model

Metabolomics Post translationally modification
of cardiac FoxO1 by diabetes
and ischemia

Kappel et al.,
2016

2 Quantitative Proteomic Analysis of Diabetes
Mellitus in Heart Failure With Preserved Ejection
Fraction

Proteins with HFpEF
and DM

Proteomics Identifying proteins related to
lipid metabolism, inflammation,
and oxidative stress that are
differentially expressed in
patients with diabetes with
HFpEF

Hanff et al.,
2021

3 A proteomics approach to identify the
differential protein level in cardiac muscle of
diabetic rat

Diabetic rats Proteomics Identifying common
mechanisms linked between
DM and heart disease

Karthik et al.,
2014

4 Investigation of the Protective Effects of
Phlorizin on Diabetic Cardiomyopathy in db/db
Mice by Quantitative Proteomics

db/db diabetic mice Quantitative Proteomics Probable protective effects of
Phlorizin against diabetic
cardiomyopathy

Cai et al., 2013

5 Mitochondrial dysfunction in the type 2 diabetic
heart is associated with alterations in spatially
distinct mitochondrial proteomes

Mitochondrial
dysfunction in T2DM
heart in db/db mice

Quantitative Proteomics Association of mitochondrial
dysfunction in T2DM heart with
specific subcellular locale

Dabkowski
et al., 2010

6 Proteomics of the Rat Myocardium during
Development of Type 2 Diabetes Mellitus
Reveals Progressive Alterations in Major
Metabolic Pathways

Zucker diabetic fatty rat
heart

MS based proteomics Up-regulation of fatty acid
degradation from onset to late
T2DM

Edhager et al.,
2018

7 Multi-proteomic approach to predict specific
cardiovascular events in patients with diabetes
and myocardial infarction: findings from the
EXAMINE trial

Patients with diabetes
and a recent MI

Proteomics Better reclassification and risk
prediction and event, better
targeted treatment decisions
and risk assessment

Ferreira et al.,
2021

8 Changes of myocardial lipidomics profiling in a
rat model of diabetic cardiomyopathy using
UPLC/Q-TOF/MS analysis

Diabetic
cardiomyopathy model
in rats

UPLC/Q-TOF/MS The suggestion of some
changes in lipid biomarkers
involved in hypertrophy of
diabetic cardiomyopathy and
cardiac dysfunction

Dong et al.,
2017

9 Lipidomic Profiles of the Heart and Circulation
in Response to Exercise versus Cardiac
Pathology: A Resource of Potential Biomarkers
and Drug Targets

Mice with physiological
cardiac remodeling

Lipidomics – Highlighting lipid profile
adaptations in response to
training versus pathology

– Providing a resource to
investigate of potential
therapeutic targets and
biomarkers

Tham et al.,
2018

10 Diabetes changes gene expression but not
DNA methylation in cardiac cells

Diabetic mice Transcriptome analysis Revealing differentially regulated
gene programs associated with
diabetes biological processes

Lother et al.,
2021

11 Transcriptomic analysis of the cardiac left
ventricle in a rodent model of diabetic
cardiomyopathy: molecular snapshot of a
severe myocardial disease

Diabetic
cardiomyopathy model
in rats

Transcriptomic analysis Providing a molecular overview
to processes leading to
myocardial disease in diabetes

Glyn-Jones
et al., 2007

12 Cardiac transcriptome profiling of diabetic Akita
mice using microarray and next generation
sequencing

Akita heart model in
mice

Transcriptomic analysis Providing a platform for future
targeted studies to investigate
genes involved in Akita heart
and diabetic cardiomyopathy

Kesherwani
et al., 2017

13 Divergent transcriptomic profiles in skeletal
muscle of diabetics with and without heart
failure

Patients with T2DM Transcriptomic analysis Confirming distinct
transcriptome profiles of
skeletal muscle in DM patients
with and without HF

