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The electrical activity in the heart varies significantly between men and women and

results in a sex-specific response to drugs. Recent evidence suggests that women are

more than twice as likely as men to develop drug-induced arrhythmia with potentially

fatal consequences. Yet, the sex-specific differences in drug-induced arrhythmogenesis

remain poorly understood. Here we integrate multiscale modeling and machine learning

to gain mechanistic insight into the sex-specific origin of drug-induced cardiac arrhythmia

at differing drug concentrations. To quantify critical drug concentrations in male and

female hearts, we identify the most important ion channels that trigger male and female

arrhythmogenesis, and create and train a sex-specific multi-fidelity arrhythmogenic risk

classifier. Our study reveals that sex differences in ion channel activity, tissue conductivity,

and heart dimensions trigger longer QT-intervals in women than in men. We quantify

the critical drug concentration for dofetilide, a high risk drug, to be seven times lower

for women than for men. Our results emphasize the importance of including sex

as an independent biological variable in risk assessment during drug development.

Acknowledging and understanding sex differences in drug safety evaluation is critical

when developing novel therapeutic treatments on a personalized basis. The general

trends of this study have significant implications on the development of safe and

efficacious new drugs and the prescription of existing drugs in combination with

other drugs.

Keywords: multiscale modeling and simulation, cardiac electrophysiology, machine learning, multi-fidelity

Gaussian process classification, active learning, sex differences, arrhythmia, drugs

1. INTRODUCTION

It is well-established that there are important discrepancies between male and female cardiac
electrophysiology. Electrocardiogram differences between men and women include a faster resting
heart rate in women, a longer corrected QT interval, and a lower QT dispersion (James et al., 2007;
Yarnoz and Curtis, 2008). Despite an increasing recognition, essential knowledge gaps remain in
the mechanistic understanding of these sex differences, warranting further investigation (Asatryan
et al., 2021). Here, to focus, we demonstrate the effect that sex differences play for one particular
example, drug-induced arrhythmogenicity.

Drugs often have undesired side effects. In the heart, they can induce global changes in the
electrical activity of the tissue by interacting with specific ionic channels in cardiac cells. Doing
so, some compounds can induce arrhythmia known to precipitate into ventricular fibrillation
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and sudden cardiac death. These arrhythmia are typically
associated with drugs that prolong the repolarization stage
of the cardiomyocyte action potential (Po et al., 1999).
Consequently, before any drug can enter the market, its pro-
arrhythmic risk needs to be assessed. Currently, the gold standard
for cardiac safety assessment focuses on the experimental
measurement of the pharmacological block of the rapid delayed
potassium rectifier current in single cell experiments (Redfern
et al., 2003) and electrocardiographic analyses looking for QT
prolongation in animal models or humans (Gintant et al., 2016).
These biomarkers show good sensitivity but low specificity,
potentially preventing useful drugs to reach the market (Sager,
2008). Moreover, these risk assessment procedures are slow
and expensive to conduct. A recent initiative of regulatory
agencies, drug design companies, and cardiovascular researchers
suggested to address these limitations by new mechanistic
assays that predict the pro-arrhythmic risk of new drugs using
computational modeling (Sager et al., 2014). In response to
this initiative, a collection of novel mechanistic computational
paradigms for drug-induced arrhythmogenesis prediction have
been proposed ranging in complexity from ventricular myocyte
models (Mirams et al., 2011; Passini et al., 2017) to transmural
cable simulations (Moreno et al., 2013; Romero et al., 2018),
and from planar and cubic tissue slabs (Kubo et al., 2017;
Yang et al., 2020; Margara et al., 2021) to ultra-high resolution,
multiscale heart models (Wilhelms et al., 2012; Okada et al.,
2015; Sahli Costabal et al., 2018a; Hwang et al., 2019). Over the
past few years, these physics-based modeling approaches have
been increasingly combinedwithmachine learning approaches to
further improve mechanistic arrhythmogenic risk classification
(Lancaster and Sobie, 2016; Polak et al., 2018; Sahli Costabal et al.,
2019a,c).

