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Introduction: To date, no study has compared anaerobic capacity (AnC) estimates
computed with the maximal accumulated oxygen deficit (MAOD) method and the gross
energy cost (GEC) method applied to treadmill running exercise.

Purpose: Four different models for estimating anaerobic energy supply during treadmill
running exercise were compared.

Methods: Fifteen endurance-trained recreational athletes performed, after a 10-min
warm-up, five 4-min stages at ∼55–80% of peak oxygen uptake, and a 4-min time trial
(TT). Two linear speed-metabolic rate (MR) regression models were used to estimate
the instantaneous required MR during the TT (MRTT_req), either including (5+YLIN) or
excluding (5-YLIN) a measured Y-intercept. Also, the average GEC (GECAVG) based on
all five submaximal stages, or the GEC based on the last submaximal stage (GECLAST ),
were used as models to estimate the instantaneous MRTT_req. The AnC was computed
as the difference between the MRTT_req and the aerobic MR integrated over time.

Results: The GEC remained constant at ∼4.39 ± 0.29 J·kg−1
·m−1 across the five

submaximal stages and the TT was performed at a speed of 4.7 ± 0.4 m·s−1.
Compared with the 5-YLIN, GECAVG, and GECLAST models, the 5+YLIN model
generated a MRTT_req that was ∼3.9% lower, with corresponding anaerobic
capacities from the four models of 0.72 ± 0.20, 0.74 ± 0.16, 0.74 ± 0.15, and
0.54 ± 0.14 kJ·kg−1, respectively (F1.07,42 = 13.9, P = 0.002). The GEC values
associated with the TT were 4.22 ± 0.27 and 4.37 ± 0.30 J·kg−1

·m−1 for 5+YLIN

and 5-YLIN, respectively (calculated from the regression equation), and 4.39 ± 0.28
and 4.38 ± 0.27 J·kg−1

·m−1 for GECAVG and GECLAST , respectively (F1.08,42 = 14.6,
P < 0.001). The absolute typical errors in AnC ranged between 0.03 and 0.16 kJ·kg−1

for the six pair-wise comparisons and the overall standard error of measurement (SEM)
was 0.16 kJ·kg−1.

Conclusion: These findings demonstrate a generally high disagreement in estimated
anaerobic capacities between models and show that the inclusion of a measured
Y-intercept in the linear regression (i.e., 5+YLIN) is likely to underestimate the MRTT_req

and the GEC associated with the TT, and hence the AnC during maximal 4-min
treadmill running.

Keywords: gross energy cost, MAOD, maximal accumulated oxygen deficit, metabolic demand, running economy,
time trial, supramaximal exercise
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INTRODUCTION

From a physiological perspective, speed of locomotion in
endurance sports such as running and cycling is primarily related
to the maximal aerobic metabolic rate (MR) (i.e., maximum
oxygen uptake, V̇O2max), its fractional utilization, and the energy
cost of movement. Although aerobic energy provision is the
primary source of energy supply in endurance sports, anaerobic
energy provision is also involved (Joyner and Coyle, 2008).
Due to the limited capacity of the anaerobic energy supply,
the relative anaerobic contribution to exercise decreases with
duration (Gastin, 2001). For example, in 800 and 1500-m track
running (lasting ∼2.1 and ∼4.4 min, respectively), the relative
contribution of anaerobic metabolism decreases from ∼40 to
∼14% in trained runners (Duffield et al., 2005a,b). In addition,
many endurance races are often performed head-to-head, making
anaerobic energy provision crucial for the success of breakaways
and final end-spurts.

Although aerobic energy provision can be quantified during
exercise by using measures of oxygen consumption and carbon
dioxide production, the quantification of anaerobic energy
provision is more complicated. Several different methods of
quantifying anaerobic capacity (AnC) have been used (Noordhof
et al., 2013), but the gold standard procedure is probably the
direct method first described by Bangsbo et al. (1990) for single-
leg knee extension exercise. However, this sophisticated invasive
method is not applicable for traditional whole-body endurance
modalities such as running or cycling, where many large muscle
groups are involved in locomotion (Noordhof et al., 2010).
Therefore, indirect estimates of anaerobic energy production are
commonly used, such as the maximal accumulated oxygen deficit
(MAOD) method (Medbø et al., 1988) or the gross efficiency
(GE) method (Serresse et al., 1988; Noordhof et al., 2011;
Andersson and McGawley, 2018). The MAOD method identifies
a supramaximal total average oxygen uptake (V̇O2) requirement
calculated from a linear relationship between submaximal V̇O2
and speed (or power output). Due to the effect of increasing
submaximal exercise intensity on substrate utilization (Shaw
et al., 2014) and the different energy equivalents for fat and
carbohydrate oxidation (Weir, 1949), a speed (or power output)
vs. MR relationship should be more appropriate (Andersson
and McGawley, 2018). By contrast, for the GE method, the
supramaximal total metabolic requirement can be calculated by
dividing the supramaximal power output by GE determined
from a single submaximal exercise bout. For both methods, the
anaerobic MR during supramaximal exercise can be calculated
by subtracting the instantaneous aerobic MR from the total
required instantaneous MR, with the AnC calculated as the
anaerobic MR integrated over time (Andersson and McGawley,
2018; Andersson et al., 2020).

The main limitations of the linear regression method are
related to the range of exercise intensities included in the
submaximal linear relationship, the number, and duration of the
submaximal stages, and whether a continuous or discontinuous
submaximal protocol is used (Noordhof et al., 2010). In
addition, the effect of including a baseline value of MR in
the linear regression model is equivocal and might differ for

exercise modalities (Bangsbo, 1992, 1996; Noordhof et al., 2011;
Andersson and McGawley, 2018; Andersson et al., 2020). For
instance, Andersson et al. (2020) showed for diagonal-stride
treadmill roller-skiing that the inclusion of a resting baseline
value of MR (i.e., the Y-intercept value) was likely to result
in an underestimated supramaximal metabolic requirement and
AnC compared to no inclusion of a baseline Y-intercept value.
However, Noordhof et al. (2011) showed no such difference when
including a fixed Y-intercept value for cycle ergometry exercise.

Due to the difficulties in determining external work during
running, the GE method can be considered inappropriate for
determining AnC for running exercise. Therefore, most previous
studies that have estimated AnC during treadmill running have
used the MAOD approach (Medbø et al., 1988; Ramsbottom
et al., 1994; Craig and Morgan, 1998; Spencer and Gastin,
2001; Hill et al., 2002) while the GE approach has been more
commonly used during cycle ergometry exercise to estimate
anaerobic work capacity and/or anaerobically attributable power
output (Serresse et al., 1988; Foster et al., 2003; de Koning et al.,
2005; Hettinga et al., 2006). An alternative method that can be
used to estimate the AnC for treadmill roller-skiing or running
is the gross energy cost (GEC, J·kg−1

·m−1) method, which is
conceptually similar to the GE method and has recently been
employed for estimating AnC during diagonal-stride treadmill
roller-skiing (Andersson and McGawley, 2018). In this study,
both the GE and GEC methods resulted in identical values of
AnC and are, thus, conceptually similar when applied to treadmill
exercise in a laboratory where air drag is negligible. Therefore,
the GEC concept may potentially be used as an alternative to
the GE approach when estimating AnC during supramaximal
running on a treadmill. A potential limitation of the GEC (or
GE) method is the assumption that GEC (or GE) is speed (or
power output) independent (Batliner et al., 2018; Andersson
et al., 2020). Based on the linear regression between speed (or
power output) and MR, as used in the modified MAOD method,
GEC (or GE) is only constant when the Y-intercept is zero.
For relationships with a positive Y-intercept, GEC will always
decrease (or GE will increase) with increasing exercise intensity
due to the diminishing effect of the Y-intercept value (Ettema and
Lorås, 2009; Batliner et al., 2018). However, when a wide range of
exercise intensities are used and combined with a resting baseline
value in the linear MAOD regression, a positive Y-intercept
would be expected (Noordhof et al., 2011), which in theory would
explain the disagreement between the MAOD and GE methods
(Andersson et al., 2020).