Wood et al.,
2021

FOXO1, forkhead box O1; HFpEF, heart failure with preserved ejection fraction; T2DM, type 2 diabetes mellitus; HF, heart failure; DM, diabetes mellitus.
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hub gene) can be helpful for the treatment of DM suggests as
an inflammatory regulator in diabetic peripheral neuropathy.
Herein, MMPs have notable effects on immunity responses
by regulating cytokine function (Jian and Yang, 2020). Multi-
omics analysis of integrative data from population-based
genetic analysis, miRNA expression data collection, and DNA
methylation has found several cardiometabolic-related miRNAs,
which have roles in lipid metabolism. These miRNAs could be
also defined as potential biomarkers for the earlier diagnosis of
T2D and CHD or their development pathways. However, more
research studies are needed to explain the connection between
elevated blood glucose and these miRNAs (Mens et al., 2020).
Some of the other studies performed are shown in Table 1.

CONCLUSION AND FUTURE
PERSPECTIVES

Taken together, HF, an important comorbidity/complication of
diabetes, has a high incidence and a high mortality rate in diabetic
patients (Bertoni et al., 2004; Bowes et al., 2019). HF most
commonly occurs following other CV events such as ischemia
and hypertension (Bowes et al., 2019). Patients with DM and
HF have specific manifestations of metabolic, structural, and
neurohormonal abnormalities, which may worsen HF outcomes
(Dei Cas et al., 2015). Alterations in insulin signaling, lipid
accumulation, mitochondrial dysfunction, higher AGEs, and
oxidative stress are some of the underlying mechanisms of this
DC (Tarquini et al., 2011; Voors and van der Horst, 2011),
which were explained before. Herein, lifestyle modification, blood
glucose control, considering and eliminating risk factors for CV
events, and treatment of HF can be helpful to achieve better
outcomes regarding DC (Trachanas et al., 2014). On the other
hand, omics studies have been developed as high-throughput
technologies that have revolutionized medical research. Each
layer of the omics studies can provide an associated list of
differences with the disorder. Data derived from the single layer
of omics data could be used as the biological markers of disease
progression along with providing knowledge about disease
pathways or processes. For instance, in the field of epigenomics,

differentially methylated DNA regions can be helpful as disease
indicators in the different disorders of metabolic syndrome or
CV disease (Kim et al., 2010; Hasin et al., 2017). In addition
to the benefits associated with omics technologies, multi-omics
techniques provide improved and integrated characterization of
biological pathways through different omics layers (Argelaguet
et al., 2018). Drug discovery using omics technologies can be
helpful through non-invasive data collection to manifest disease
progression in order to achieve direct and translatable phenotype
modeling of disorder (mapping disease phenotypes). It could
also show the molecular basis and biomarkers of disorders.
These technologies can also be effective to identify at-risk
individuals, epidemiology, and tailoring cures as personalized
medicine (Cisek et al., 2016). More knowledge of biological
pathways utilizing multi-omics data can reveal the relationship
between a disease and environmental factors. That may lead
to earlier and more accurate diagnosis utilizing biomarkers
of diseases along with more developed pharmacological and
improved interventions for specific groups of patients (Koh
and Hwang, 2019). T2DM and HF as two major disorders
with some common underlying mechanisms that can also
benefit from these advantages of omics/multi-omics approaches
targeting their mentioned common pathways (Faulkner et al.,
2020). Indeed, the development of next-generation sequencing
along with mass-spectrometric techniques strategies provide
large-scale research on whole cellular systems (Chakraborty
et al., 2018). Nevertheless, efficiently utilizing multi-omics data
requires proper data combination of different omics layers as well
as effective bioinformatics strategies and standardized protocol
(Koh and Hwang, 2019). A large amount of data and lack of
related research for prioritizing tools and analysis utilized in
multi-omics approaches, as well as lack of established standards
for data filtering, are other challenges associated with multi-omics
techniques (Subramanian et al., 2020).
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