Even though drug-induced arrhythmogenicity has been
reported to occur twice as often in women than in men
(Makkar, 1993; Coker, 2008), the role that sex differences play in
arrhythmogenic risk classification remains largely understudied.
Current computational mechanistic risk predictors use
mathematical models of cardiac cells calibrated on in vitro
studies, that often tend to be male-dominated (Ramirez et al.,
2017). As such, sex bias can be expected to propagate through
these models into the actual risk stratification. Consequently,
there is a strong need to study the multiscale sex differences
in cardiac electrophysiology and how these discrepancies
translate into sex-specific arrhythmogenic risk stratification in
more detail.

Figure 1 provides a schematic overview of our study. Here,
we build independent male and female low-fidelity cell-scale
and high-fidelity multiscale cardiac electrophysiology exposure-
response simulators incorporating experimentally quantified
sex differences at the subcellular, cellular, tissue and organ
level. Using logistic regression, we studied the pro- and anti-
arrhythmic effects that drug-induced ion channel blocking
has on the male and female heart individually. Combining
high-performance computing and multiscale modeling with
machine learning techniques, including multi-fidelity Gaussian
process classification and active learning, we developed two
sex-specific drug-induced multi-fidelity arrhythmogenic risk

classifiers. Finally, both classifiers were used to quantify the male
and female arrhythmogenic susceptibility of a high, intermediate,
and low risk drug.

2. MATERIALS AND METHODS

2.1. Multiscale Modeling of Cardiac
Electrophysiology
We model the electrophysiological behavior of cardiac
tissue using the monodomain model (Clayton et al., 2011;
Sahli Costabal et al., 2018a). This model’s main variable is the
transmembrane potential φ, the difference between the intra-
and extra-cellular potentials. The transmembrane potential is
governed by a reaction-diffusion equation (Krishnamoorthi
et al., 2014),

φ̇ = div(D · ∇φ)+ f φ , (1)

Here, we introduce the source term f φ which represents the ionic
currents across the cell membrane and the conductivity tensor
D that accounts for a fast signal propagation of D‖ parallel to the
cardiac muscle fiber direction f and a slow signal propagationD⊥

perpendicular to it (Clerc, 1976; Plank et al., 2008; Goktepe and
Kuhl, 2009),

D = D‖f ⊗ f + D⊥[I − f ⊗ f ] (2)

In general, the ionic currents f φ are functions of the
transmembrane potential φ and a set of state variables q(φ)
(Wong et al., 2013; Lee et al., 2016), f φ(φ, q(φ); t) where the
state variables themselves are governed by ordinary differential
equations, q̇ = g(φ, q(φ); t) . The number of currents and state
variables determines the complexity of the cell model and varies
for different cell types. For human Purkinje fiber cells, we adopt
the Stewart model (Stewart et al., 2009) which tracks 14 ionic
currents using 20 state variables

Iion = ICaL + INa + ICab + INab + IKr + IKs + IK1 + Ito

+ If + Isus + INaK + IpCa + IpK + INaCa
(3)

To represent electrophyiological behavior of human ventricular
cardiomyocytes, we adopt the O’Hara-Rudymodel (O’Hara et al.,
2011) with a minor modification (Priest et al., 2016) of the
fast sodium current INa (ten Tusscher et al., 2004). Studies
have shown that this INa substitution leads to a physiological
conduction velocity restitution behavior, with a minor impact
on the action potential behavior (Elshrif and Cherry, 2014). The
resulting model tracks 15 ionic currents defined through a total
of 39 state variables,

Iion = ICaL + INa + ICaNa + ICaK + ICab + INab + IKb + IKr

+ IKs + IK1 + Ito + INaK + IpCa + INaCa,i + INaCa,ss
(4)