At present, a limited number of studies have compared
different AnC estimates generated by the MAOD and GE
methods (Noordhof et al., 2011; Andersson and McGawley,
2018; Andersson et al., 2020). The overall conclusion of these
studies is that the different methods should not be used
interchangeably, due to the relatively high within-participant
disagreement. However, there is sparse information explaining
this disagreement or the typical errors associated with the
different AnC estimates generated by the MAOD and GEC/GE
concepts. To date, there is, to our knowledge, only one study that
has provided any methodological interpretation of the within-
participant disagreement between the GE and MAOD methods,
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which was related to the individual variation in the Y-intercept
values for the MAOD regression (Andersson et al., 2020). Given
this sparsity of methodological inquiry, the current study aimed
to compare estimates of anaerobic capacities generated during a
4-min running performance time trial (TT) using four different
models: the 5 × 4-min MAOD method with the inclusion of a
baseline Y-intercept value (5+YLIN) and without the inclusion
of a baseline Y-intercept value (5-YLIN), and two GEC methods
using the average GEC based on the 5 × 4-min submaximal
exercise intensities (GECAVG) and using the last exercise intensity
only (GECLAST).

MATERIALS AND METHODS

Participants
Fifteen endurance-trained recreational athletes (seven women
and eight men; mean ± standard deviation (SD): age
31.3 ± 6.7 years, body mass 70.8 ± 10.5 kg) volunteered to
participate in this study, which was preapproved by the Regional
Ethical Review Board of Umeå University, Umeå, Sweden.
All participants were fully informed about the study before
providing written consent to participate. The participants were
recruited from local running, cross-country skiing, triathlon,
and multi-sport clubs. Immediately prior to the start of the study
participants were carrying out high-intensity interval training
weekly or bi-weekly and they competed in a mixture of running,
cross-country skiing, and/or multi-sport competitions.

Study Overview
The participants completed a continuous submaximal treadmill
running protocol consisting of 5 × 4-min stages, ranging from
∼9.7–13.2 km·h−1 (∼55–80% of estimated peak V̇O2[V̇O2peak])
and with step increments of ∼1 km·h−1 per stage, and a 4-min
TT. Both the submaximal protocol and the TT were performed
on a motorized treadmill set at a 1% incline. Participants were
instructed to self-select the pace of the 4-min TT by moving
to the front or rear of the treadmill, which was equipped with
a bespoke speed-controlling laser system that allows the athlete
to freely adjust the speed by moving forward or backward
on the treadmill, which makes TT tests possible. They were
also instructed to cover as much distance as possible in the
fixed time and received only time-related feedback during the
4 min. The 4-min TT was performed at least 10 min after
the submaximal test, and following a 10-min re-warm-up. The
submaximal speeds were based on previous 5- and/or 10-km
running race performances, or previously measured V̇O2peak
or V̇O2max in running or diagonal roller-skiing, and assuming
a GEC of running at 4.3 J·kg−1

·m−1 as based on previously
unpublished test results.

Equipment and Measurements
All tests were performed on a treadmill (Rodby Innovation
AB, Vänge, Sweden) whereby distance completed during the
TT was automatically logged at a rate of 2.46 Hz and linearly
interpolated to second-by-second data. Participants were secured

with a safety harness suspended from the ceiling and connected
to an emergency brake when exercising on the treadmill,
which immediately stopped in the case of a fall. Respiratory
measurements were performed using an AMIS 2001, model
C (Innovision AS, Odense, Denmark). The gas analyzers were
calibrated with a known reference gas containing 16.0% O2 and
4.5% CO2 (Air Liquide, Kungsängen, Sweden) and ambient air.
The flow meter was calibrated before the start of each test with a
3-L syringe at low, medium, and high flow rates (Hans Rudolph,
Kansas City, MO, United States). Heart rate was monitored
using a chest strap and wristwatch (V800 or RS800CX, Polar
Electro Oy, Kempele, Finland). Blood lactate concentration was
determined using a Biosen C_Line or S_Line (EKF diagnostics,
Magdeburg, Germany) calibrated with a known standard solution
of 12 mmol·L−1.

Testing Procedures
The Submaximal Test
The participants reported to the laboratory rested, in a fed state,
and having abstained from alcohol and intense training for at
least 24 h before testing, and from caffeine on the day of testing.
Participants’ body mass was measured using an electronic scale
(Seca 764, Hamburg, Germany) in the same clothing as worn
during the tests. After∼5 min of seated rest a 2-min baseline V̇O2
measurement was collected with the participant standing still on
the treadmill, after which the exercise test began. The submaximal
protocol was conducted as described previously (Watkins et al.,
2017), commencing with a 10-min warm-up followed by a series
of 4-min incremental stages, which increased by ∼1 km·h−1

every 4 min (with incline fixed at 1%). At the end of each 4-
min stage, a fingertip blood sample (for blood lactate assessment)
and a rating of perceived exertion [RPE: 6–20 point scale (Borg,
1982)] were collected. The test was terminated after at least five
stages when participants had reached an RPE of 15–17. Heart
rate was recorded throughout the test and was averaged over the
last 30 s of each stage, while respiratory variables were averaged
between 2 min 50 s and 3 min 50 s of each stage. If more than
five submaximal stages were completed, the five stages that were
closest to an intensity range of 55–80% V̇O2peak (calculated from
the 4-min TT) were used for further analyses.

The 4-Min TT
After at least 10 min of rest following the submaximal test,
participants completed a 10-min re-warm-up and a 4-min TT as
previously described (Watkins et al., 2017). Briefly, the warm-up
consisted of 5 min of low-intensity running, 3 × 30-s intervals
separated by 30 s of low-intensity running, then 2 min of low-
intensity running. After a 3-min passive break, the participants
commenced the TT at a starting speed equivalent to the speed
of the final submaximal stage minus 2 km·h−1, again at an
incline of 1%. The treadmill speed was freely adjusted by the
participant moving to the front of the belt to accelerate (at a
rate of 0.50 km·h−1

·s−1), to the rear to decelerate (at a rate
of 0.40 km·h−1

·s−1), or staying in the middle of the belt to
maintain a constant speed. The participant was instructed to
perform a maximal-paced effort to cover as much distance as
possible in the 4 min. Elapsed time was visible on a screen
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and standardized encouragement was provided, but no further
feedback to the participant was available. Respiratory and heart
rate data were collected continuously during the TT and the
highest 30-s moving average was used to calculate V̇O2peak and
peak ventilation rate, while peak heart rate was obtained as
the highest 5-s average value. Peak respiratory exchange ratio
(RER) was taken over the same period as the V̇O2peak. Fingertip
blood samples were taken (for blood lactate assessment) at 1,
2, 3, and 4 min after the 4-min TT, with the highest value
reported as the peak.

Calculations
Submaximal Running
Energy expenditure was calculated from V̇O2 and RER
(V̇CO2·V̇O2

−1) according to the equation introduced by Weir
(1949) and subsequently converted into a MR. MR was based
on the average V̇O2 in mL·kg−1

·min−1 and RER values (≤1.00)
during the final minute of each stage of the submaximal exercise
protocol.