To incorporate drug effects into our multiscale models, we
selectively block the relevant ionic currents in the Purkinje and
cardiomyocyte cell models (Sahli Costabal et al., 2018b). These
blocks are informed by experimental patch-clamp experiments
that study the fractional blockage β of different ion channels
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FIGURE 1 | Sex differences in drug-induced arrhythmogenesis: a combined multiscale modeling and machine learning approach. We develop individual

male and female low-fidelity cell and high-fidelity multiscale exposure-response simulators. These simulators take into account differences in subcellular ion channel

activity between men and women for the low-fidelity exposure-response proxy. The high-fidelity model also takes into account sex differences tissue-level conductivity

and organ-scale geometry. We perform an arrhythmic sensitivity study of the male and female heart to drug-specific ion channel blocking and susbsequently combine

low-fidelity cell-scale and high-fidelity multiscale modeling to delineate arrhythmogenic risk classification boundaries for men and women.

at varying drug concentrations (McMillan et al., 2017). We
implement these fractional blockings using fitted Hill-type
equations of the form,

β =
Ch

ICh
50 + Ch

(5)

which are characterized by the exponent h and the concentration
ICh

50 required to achieve a 50% current block. To apply a
specific drug, we select a desired concentration C, calculated the
fractional blockage βion for each considered ion channel, and
scale the corresponding ion current channels by the fractional
blockage [1− β],

I
drug
ion = [1− β]Iion (6)

2.2. Sex-Specific Cardiac
Electrophysiology
2.2.1. Sex-Specific Subcellular Ion Channel Activity
We deduced sex-based differences in ventricular ion channel
activity from the expression level of key cardiac ion channel
subunit proteins, quantified using western blotting, and genes,
assessed through polymerase chain reaction analysis, in endo-
and epicardial ventricular tissue from non-diseased explanted
male and female human hearts (Gaborit et al., 2010). More
specifically, we use the protein expression of NaV1.5 to scale
the late sodium current INaL ion channel activities, the mRNA
expression of ATP2B4 (Ca2+ ATPase 4) to scale the sarcolemmal
calcium pump current IpCa, the protein expression of hERG to
scale the rapid delayed rectifier potassium current IKr, the protein
expression of MinK to scale the slow delayed rectifier potassium
current IKs, the mRNA expression of KCNJ4 (Kir2.3) to scale the
inward rectifier potassium current IK1, the mRNA expression of

SLC8A1 (NCX1) to scale the sodium calcium exchange currents
INaCa,i and INaCa,ss, the mRNA expression of ATP1A1 and
ATP1A3 (Na+/K+ ATPase α1 and α3) expression to scale the
sodium potassium pump current INaK, and themRNA expression
of KCNA5 (KV1.5) expression to scale the background potassium
current IKb. Moreover, we use the the mRNA expression of the
RYR2 gene to scale the activity of the Ca2+ release channels,
the mRNA expression of ATP2A2/SERCA2 (Ca2+ ATPase 2) to
scale the activity of the Ca2+ uptake channels, and the mRNA
expression of CALM3 expression to scale the Ca2+ buffering
capacity through the calmodulin 3 concentration [CMDN].
Table A1 provides an in-depth overview of the sex-specific and
transmurally varying mRNA/protein expression data. To deduce
ion channel activities from the ion channel subunit expression,
we followed transcriptional and functional scaling rules (O’Hara
et al., 2011; Yang and Clancy, 2012).

The baseline endocardial O’Hara-Rudy model was developed,
calibrated and thoroughly validated on experimental data
collected from non-diseased ventricular tissue of 140 human
donors, of which 78 were male. Therefore, we consider this
baseline model to be a linear interpolated, 56% male and
44% female representation of the sex-specific representative
endocardial cell models. By applying this linear interpolation rule
to the aforementioned sex-specificmRNA and protein expression
in the endocardial tissue, we computed the sex-specific ion
channel activity ratio for the endocardial cardiomyocytes
disclosed in Table 1. These ratios are relative scalings to the
ion channel conductivities of the baseline endocardial model.
Based on the transmural electrophysiological heterogeneity of
the healthy human myocardial wall (Drouin et al., 1995;
Glukhov et al., 2010; Okada et al., 2011), we parameterize
three different transmural cell types: endocardial, midwall,
and epicardial cells (O’Hara et al., 2011). To prescribe the
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TABLE 1 | Sex-specific subcellular ion channel activity.

Male Female

Epi Mid Endo Epi Mid Endo

INaL 0.77 1.06 1.06 0.65 0.93 0.93

Ito 4.00 4.00 1.00 4.00 4.00 1.00

IpCa 0.70 1.97 0.79 1.26 3.17 1.27

IKr 1.20 0.88 1.10 0.96 0.70 0.87

IKs 1.16 1.10 1.10 0.93 0.88 0.88

IK1 1.07 1.39 1.07 0.76 1.18 0.91

INaCa,i / INaCa,ss 1.10 1.41 1.01 1.07 1.38 0.99

INaK 0.92 0.70 1.00 0.87 0.70 1.00

IKb 0.82 1.25 1.25 0.42 0.68 0.68

Ca2+ release 1.13 1.68 0.99 0.89 1.72 1.01

Ca2+ uptake 1.33 0.94 0.94 1.85 1.08 1.08

[CMDN] 0.97 0.92 0.92 1.28 1.11 1.11

Sex-specific subcellular ion channel activity. Sex-specific and transmurally varying

subcellular ion channel activity scaling used in computational models based onmRNA and

protein ion channel subunit expression and functional data (Näbauer et al., 1996; Szabó

et al., 2005; Soltysinska et al., 2009; Gaborit et al., 2010; O’Hara et al., 2011; Yang and

Clancy, 2012).

epicardial ion channel activity, we use the reported relative
epi/endo mRNA and protein expression data (Gaborit et al.,
2010), following the expression/current activity correlations
discussed before. To define the midwall ion channel activity,
we implement relative mid/endo and epi/mid ratios (O’Hara
et al., 2011). These ratios were deduced from reported epicardial
vs. midwall protein expression data (Szabó et al., 2005) and
midwall vs. endocardial mRNA expression data (Soltysinska
et al., 2009). Finally, the midwall and epicardial activity
of the transient outward potassium channel Ito was scaled
based on functional patch-clamp data collected on myocytes
isolated from the human non-failing left ventricle (Näbauer
et al., 1996). The complete set of sex-specific and transmurally
varying ion channel activity ratios relative to the baseline
endocardial model can be found in Table 1. Given the current
lack of an extensive experimental human dataset on genetic,
transcription, or functional sex differences in ion channel
activity for Purkinje fibers, we do not introduce any sex-specific
ion channel scaling in the baseline Purkinje cell model by
Stewart et al. (2009).

The baseline Purkinje and sex-specific endo-, mid- and
epicardial temporal transmembrane potential evolutions is
computed by solving Equations (3) and (4), and their intrinsic
systems of ordinary differential equations governing channel-
specific gating variables in Myokit (Clerx et al., 2016). To
achieve a steady state, we prepace each cell type for 1,000
cycles at a frequency of 1 Hz and then simulate five additional
beats. To study the cellular restitution behavior, we compare
the action potential duration at 90% repolarization after steady
state S1 pacing at cycle length 1,000 ms, followed by a single
S2 extrasystolic stimulus delivered at various diastolic intervals
ranging between 0 and 1,000 ms.

2.2.2. Sex-Specific Tissue Conductivity
We introduce tissue-level differences between both sexes by
rescaling the average anisotropic conductivities parallel, D‖,
and perpendicular, D⊥, to the myofiber directions f . These
scalings are informed by the sex-specific mRNA expression
of connexin43, the primary ventricular gap-junction subunit
(Dhillon et al., 2013). Assuming D‖ = 0.090 mm2/ms and
D⊥ = 0.012 mm2/ms (Niederer et al., 2011) represents the
anisotropic conductivity in the average, 50% male / 50% female,
human heart, the 50% higher connexin43 expression in male vs.
female cardiomyocytes (Gaborit et al., 2010) leads to D‖ = 0.108
mm2/ms and D⊥ = 0.014 mm2/ms, and D‖ = 0.072 mm2/ms
and D⊥ = 0.010 mm2/ms, for male and female myocardial
tissue, respectively.