Metabolic rate
[
W·kg−1

]
=

4.184V̇O2 (1.1RER+ 3.9)

60
(1)

GEC was calculated as:

GEC
[
J·kg−1

·m−1
]
=

Metabolic rate [W·kg−1
]

Speed [m · s−1]
(2)

Net energy cost was calculated as:

Net energy cost
[
J·kg−1

·m−1
]

=
Metabolic rate−MRBL [W·kg−1

]

Speed [m · s−1]
(3)

where MRBL is the baseline MR calculated from 1-min baseline
V̇O2 and RER measurements when the participant stood still
on the treadmill (prior to the warm-up). Delta energy cost
(J·kg−1

·m−1) was calculated by dividing the increase in MR
(W·kg−1) by the increase in speed (m·s−1) based on the linear
regression between MR and speed over the five submaximal
exercise intensities, which is identical to the value of the slope of
the regression equation. Neither net energy cost nor delta energy
cost was used for estimating the AnC. The V̇O2peak during the TT
was converted to a peak aerobic MR by using Eq. 1 and assuming
100% carbohydrate utilization (i.e., using an RER of 1.00).

Estimating AnC
A linear relationship between treadmill speed and MR (W·kg−1)
during the final min of each of the 5 × 4-min submaximal
stages was derived for each participant with the baseline MR as
a Y-intercept (i.e., the MR at zero speed) included in (5+YLIN)
or excluded from (5-YLIN) the model. In the latter case, the
Y-intercept was based on all data points in the regression (i.e.,
not forced). The two regression equations were used to estimate
the required instantaneous MR during the 4-min TT (MRTT_req)
at each 1-s time-point.

The submaximal GEC calculated as an average of all the
submaximal stages (GECAVG) or from the last submaximal stage

only (GECLAST) were also used to estimate the MRTT_req at each
1-s time-point of the TT. Here, the MRTT_req was calculated by
multiplying instantaneous TT speed (in m·s−1) with a fixed GEC
value (i.e., GECAVG or GECLAST).

For all four methods (i.e., 5+YLIN, 5-YLIN, GECAVG, and
GECLAST), the instantaneous anaerobic MR (MRan) at each 1-s
time-point (t) of the TT could then be expressed as:

MRan,t
[
W · kg−1

]
MRTT_req,t−MRae,t (4)

where MRae is the aerobic MR calculated according to Eq. 1.
For all four methods, the AnC (J·kg−1) was calculated by

integrating MRan over the 4-min TT. The anaerobic energy
production was, in addition, converted to an accumulated
oxygen deficit by multiplying the AnC with a constant of
0.047801 (mL oxygen equivalent per joule) according to Weir
(1949) and assuming 100% carbohydrate utilization during the
supramaximal TT. In the Supplementary Tables, AnC estimates
based on two polynomial models (5+YPOL and 5-YPOL) are also
presented. The MRTT_req for these two additional models was
determined similarly as for the two linear models (i.e., 5+YLIN
and 5-YLIN), but using a second-degree polynomial regression
equation rather than a linear regression equation. In addition
to the 5+YPOL and 5-YPOL models, data for three alternative
linear models are also presented in the Supplementary Tables,
based on: (1) the four highest submaximal stages (4-YLIN); (2) the
three highest submaximal stages (3-YLIN); and (3) the two highest
submaximal stages (2-YLIN). The results generated by these five
alternative models were compared with the 5-YLIN and GECLAST
models (Supplementary Tables 1, 2).

Comparing the Measured GEC With GEC Derived
From the Two Regression Equations (GECREG)
The GEC based on each of the two regression equations (GECREG,
based on the 5+YLIN and 5-YLIN models) was calculated for the
five submaximal stages as MR, calculated from the regression
equation, divided by speed. This enabled a comparison of the
measured GEC during the five submaximal stages with the
GECREG. To compare the average supramaximal GECREG during
the TT with the GECAVG and GECLAST values, the following
calculations were performed: firstly, the estimated instantaneous
GEC at each 1-s time-point (t) of the 4-min TT was calculated
for 5+YLIN and 5-YLIN as MRTT_req (derived from the linear
regression equation) divided by speed; secondly, the estimated
instantaneous GEC during the TT was expressed as an average
value for each of the two respective models. The same methods
were used for the additional models that are presented in the
Supplementary Tables.

Statistics
All statistical tests were processed using Office Excel 2016
(Microsoft Corporation, Redmond, WA, United States) and the
Statistical Package for the Social Sciences (SPSS 25, IBM Corp.,
Armonk, NY, United States). The level of statistical significance
was set at α ≤ 0.05. Data were checked for normality by
visual inspection of Q-Q plots and histograms together with the
Shapiro–Wilks analysis and are presented as mean ± SD, except
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in the case of RPE and heart rate, where data are presented as
median and interquartile range (IQR). In addition, the different
AnC estimates were presented as mean and 95% confidence
intervals. The linear relationships between submaximal speed
and MR for the 5+YLIN and 5-YLIN models were assessed using
linear regression analyses. One-way repeated measures ANOVA
tests were used to compare GEC and net energy cost between
the five submaximal stages as well as the GEC, required MR, and
AnC associated with the TT. A paired t-test was used to analyze
the linear regression coefficients for the 5+YLIN and 5-YLIN
models. The precision of the two linear regression equations was
assessed with the standard error of the estimate (SEE). The root
mean square error was used to evaluate the relative discrepancy
between GEC calculated from the two regression equations
and GEC measured during the five submaximal running stages
expressed as a percentage error. For the ANOVA tests, the
assumption of sphericity was assessed using Mauchly’s test.
For violated sphericity, a Greenhouse–Geisser correction of the
degrees of freedom was used (epsilon ≤ 0.75). Bonferroni α

corrections were applied to all ANOVA tests and eta squared
effect sizes (η2) were also reported.

The mean difference ± 95% limits of agreement for the
comparison of the four AnC estimates were evaluated using
Bland–Altman calculations (Bland and Altman, 1999). The
mean difference was tested with a paired-sample t-test and the
standardized mean difference [Hedges’ gav effect size (Hgav)] was
computed according to the equations presented by Lakens (2013).
In addition, the methodological error was evaluated via the
overall standard error of measurement (SEM) calculated based
on the intraclass correlation coefficient. The intraclass correlation
coefficient was calculated as the between-subjects mean square
value minus the within-subjects mean square value and divided
by the between-subjects mean square value from the repeated-
measures ANOVA. The absolute typical error was calculated for
all the separate pair-wise comparisons.

RESULTS

The submaximal speeds, physiological responses, and two various
concepts of energy cost (i.e., GEC and net energy cost) at the
five submaximal stages are shown in Table 1. The GEC remained
unchanged (∼4.39 J·kg−1

·m−1) between all submaximal stages
(F1.48,56 = 0.84, P = 0.413, and η2 = 0.004) whereas the net energy
cost increased by ∼4.4% from the first to the last submaximal
stage (F1.55,56 = 11.0, P < 0.001, and η2 = 0.048).

The mean ± SD speed and MR during the five submaximal
stages and the TT, together with the regression lines (based on
the mean values), are displayed in Figure 1A for the 5+YLIN and
5-YLIN models. The mean ± SD values of GEC and the GEC
calculated from the 5+YLIN and 5-YLIN models are displayed
in Figure 1B. The 4-min TT was completed at an average
speed of 4.7 ± 0.4 m·s−1 (17.0 ± 1.5 km·h−1). The V̇O2peak
was 58 ± 6 mL·kg−1

·min−1 (4.2 ± 0.9 L·min−1), with an
RER of 1.14 ± 0.05. The peak ventilation rate, peak heart rate,
and peak blood lactate concentration were 148 ± 26 L·min−1,
183 (IQR = 177–188) beats·min−1, and 11.0 ± 2.1 mmol·L−1,

respectively. The RPE measured immediately after the TT was
19 (IQR = 18–19).

The estimated total MRs during the TT (including the aerobic
and anaerobic contributions) and the AnC values are shown in
Figures 1C,D, respectively, for the four different computational
methods. In Figure 1D it can be seen that the estimated AnC was
considerably lower for the 5+YLIN model compared to the three
other models (i.e., 5-YLIN , GECAVG, and GECLAST).