2.2.3. Sex-Specific Organ Geometry
To model the multiscale cardiac electrophysiological behavior
across the male and female heart, respectively, we discretize
the governing Equations (1)–(4) in space using finite elements
(Goktepe and Kuhl, 2009) and in time using finite differences
(Sahli Costabal et al., 2018a). Temporally, we utilize an explicit
time integration scheme for both the reaction-diffusion equation
(Equation 1) and the Purkinje and cardiomyocyte (Equations 3
and 4) ionic models, with a fixed time step size 1t = 0.005 ms.
Spatially, we use a full three-dimensional representation of the
human ventricles, created from magnetic resonance images of a
healthy, 21-year old, 50th percentile U.S. male (Baillargeon et al.,
2014; Zygote Media Group Inc., 2014; Peirlinck et al., 2021). We
infer the female geometry as a 90% isometric scaling of the male
geometry, following the reported average female to male adult
left ventricular mass ratio of 72% (de Simone et al., 1995). Both
geometries are subdivided using linear hexagonal finite elements
with a constant edge length of 0.3 and 0.27 mm for the male
and female model, respectively. This results in 6,878,459 regular
linear hexagonal finite elements, with a total of 7,519,918 nodes.
By solving a series of Laplace problems with different essential
boundary conditions on this solid mesh (Perotti et al., 2015), we
incorporate the transmural heterogeneity of the ventricular wall
as showcased in Figure 2. This 20% endocardial, 30% midwall,
50% epicardial tissue arrangement ensures positive T-waves to
simulate a healthy baseline electrocardiogram (Okada et al.,
2011). In a similar fashion, we assign local myofiber orientations
f to each and every element, accounting for the heart’s intrinsic
myofiber architecture (Lombaert et al., 2012; Peirlinck et al.,
2018). We generate the Purkinje fiber network by growing a
fractal tree on the endocardial surface of the heart (Sahli Costabal
et al., 2015), and discretize it using 39,772 linear cable elements
and 39,842 nodes. The terminals of this network are connected
to the ventricular myocardium using 3545 resistor elements with
a resistance of 1.78�m (Niederer et al., 2011). We excite the
Purkinje network at the atrioventricular node every second, and
study the excitation profile of the heart over a period of 5,000
ms. To solve the resulting system of equations, we use the finite
element software package Abaqus (Dassault Systèmes Simulia
Corp., 2020), typically taking 24 h using 240 CPUs (Towns et al.,
2014). In this verified implementation (Niederer et al., 2011;
Sahli Costabal et al., 2019c), we exploit the structural similarities

Frontiers in Physiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 708435

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Peirlinck et al. Sex Differences in Drug-Induced Arrhythmogenesis

FIGURE 2 | Sex-specific multiscale exposure-response simulators. Male and female human heart model created from high resolution magnetic resonance

images of a healthy male adult and isogeometrically scaled according to the average adult male/female ventricular mass ratio. The ventricular walls are discretized with

6,878,459 regular linear hexagonal finite elements. The Purkinje fiber networks are discretized with 39,772 linear cable elements and are connected to the ventricles at

their terminals through 3,545 resistor elements. Endocardial, midwall, and epicardial cells are marked in median, light and dark green and purple, respectively; Purkinje

cells are shown in black. Long-axis transmural slices are shown in the anterior view representations. Short-axis transmural slices are shown in the enlarged posterior

views.

between the continuum equations and a classical heat transfer
problem with a non-linear heat source (Sahli Costabal et al.,
2018a).