The data presented in Table 2 show that the SEE was
approximately twice as large for the 5+YLIN vs. the 5-YLIN
regression model. Also, the Y-intercept value was considerably
higher for the 5+YLIN model, which resulted in a regression
slope (i.e., a delta energy cost) that was ∼10% lower for the
5+YLIN model than for the 5-YLIN model. The root mean square
error for the relative difference between GEC calculated from
the speed-MR regression and the GEC measured during the five
submaximal stages was 1.8± 0.8% for the 5+YLIN and 0.8± 0.3%
for the 5-YLIN model (P < 0.001, Hgav = 1.6). The average GEC
during the TT was∼3.7% lower for the 5+YLIN compared to the
other three models, which resulted in an ∼3.9% lower required
MR during the TT for the 5-YLIN model (see Table 2). This
explains the ∼26% lower estimated AnC for the 5+YLIN model
(illustrated in Figure 1D).

All individual regression lines between speed and MR are
shown in Figures 2A,B for the 5+YLIN and 5-YLIN models,
respectively. The GEC calculated from the two regression
equations (GECREG) for the five submaximal speeds and the
TT speed is presented in Figures 2C,D for the 5+YLIN and 5-
YLIN models, respectively, whereas the directly measured GEC
is presented in Figure 2E. It can be seen that the inclusion of
a Y-intercept value in the linear regression (i.e., the 5+YLIN
model) resulted in a decline in GEC with increasing speed for
all participants, which deviates from the somewhat mixed speed-
GEC patterns presented in Figures 2D,E. The within-participant
disagreement in estimated AnC for the four different models is
illustrated in Figure 2F.

Comparisons of the AnC estimates from the 4-min TT
using the four different models are presented in Figure 3. As
shown in Figures 3A–C, the 5+YLIN model generated anaerobic
capacities that were∼19 kJ·kg−1 lower than the 5-YLIN , GECAVG,
and GECLAST models, whereas the mean difference between
the 5-YLIN , GECAVG, and GECLAST models was approximately
zero (Figures 3D–F). The typical errors for the respective
comparisons were generally high, with exception of the 5+YLIN
vs. GECAVG model (see Figure 3).

The variation in Y-intercept values for the 5-YLIN model was
highly related to the variation in the AnC estimates between the
5-YLIN and GECAVG models (r2 = 0.990; Figure 4B), as well as
between the 5-YLIN and GECLAST models (r2 = 0.956; Figure 4D).
This explains the relatively large typical errors and 95% limits of
agreements for the AnC differences observed for the 5-YLIN vs.
GECAVG and GECLAST models (shown in Figures 3E,F), and the
small typical error and 95% limits of agreement for the 5+YLIN
vs. GECAVG model (shown in Figure 3B).

Supplementary data based on two alternative polynomial
models and three alternative linear models are provided in the
Supplementary Tables 1, 2.
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TABLE 1 | Mean ± standard deviation (SD) speeds, heart rates, cardiorespiratory variables, blood lactate concentrations, and energy costs associated with the five
submaximal stages (SUB1−5) of treadmill running at a 1% incline, as well as the stand-up resting baseline (BLREST ) data.

BLREST SUB1 SUB2 SUB3 SUB4 SUB5

Speed (m·s−1) 0 2.60 ± 0.24 2.87 ± 0.24 3.13 ± 0.24 3.40 ± 0.24 3.66 ± 0.25

Heart rate (% of max) 42 ± 4 72 ± 3 76 ± 3 81 ± 3 85 ± 4 90 ± 4

MRAE (W·kg−1) 1.8 ± 0.2 11.5 ± 1.1 12.6 ± 1.2 13.7 ± 1.3 14.9 ± 1.3 16.1 ± 1.4

MRAE (% of MRAE_peak ) 9 ± 2 57 ± 3 62 ± 4 68 ± 3 73 ± 4 79 ± 4

Ventilation rate (L·min−1) 13.7 ± 2.7 60.6 ± 10.8 66.3 ± 10.8 73.2 ± 11.6 81.5 ± 13.0 90.6 ± 14.1

V̇E ·V̇CO2
−1 42.1 ± 6.3 28.3 ± 2.7 28.3 ± 2.9 28.3 ± 2.6 28.6 ± 2.5 29.0 ± 2.8

V̇E ·V̇O2
−1 37.4 ± 7.0 25.6 ± 2.8 25.6 ± 2.9 26.0 ± 2.3 26.7 ± 2.2 27.6 ± 2.3

RER (V̇CO2·V̇O2
−1) 0.88 ± 0.10 0.90 ± 0.05 0.91 ± 0.05 0.92 ± 0.05 0.93 ± 0.05 0.95 ± 0.04

La− (mmol·L−1) – 1.1 ± 0.2 1.2 ± 0.3 1.3 ± 0.2 1.7 ± 0.5 2.2 ± 0.7

Gross energy cost (J·kg−1
·m−1) – 4.42 ± 0.31 4.39 ± 0.31 4.37 ± 0.27 4.38 ± 0.26 4.38 ± 0.27

Net energy cost (J·kg−1
·m−1) – 3.73 ± 0.28 3.76 ± 0.29 3.80 ± 0.26 3.85 ± 0.25 3.89 ± 0.27

MRAE , aerobic metabolic rate; MRAE_peak , peak aerobic metabolic rate; V̇E ·V̇CO2
−1, ventilatory equivalent for carbon dioxide; V̇E ·V̇O2

−1, ventilatory equivalent for oxygen;
RER, respiratory exchange ratio; La−, blood lactate concentration.

FIGURE 1 | (A) The two regression models for mean ± SD speed and metabolic rate (MR) (relative to body mass) during 5 × 4-min stages of continuous
submaximal running, together with the estimated total metabolic requirements (diamonds) at the average speed attained during the 4-min time trial (TT). Red line:
5+YLIN; black line: 5-YLIN. (B) Mean ± SD gross energy cost (GEC) for the 5 × 4-min stages of submaximal running (yellow triangles) and GEC calculated from the
two regression equations (red squares: 5+YLIN; open circles: 5-YLIN ) for the submaximal stages and the TT. (C) Mean ± standard deviation (SD) total MR during the
TT with the aerobic and anaerobic (An) contributions and the relative anaerobic contribution (expressed as a percentage) for the two linear regression models (i.e.,
5+YLIN and 5-YLIN ) and when using the average GEC based on the five submaximal stages (GECAVG) and the last submaximal stage (GECLAST ). (D) Anaerobic
capacity (AnC) expressed as mean and 95% confidence intervals (dark filled squares and bars), together with individual data (colored symbols). *Significantly lower
than 5-YLIN, GECAVG, and GECLAST , all P < 0.001.
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TABLE 2 | Mean ± SD slope, Y-intercept, coefficient of determination (r2), standard error of estimate (SEE) for the two linear models, and gross energy cost (GEC),
metabolic requirement, and accumulated oxygen deficit (6O2 deficit) during the 4-min time trial (TT) for the four different models of estimating the
anaerobic capacity (AnC).