Finally, we post-process the spatiotemporal excitation profiles
to calculate pseudo-electrocardiograms φe (xe) at a virtual
precordial electrode location xe two centimeters away from the
left ventricular wall (Kotikanyadanam et al., 2010; Sahli Costabal
et al., 2018b). In summary, at every point x of the heart,
we project the gradient of the transmembrane potential ∇φ

onto the direction vector ∇(1/‖r‖) with r = xe−x, and
integrate this projection across the entire cardiac domain �:
φe (xe) = −

∫

�
∇φ · ∇(1/‖r‖)dV. We manually labeled

the electrophysiological behavior as non-arrhythmogenic or
arrhythmogenic, based on the absence or presence of non-regular
chaotic twisting QRS complexes during the last five simulated
beats. These electrocardiographic hallmarks of arrhythmogenesis
are caused by regional early afterdepolarizations overtaking the
regular depolarization wave initiated by the Purkinje network.

2.3. Data-Driven Arrhythmogenic Risk
Classification
Using the male and female multiscale cardiac electrophysiology
models, we develop two sex-specific arrhythmogenic risk
classifiers based on drug- and dose-specific ion channel
blockage. Given the high computational cost of evaluating

arrhythmogenesis for a single full organ-scale and drug-induced
ion-channel blockage combination, we combine multiple
machine learning techniques to create and train sex-specific
arrhythmogenic drug risk classifiers. We first narrow the drug
effect parameter space by studying the cellular drug sensitivity
to various ion channel blockings. For this sensitivity analysis,
we use multivariable logistic regression techniques, as they have
been proven to be computationally more efficient than one-at-a-
time parameter sensitivity analyses (Lee et al., 2013) and highly
suitable for studying processes with binary outcomes (Morotti
and Grandi, 2017). Next, we apply the developed sex-specific
high-fidelity multiscale exposure-response simulators to quantify
the risk of drug-induced arrhythmogenesis within the identified
critical drug-induced ion channel blocking parameter space. To
reduce the computational cost of exploring this parameter space,
we develop and train multi-fidelity risk classifiers that have
been shown to outperform single high-fidelity risk classifiers
(Sahli Costabal et al., 2019b). More specifically, we combine
low-fidelity mid-wall cardiomyocyte simulations and high-
fidelity heart simulations to train a Gaussian process classifier
that characterizes the probability of arrhythmogenicity based
on the two most important ion channel blockage features for
arrhythmogenesis. Using active learning, we maximize the
information gained by each possible low-and high-fidelity
sample we evaluate, keeping the computational costs of training
our arrhythmogenic risk classifiers as low as possible.
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2.3.1. Sensitivity to Drug-Induced Ion Channel

Blockage
To explore the male and female arrhythmogenic sensitivity
to drug-induced ion channel blocking in a computationally
tractable way, we focus on seven specific ion channel currents
IKr, INa, INaL, ICaL, IKs, Ito, and IK1 identified to be important
in both depolarization and repolarization of the cardiac action
potential (Crumb et al., 2016; Fermini et al., 2016). As it has
been shown that early afterdepolarizations and repolarization
abnormalities are a precursor of arrhythmia at the cellular
level (Qu et al., 2013), we identify which channels have the
most significant impact on de- and repolarization abnormality
development (Sahli Costabal et al., 2020). We systematically
create 10,000 cellular drug-blocking samples by performing
Latin hypercube sampling on a seven-dimensional blockage
parameter space [0.0, 0.95]7, resulting in a sample set B =

{βKr,βNa,βNaL,βCaL,βKs,βto,βK1} ∈ [0.0, 0.95]10,000×7. For
each sample, we pre-pace the male and female cell model for
1,000 cycles at a frequency of 1Hz, and subsequently simulate the
corresponding ion channel blockage effect on the cardiomyocyte
action potential.We do this for themale and femalemidwall cells,
as previous work has shown that arrhythmogenic risk assessment
is particularly sensitive tomidwall cell distributions (Antzelevitch
and Sicouri, 1994; Sahli Costabal et al., 2018b). For each sample,
we define de- or repolarization abnormalities as the occurrence
of a change in potential greater than 0.1 mV/ms, or the
transmembrane potential not dropping below −40 mV, between
the 50 and 1,000 ms time marks of each beat (Sahli Costabal
et al., 2019c). Subsequently, we perform a male and female
logistic regression trained on the blockage samples and the
post-processed absence/presence of abnormalities. By extracting
the marginal effects (Norton et al., 2019), we quantify the
arrhythmogenic risk of each channel blockade and select the two
most important opposing anti-arrhythmic and pro-arrhythmic
ion channel blocking feature β− and β+ for arrhythmogenic
risk classification.