Method of calculation

5+YLIN 5-YLIN GECAVG GECLAST Test statistic P-value ES SEM

Slope (W·kg−1 per m·s−1) 3.85 ± 0.26 4.32 ± 0.56 – – – P = 0.002 Hgav = −1.0 –

Y-intercept (W·kg−1) 1.69 ± 0.25 0.18 ± 1.71 – – – P = 0.003 Hgav = 1.2 –

r2 0.997 ± 0.002 0.996 ± 0.003 – – – P = 0.156 Hgav = 0.5 –

SEE (W·kg−1) 0.28 ± 0.13 0.13 ± 0.05 – – – P < 0.001 Hgav = 1.5 –

GECTT_avg (J·kg−1
·m−1) 4.22 ± 0.27* 4.37 ± 0.30 4.39 ± 0.28 4.38 ± 0.27 F1.08,42 = 14.6 P < 0.001 η2 = 0.063 0.16

MRTT_req (% of MRae_peak ) 98 ± 3* 102 ± 5 102 ± 4 102 ± 4 F1.11,42 = 15.2 P < 0.001 η2 = 0.160 4.16

6O2 deficit (mL·kg−1) 26 ± 7* 35 ± 9 36 ± 8 35 ± 7 F1.07,42 = 13.9 P = 0.002 η2 = 0.217 3.92

5+YLIN and 5-YLIN, the 5 × 4-min linear methods with the baseline metabolic rate as a Y-intercept either included (5+Y) or excluded (5-Y); GECAVG, the gross energy
cost procedure based on the average value of five submaximal stages; GECLAST , the gross energy cost procedure based on the last submaximal stage; ES, effect
size; SEM, standard error of measurement; GECTT _avg, average GEC during the TT; MRTT _req, required metabolic rate during the TT; MRae_peak , peak aerobic metabolic
rate during the TT.
F-values, P-values, and eta squared effect size (η2) were obtained by a one-way ANOVA. *Significantly lower than 5-YLIN, GECAVG, and GECLAST , all P < 0.001.

DISCUSSION

The main findings of the current study were that the total
required MR during the 4-min TT was ∼3.9% lower when a
baseline MR was included in the linear model (i.e., 5+YLIN)
compared to no inclusion of a baseline MR (i.e., 5-YLIN) and the
two GEC models (i.e., GECAVG and GECLAST). The significantly
higher Y-intercept in the 5+YLIN model resulted in a significantly
lower slope of the regression line and a higher SEE. The average
AnC was ∼26% lower for the 5+YLIN model vs. the three
other models (i.e., 5-YLIN , GECAVG, and GECLAST). Although
the estimated anaerobic capacities for the 5-YLIN , GECAVG,
and GECLAST models were very similar on a group level, the
within-participant variation was relatively high, as indicated by
the typical errors that ranged between 0.07 and 0.16 kJ·kg−1.
The 5+YLIN model demonstrated smaller typical errors when
compared with the GEAVG and GELAST models than when
compared with the 5-YLIN model, which was highly related to the
considerably larger between-participant variation in Y-intercept
values for the 5-YLIN model.

There are several problems associated with the various
methods used to estimate the AnC (Noordhof et al., 2010, 2013).
Based on previous validation data on supine one-legged dynamic
knee-extensor exercise a high agreement between the indirect
MAOD method and a more sophisticated direct measurement
was observed (Bangsbo et al., 1990), which indicates that the
MAOD method might be valid for whole-body exercise as well.
When using the MAOD method several previous studies have
either used a forced Y-intercept of 5 mL·kg−1

·min−1, a resting
V̇O2 measured at baseline, or an arbitrary value in the linear
regression (Medbø et al., 1988; Russell et al., 2000, 2002; Bickham
et al., 2002). This procedure has been suggested to increase the
precision of the estimated V̇O2 demand (Medbø et al., 1988;
Russell et al., 2000; Noordhof et al., 2011). However, the use
of a Y-intercept value in the linear regression between speed
(or power output) and MR (or V̇O2) can only be justified if
it is reasonably aligned with the submaximal stages of exercise.

In the current study, the inclusion of a Y-intercept value in
the linear regression resulted in a significantly lower required
MR, GEC, and AnC during the TT (see Figure 1). Moreover,
compared to the 5-YLIN model, the 5+YLIN regression model
demonstrated a significantly lower slope (3.85 vs. 4.32 W·kg−1

per m·s−1) and a higher Y-intercept (1.69 vs. 0.18 W·kg−1),
which together indicate that the included Y-intercept value
changed the regression equation noticeably. The SEE was
considerably larger for the 5+YLIN than the 5-YLIN model, which
indicates a worse fit of the regression line when a baseline MR
(i.e., resting value) was added. These results suggest that the total
metabolic requirement and the estimated AnC are likely to be
underestimated when including a baseline MR (i.e., a modeled
Y-intercept) in the linear relationship between speed and MR for
treadmill running exercise. Interestingly, some previous studies
have shown GEC or gross oxygen cost (i.e., VO2 consumed per
unit of distance) to be speed independent (on a group level)
(Fletcher et al., 2009; Helgerud et al., 2010; Shaw et al., 2014),
indicating a zero Y-intercept for the linear regression between
speed and MR (or V̇O2). This because GEC or gross oxygen
cost would only be speed independent if the Y-intercept is zero,
which is also similar for GE and the regression between power
output and MR (Batliner et al., 2018; Andersson et al., 2020).
Moreover, using a forced Y-intercept in the linear regression
model has been observed to generate unreasonably low values
of estimated AnC in running compared to cycling (Hill et al.,
2002). Also, the linearity of the regression has been questioned for
treadmill running (Bangsbo, 1996; Hill, 1996; Hill and Vingren,
2011). This, together with the current findings, conflicts with the
traditional view that a baseline value (i.e., a Y-intercept) should
be included in the linear regression when estimating the AnC
during treadmill running (Medbø et al., 1988; Russell et al., 2000;
Noordhof et al., 2011).

Even though it is well known that the energy equivalent per
unit of VO2 differs considerably between fats and carbohydrates
(Weir, 1949), most previous studies have used expressions
of oxygen cost for determining running (or movement)
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FIGURE 2 | Individual regressions (N = 15, 5 in each of the three horizontal panels) for: (A) submaximal MR plotted against treadmill running speed (at a 1% incline)
based on the five 4-min submaximal stages and extrapolation up to the average 4-min TT speed including a Y-intercept value (5+YLIN ), and (B) when excluding the
Y-intercept value (5-YLIN ); (C,D) GEC calculated from the two regression equations (GECREG) for the submaximal stages and the TT, with panel (C) for the 5+YLIN

regression and panel (D) for the 5-YLIN regression; (E) directly measured individual values of GEC for the submaximal stages; (F) individual values of AnC calculated
with the four different models, where the 5+YLIN and 5-YLIN are the two linear models and the GECAVG being based on the average value of all five submaximal
stages and with GECLAST being based on the GEC value from the last submaximal stage.

economy without considering the potential influence of substrate
utilization (Conley and Krahenbuhl, 1980; Daniels and Daniels,
1992; Duffield et al., 2005b; Helgerud et al., 2010). This is of

particular relevance when studying heterogeneous participants
or evaluating the effect of exercise intensity on running
economy (Fletcher et al., 2009; Shaw et al., 2014). Due to
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FIGURE 3 | Bland–Altman plots representing the mean difference (MEANDIFF ) in the AnC ± 95% limits of agreement (i.e., 1.96 SD) associated with the 4-min
running TT for the four various models. AnCDIFF , the difference in AnC; AnCAVG, the average AnC for the two compared models; TE, typical error; ES, Hedges’s gav

effect size (Hgav ), 5+YLIN and 5-YLIN, the two linear models; GECAVG, the GEC method based on the average of five submaximal stages; and GECLAST , the GEC
method based on the last submaximal stage.

the aforementioned factors, the current study employed two
linear regression models that were based on submaximal MR,
rather than submaximal V̇O2, to estimate the total metabolic
requirement. The two linear models were also used on a second-
by-second basis to estimate the instantaneous total metabolic
requirement, which, compared to the traditional MAOD concept
described by Medbø et al. (1988), can provide more detailed
information regarding the anaerobic energy distribution during
exercise. This is also an essential aspect when comparing different
pacing strategies and/or repeated performances (Hettinga et al.,
2006; Andersson et al., 2016).

To facilitate the comparison between the four different
models, GEC during the TT was calculated from the regression
equations for the 5+YLIN and 5-YLIN models and average values
were similar for the 5-YLIN , GECAVG, and GECLAST models, and
higher than the 5+YLIN model (Table 2). In the current study,
GEC was observed to be speed independent on a group level,
which explains the similar estimated average anaerobic capacities
for the 5-YLIN , GECAVG, and GECLAST models as shown in
Figure 1. However, individual data show that GEC derived from
the individual 5-YLIN regressions, as well as the directly measured
GEC, were not speed independent (see Figures 2D,E), which
explains the generally high disagreement observed between the
different models used for estimating the AnC (see Figure 2F).
Interestingly, the inclusion of a baseline MR as a Y-intercept had
a relatively large effect on the GEC values calculated from the

linear regression equation (see Figure 2C vs. Figure 2E). The
disagreement for GEC derived from the regression equation vs.
directly measured GEC was also higher for the 5+YLIN than the
5-YLIN model as indicated by the significantly higher root mean
square error. The disagreement in GEC values at the TT speed,
i.e., the disagreement in GEC values computed from the 5+YLIN
and 5-YLIN regressions and the GECAVG and GECLAST , helps
to explain the variability in the estimated anaerobic capacities
between the different computational models (see Figure 2). As
shown in Figure 3, the typical errors were fairly high for all the
four models compared and the 5+YLIN generated significantly
lower values of AnC in comparison to 5-YLIN , GEAVG, and
GELAST . Inclusion of a baseline resting MR as a Y-intercept in
the linear model compared to no baseline resulted in a large
mean difference and typical error for the 5+YLIN vs. 5-YLIN
model (Figure 3A). Based on the inconsistent individual speed vs.
GEC relationships demonstrated in Figure 2E, it is likely that the
use of the 5+YLIN , GEAVG, and GELAST models are less reliable
than the 5-YLIN model for estimating AnC. Therefore, to create
a more robust linear relationship between speed and MR for
treadmill running, it is probably wise to include some additional
submaximal stages rather than adding a Y-intercept.

In a previous study, Andersson et al. (2020) demonstrated for
the first time that the between-participant variation in Y-intercept
values is related to the disagreement between the MAOD and GE
concepts for estimating AnC. Not surprisingly, a similar finding
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FIGURE 4 | Scatter plots between the Y-intercept values for the 5 × 4-min linear models with the baseline MR as a Y-intercept either included (5+YLIN ) or excluded
(5-YLIN ) in the model (x-axis) and the difference in AnC (AnC diff.) vs. the GEC method based on the average of five submaximal stages (GECAVG) (y-axis) (A,B) and
vs. the GEC method based on the last submaximal stage (GECLAST ) (y-axis) (C,D).

was observed here when using GEC instead of GE, with the value
of the Y-intercept of the 5-YLIN model being linearly related to the
mean difference in anaerobic capacities between the 5-YLIN vs.
the two GEC models (see Figures 4B,D). However, the strength of
the same relationships decreased considerably for the 5+YLIN vs.
the two GEC models (see Figures 4A,C). This was most likely due
to: (1) the substantially reduced between-participant variation in
the modeled Y-intercept values when including a baseline MR
(i.e., a resting value); and (2) the disagreement between measured
GEC and calculated GEC based on the 5+YLIN regression for
the submaximal stages being significantly higher for the 5+YLIN
model, as based on the higher root mean square error.

The current study is to our knowledge the first that has
compared the GEC concept for estimating AnC with the more
traditional MAOD method. In theory, the GECLAST model is
very similar to the GE concept used for estimating anaerobically
attributable work or AnC (Noordhof et al., 2011; Andersson and
McGawley, 2018). If assuming a linear regression between power
output, or speed (for running), vs. MR with a modeled Y-intercept

that is similar to the resting MR, GE would increase with higher
power output while an inverse relationship would be the case
for the GEC of treadmill running vs. speed (Andersson and
McGawley, 2018; Andersson et al., 2020). This is simply explained
by the fact that the relative contribution of the baseline resting
MR to the total MR decreases with higher exercise intensity
(Ettema and Lorås, 2009). Due to this, both GE and GEC at
supramaximal exercise intensities can be estimated from a linear
regression equation between submaximal power output, or speed
(for running), and MR (as shown in Figures 2A–D). Therefore,
a linear regression model used for estimating AnC can also be
employed as a method for estimating GEC (or GE) during high-
intensity exercise. In contrast, the GEC based on the GECLAST or
GECAVG models for estimating AnC can be converted to a linear
regression between speed and MR where the Y-intercept would
always be zero and with the slope representing the GECLAST
or GECAVG. For exercise using a fixed GE value for estimating
AnC (Noordhof et al., 2011), it is simply the same analogy, but
the linear regression between power output and MR would be
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best described as a slope representing the reciprocal value of GE
combined with a zero Y-intercept (Andersson et al., 2020).

In the current study, the estimated anaerobic capacities were
relatively low and for the four models combined, approximately
one-third of the theoretical maximum proposed by Saltin (1990).
However, somewhat similar values of anaerobic capacities have
been observed previously for level running (Olesen, 1992;
Sloniger et al., 1997). In previous literature, uphill running
has also been shown to generate higher anaerobic capacities
than level running, which is explained at least in part by the
lower amount of activated muscle mass in the lower extremities
(Olesen, 1992; Sloniger et al., 1997). It is also plausible that the
degree of linearity of the relationship between submaximal speed
and MR is different for running on different slopes (Olesen,
1992). For instance, Hill et al. (2002) observed unreasonably large
differences in anaerobic capacities between running and cycling,
with ∼39% lower values of AnC in running when employing
the same MAOD method and using a forced Y-intercept of
5 mL·kg−1

·min−1 as suggested by Medbø et al. (1988). Hill
et al. (2002) proposed that these differences were mainly a
computational effect, i.e., employing a linear regression on a
relationship that was more upwardly curvilinear in running than
in cycling. In the current study where running was analyzed,
the inclusion of a measured and modeled (i.e., not forced)
Y-intercept in the MAOD model resulted in a 25% lower
value of AnC compared to no inclusion. A similar finding has
been observed for uphill diagonal-stride roller-skiing (Andersson
and McGawley, 2018; Andersson et al., 2020). These findings
suggest that the inclusion of a Y-intercept value in the linear
regression equation is likely to underestimate the AnC while
running or roller-skiing (diagonal-stride) on a treadmill as it
underestimates the GEC (or overestimates GE for roller-skiing)
during a maximal TT. However, the inclusion of a Y-intercept
might be more relevant for cycling exercise where technique
is likely to be more robust over a larger range of intensities,
and might thus be better aligned with a measured Y-intercept
than running or roller-skiing. For instance, Figure 2E shows
large individual variability in GEC vs. speed, which indicates
that the effect of speed on running biomechanics and GEC
is highly individual, and adding a measured Y-intercept may
change the speed-GEC relationship considerably as shown in
Figure 2.

In a previous study by Hill and Vingren (2011), the
relationship between speed and MR was found to be upwardly
curvilinear for running but linear for cycle ergometry. In
order to make a thorough evaluation of the linearity of
the data in the current study, the results generated by two
alternative polynomial models and three alternative linear
models were compared with the conventional 5-YLIN and
GECLAST models, and these data are presented as Supplementary
Tables. The results in Supplementary Table 1 reveal that the
AnC estimates were not significantly different for the five
alternative models when compared to the conventional 5-
YLIN and GECLAST models, indicating that the submaximal
relationship between speed and submaximal MR for the
five submaximal stages can be considered linear. The results
in Supplementary Table 2 also reveal that the agreements

between the two polynomial models and the other models
were relatively poor. Interestingly, the comparison between the
AnC estimates for the 5-YPOL vs. 5-YLIN models resulted in a
high typical error (0.20 kJ·kg−1). This indicates that polynomial
models can be problematic to use on data that are mainly
linear due to the issue of so-called overfitting, which has
also been observed previously for diagonal-stride roller-skiing
(Andersson et al., 2020).

In the current study, a mixed group of female and male
recreational, endurance-trained athletes was recruited. It is
possible that between-participant variability in physiological
characteristics could have an impact on the agreement between
the different models that were used to estimate AnC, and
that such variability could be higher for a mixed-sex athlete
group. For example, it is possible that between-participant
variation in a physiological variable such as V̇O2max could
influence the agreement between the GECLAST and 5-YLIN
models of estimating AnC. This is because the relative influence
of the baseline (i.e., resting) MR on GEC becomes smaller
with increasing exercise intensity, and V̇O2max is directly
related to the participant’s highest absolute submaximal exercise
intensity. However, the range in V̇O2max was relatively small
in the current study and as a result, it is unlikely that
sex differences per se would have influenced the results
to a major extent.

PERSPECTIVES AND CONCLUSION

This study aimed to compare four different models of
estimating AnC during high-intensity treadmill running and
to methodologically examine the agreement between the four
models. Two of the four models were based on a linear
relationship between submaximal speed and MR (i.e., 5+YLIN
and 5-YLIN) and two were based on a fixed GEC value
(i.e., GECAVG and GECLAST). The GECAVG and GECLAST
models were introduced because of the similarities to the
GE concept that has been used for estimating AnC/work
capacity during cycling (Serresse et al., 1988; Noordhof et al.,
2011).

The main findings of the current study were that GEC was
found to be speed independent on a group level and that 5-YLIN ,
GECAVG, and GECLAST generated similar values of AnC, while
the 5+YLIN model generated ∼26% lower values of AnC. The
lower anaerobic capacities estimated with the 5+YLIN could be
related to the significantly lower slope of the regression line and
the higher Y-intercept value, which resulted in a lower GEC value
(based on the regression equation) during the 4-min TT effort.
Although the 5-YLIN , GECAVG, and GECLAST generated similar
values of AnC, they should not be used interchangeably due
to the profound individual variability, as indicated by the large
typical errors and the large SEM. The 5-YLIN model might be the
most reliable and valid model out of the four models that were
studied and as such, this model is recommended for estimating
AnC during treadmill running exercise. This is because GEC was
not observed to be speed independent on an individual basis
and GEC calculated from the 5-YLIN linear regression equation
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was more similar to the directly measured GEC at the five
submaximal intensities.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Regional Ethical Review Board of Umeå
University, Umeå, Sweden. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

EA and KM designed the study. KM, EA, and GB were
responsible for the data collection, drafted the final manuscript,
approved the final version to be published, and agreed to
be accountable for all aspects of the work. EA analyzed

and interpreted the data, and wrote the first draft of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This study was supported by the Swedish National Centre for
Research in Sports (CIF, P2020-0157).

ACKNOWLEDGMENTS

The authors thank the athletes for their participation,
enthusiasm, and cooperation in this study. The authors also
thank Simon Platt and Alfred Buskqvist for helping us with the
data collection.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2021.708172/full#supplementary-material

REFERENCES
Andersson, E., Holmberg, H. C., Ørtenblad, N., and Björklund, G. (2016).

Metabolic responses and pacing strategies during successive sprint skiing
time trials. Med. Sci. Sports Exerc. 48, 2544–2554. doi: 10.1249/mss.
0000000000001037

Andersson, E. P., and McGawley, K. (2018). A comparison between different
methods of estimating anaerobic energy production. Front. Physiol. 9:82. doi:
10.3389/fphys.2018.00082

Andersson, E. P., Noordhof, D. A., and Lögdal, N. (2020). The anaerobic capacity
of cross-country skiers: the effect of computational method and skiing sub-
technique. Front. Sports Act. Living 2:37. doi: 10.3389/fspor.2020.00037

Bangsbo, J. (1992). Is the O2 deficit an accurate quantitative measure of the
anaerobic energy production during intense exercise? J. Appl. Physiol. 73,
1207–1209. doi: 10.1152/jappl.1992.73.3.1207

Bangsbo, J. (1996). Oxygen deficit: a measure of the anaerobic energy production
during intense exercise? Can. J. Appl. Physiol. 21, 350–363. doi: 10.1139/h96-
031

Bangsbo, J., Gollnick, P. D., Graham, T. E., Juel, C., Kiens, B., Mizuno, M., et al.
(1990). Anaerobic energy production and O2 deficit-debt relationship during
exhaustive exercise in humans. J. Physiol. 422, 539–559. doi: 10.1113/jphysiol.
1990.sp018000

Batliner, M. E., Kipp, S., Grabowski, A. M., Kram, R., and Byrnes, W. C. (2018).
Does metabolic rate increase linearly with running speed in all distance
runners? Sports Med. Int. Open 2, E1–E8. doi: 10.1055/s-0043-122068

Bickham, D., Le Rossignol, P., Gibbons, C., and Russell, A. P. (2002). Re-assessing
accumulated oxygen deficit in middle-distance runners. J. Sci. Med. Sport 5,
372–382. doi: 10.1016/s1440-2440(02)80026-3

Bland, J. M., and Altman, D. G. (1999). Measuring agreement in method
comparison studies. Stat. Methods Med. Res. 8, 135–160. doi: 10.1177/
096228029900800204

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports
Exerc. 14, 377–381.

Conley, D. L., and Krahenbuhl, G. S. (1980). Running economy and distance
running performance of highly trained athletes. Med. Sci. Sports Exerc. 12,
357–360.

Craig, I. S., and Morgan, D. W. (1998). Relationship between 800-m running
performance and accumulated oxygen deficit in middle-distance runners. Med.
Sci. Sports Exerc. 30, 1631–1636. doi: 10.1097/00005768-199811000-00012

Daniels, J., and Daniels, N. (1992). Running economy of elite male and elite female
runners. Med. Sci. Sports Exerc. 24, 483–489.

de Koning, J. J., Foster, C., Lampen, J., Hettinga, F., and Bobbert, M. F. (2005).
Experimental evaluation of the power balance model of speed skating. J. Appl.
Physiol. 98, 227–233. doi: 10.1152/japplphysiol.01095.2003

Duffield, R., Dawson, B., and Goodman, C. (2005a). Energy system contribution
to 400-metre and 800-metre track running. J. Sports Sci. 23, 299–307. doi:
10.1080/02640410410001730043

Duffield, R., Dawson, B., and Goodman, C. (2005b). Energy system contribution to
1500- and 3000-metre track running. J. Sports Sci. 23, 993–1002. doi: 10.1080/
02640410400021963

Ettema, G., and Lorås, H. W. (2009). Efficiency in cycling: a review. Eur. J. Appl.
Physiol. 106, 1–14. doi: 10.1007/s00421-009-1008-7

Fletcher, J. R., Esau, S. P., and Macintosh, B. R. (2009). Economy of running:
beyond the measurement of oxygen uptake. J. Appl. Physiol. 107, 1918–1922.
doi: 10.1152/japplphysiol.00307.2009

Foster, C., De Koning, J. J., Hettinga, F., Lampen, J., La Clair, K. L., Dodge, C., et al.
(2003). Pattern of energy expenditure during simulated competition. Med. Sci.
Sports Exerc. 35, 826–831. doi: 10.1249/01.mss.0000065001.17658.68

Gastin, P. B. (2001). Energy system interaction and relative contribution during
maximal exercise. Sports Med. 31, 725–741. doi: 10.2165/00007256-200131100-
00003

Helgerud, J., Støren, Ø, and Hoff, J. (2010). Are there differences in running
economy at different velocities for well-trained distance runners? Eur. J. Appl.
Physiol. 108, 1099–1105. doi: 10.1007/s00421-009-1218-z

Hettinga, F. J., De Koning, J. J., Broersen, F. T., Van Geffen, P., and Foster, C. (2006).
Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Med.
Sci. Sports Exerc. 38, 1484–1491. doi: 10.1249/01.mss.0000228956.75344.91

Hill, D. W. (1996). Determination of accumulated O2 deficit in exhaustive short-
duration exercise. Can. J. Appl. Physiol. 21, 63–74. doi: 10.1139/h96-006

Hill, D. W., Davey, K. M., and Stevens, E. C. (2002). Maximal accumulated O2
deficit in running and cycling. Can. J. Appl. Physiol. 27, 463–478. doi: 10.1139/
h02-025

Frontiers in Physiology | www.frontiersin.org 12 August 2021 | Volume 12 | Article 708172

https://www.frontiersin.org/articles/10.3389/fphys.2021.708172/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.708172/full#supplementary-material
https://doi.org/10.1249/mss.0000000000001037
https://doi.org/10.1249/mss.0000000000001037
https://doi.org/10.3389/fphys.2018.00082
https://doi.org/10.3389/fphys.2018.00082
https://doi.org/10.3389/fspor.2020.00037
https://doi.org/10.1152/jappl.1992.73.3.1207
https://doi.org/10.1139/h96-031
https://doi.org/10.1139/h96-031
https://doi.org/10.1113/jphysiol.1990.sp018000
https://doi.org/10.1113/jphysiol.1990.sp018000
https://doi.org/10.1055/s-0043-122068
https://doi.org/10.1016/s1440-2440(02)80026-3
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1097/00005768-199811000-00012
https://doi.org/10.1152/japplphysiol.01095.2003
https://doi.org/10.1080/02640410410001730043
https://doi.org/10.1080/02640410410001730043
https://doi.org/10.1080/02640410400021963
https://doi.org/10.1080/02640410400021963
https://doi.org/10.1007/s00421-009-1008-7
https://doi.org/10.1152/japplphysiol.00307.2009
https://doi.org/10.1249/01.mss.0000065001.17658.68
https://doi.org/10.2165/00007256-200131100-00003
https://doi.org/10.2165/00007256-200131100-00003
https://doi.org/10.1007/s00421-009-1218-z
https://doi.org/10.1249/01.mss.0000228956.75344.91
https://doi.org/10.1139/h96-006
https://doi.org/10.1139/h02-025
https://doi.org/10.1139/h02-025
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-708172 July 29, 2021 Time: 16:27 # 13

Andersson et al. Estimating Anaerobic Capacity in Running

Hill, D. W., and Vingren, J. L. (2011). Maximal accumulated oxygen deficit in
running and cycling. Appl. Physiol. Nutr. Metab. 36, 831–838. doi: 10.1139/h11-
108

Joyner, M. J., and Coyle, E. F. (2008). Endurance exercise performance: the
physiology of champions. J. Physiol. 586, 35–44. doi: 10.1113/jphysiol.2007.
143834

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative
science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4:863. doi:
10.3389/fpsyg.2013.00863

Medbø, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., and Sejersted,
O. M. (1988). Anaerobic capacity determined by maximal accumulated
O2 deficit. J. Appl. Physiol. 64, 50–60. doi: 10.1152/jappl.1988
.64.1.50

Noordhof, D. A., de Koning, J. J., and Foster, C. (2010). The maximal
accumulated oxygen deficit method: a valid and reliable measure of anaerobic
capacity? Sports Med. 40, 285–302. doi: 10.2165/11530390-000000000-
00000

Noordhof, D. A., Skiba, P. F., and de Koning, J. J. (2013). Determining anaerobic
capacity in sporting activities. Int. J. Sports Physiol. Perform. 8, 475–482. doi:
10.1123/ijspp.8.5.475

Noordhof, D. A., Vink, A. M., de Koning, J. J., and Foster, C. (2011). Anaerobic
capacity: effect of computational method. Int. J. Sports Med. 32, 422–428. doi:
10.1055/s-0031-1271676

Olesen, H. L. (1992). Accumulated oxygen deficit increases with inclination of
uphill running. J. Appl. Physiol. 73, 1130–1134. doi: 10.1152/jappl.1992.73.3.
1130

Ramsbottom, R., Nevill, A. M., Nevill, M. E., Newport, S., and Williams,
C. (1994). Accumulated oxygen deficit and short-distance running
performance. J. Sports Sci. 12, 447–453. doi: 10.1080/02640419408
732194

Russell, A. P., Le Rossignol, P., and Lo, S. K. (2000). The precision of estimating the
total energy demand: implications for the determination of the accumulated
oxygen deficit. J. Exerc. Physiol. 3, 1–10.

Russell, A. P., Le Rossignol, P., Snow, R., and Lo, S. K. (2002). Improving the
precision of the accumulated oxygen deficit using VO2-power regression points
from below and above the lactate threshold. J. Exerc. Physiol. 5, 23–31.

Saltin, B. (1990). “Anaerobic capacity: past, present and prospective,” in Proceedings
of the 7th International Biochemistry of Exercise Symposium, eds A. Taylor, et al.
(Champaign, IL: Human Kinetics), 387–412.

Serresse, O., Lortie, G., Bouchard, C., and Boulay, M. R. (1988). Estimation of
the contribution of the various energy systems during maximal work of short
duration. Int. J. Sports Med. 9, 456–460. doi: 10.1055/s-2007-1025051

Shaw, A. J., Ingham, S. A., and Folland, J. P. (2014). The valid measurement of
running economy in runners. Med. Sci. Sports Exerc. 46, 1968–1973.

Sloniger, M. A., Cureton, K. J., Prior, B. M., and Evans, E. M. (1997). Anaerobic
capacity and muscle activation during horizontal and uphill running. J. Appl.
Physiol. 83, 262–269. doi: 10.1152/jappl.1997.83.1.262

Spencer, M. R., and Gastin, P. B. (2001). Energy system contribution during 200- to
1500-m running in highly trained athletes. Med. Sci. Sports Exerc. 33, 157–162.
doi: 10.1097/00005768-200101000-00024

Watkins, J., Platt, S., Andersson, E., and McGawley, K. (2017). Pacing strategies and
metabolic responses during 4-minute running time-trials. Int. J. Sports Physiol.
Perform. 17, 1–24. doi: 10.1123/ijspp.2016-0341

Weir, J. B. (1949). New methods for calculating metabolic rate with special
reference to protein metabolism. J. Physiol. 109, 1–9.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Andersson, Björklund and McGawley. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 13 August 2021 | Volume 12 | Article 708172

https://doi.org/10.1139/h11-108
https://doi.org/10.1139/h11-108
https://doi.org/10.1113/jphysiol.2007.143834
https://doi.org/10.1113/jphysiol.2007.143834
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.1152/jappl.1988.64.1.50
https://doi.org/10.1152/jappl.1988.64.1.50
https://doi.org/10.2165/11530390-000000000-00000
https://doi.org/10.2165/11530390-000000000-00000
https://doi.org/10.1123/ijspp.8.5.475
https://doi.org/10.1123/ijspp.8.5.475
https://doi.org/10.1055/s-0031-1271676
https://doi.org/10.1055/s-0031-1271676
https://doi.org/10.1152/jappl.1992.73.3.1130
https://doi.org/10.1152/jappl.1992.73.3.1130
https://doi.org/10.1080/02640419408732194
https://doi.org/10.1080/02640419408732194
https://doi.org/10.1055/s-2007-1025051
https://doi.org/10.1152/jappl.1997.83.1.262
https://doi.org/10.1097/00005768-200101000-00024
https://doi.org/10.1123/ijspp.2016-0341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Anaerobic Capacity in Running: The Effect of Computational Method
	Introduction
	Materials and Methods
	Participants
	Study Overview
	Equipment and Measurements
	Testing Procedures
	The Submaximal Test
	The 4-Min TT

	Calculations
	Submaximal Running
	Estimating AnC
	Comparing the Measured GEC With GEC Derived From the Two Regression Equations (GECREG)

	Statistics

	Results
	Discussion
	Perspectives and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