2.3.2. Gaussian Process Risk Classification

Single-Fidelity Gaussian Process Classifier
We use physics-based electrophysiological modeling (section
2.1) to generate a dataset comprised of cell- or whole heart
input/output pairs

D =
{

(

xi, yi
)N

i=1

}

= {X, y}. (7)

Here, the inputs xi contain the twomost important drug-induced
ion channel blocking arrhythmogenicity features brought
forward in section 2.3.1. We set the most anti-arrhythmic β−

and pro-arrhythmic β+ ion channel blocking feature to vary
between 0 and 95%. As such, X = {β−,β+} ∈ [0.0, 0.95]N×2

for N training samples. In this arrhythmogenic risk assessment,
the outputs yi can only take on two binary values: zero and one,
representing the absence or presence of de- and repolarization
abnormalities for cell level simulations and arrhythmogenesis for
whole heart simulations. As such, y ∈ {0, 1}N .

To set up the Gaussian process classifier, we put forward
a latent function f (x) (Rasmussen, 2004) and standardize our

dataset D so we can work with a zero-mean Gaussian process
(GP) prior of the form

f ∼ GP
(

0, k
(

x, x′ ; θ
))

. (8)

Here, k (·, · ; θ) is a covariance kernel function depending
on a set of parameters θ , which we will determine using
Bayesian inference, ex infra. By passing the Gaussian process
output f through a logistic sigmoid warping function σ , we
constrain the output to [0, 1]. These outputs entail meaningful
class probabilities.

To set up our Bayesian inference framework, we define the
conditional class probability as

π(x) = p(y = 1 | x) = σ (f (x)) (9)

and assume the class labels are independent according to
a Bernoulli likelihood with probability σ (y) (Nickisch and
Rasmussen, 2008). Following our prior work (Sahli Costabal
et al., 2019b), we choose an automatic-relevance determination
squared exponential kernel,

k
(

x, x′ ; θ
)

= η exp

[

−

M
∑

m=1

(

xm − x′m
)2

/
(

2ℓ2m
)

]

(10)

parameterized by θ : = {η, ℓ1, . . . , ℓM}. We set η ∼

HalfNormal(σ = 5) and ℓm ∼ Gamma(α = 2,β = 2) for m =

1, . . . ,M length scales as weakly informative prior distributions.
Lacking an analytic solution for the posterior distribution, we
resort to approximate-inference techniques to calibrate this
model on the available generated data. Here, we use the NO-U-
Turn sampling algorithm (Hoffman and Gelman, 2014), which is
a self-tuningMarkov Chain variant of HamiltonianMonte Carlo,
as implemented in PyMC3 (Salvatier et al., 2016).

To utilize the Gaussian process classifier for arrhythmogenic
risk stratification, we use the resulting posterior θ distribution to
make class predictions y∗ at new locations x∗. We first compute
the predictive random variable f ∗(x∗) using the covariance
matrix K ∈ R

N×N , which we obtain from evaluating the kernel
function at the location of the input training data. Next, we
sample f ∗ from the estimated posterior distributions. Finally, we
run these f ∗ evaluations through the logistic sigmoid function σ

to obtain a distribution of class probabilities y∗ (Sahli Costabal
et al., 2019b).

Multi-Fidelity Gaussian Process Classifier
We employ physics-based electrophysiological modeling (section
2.1) to generate a dataset

D =
{[

(

xLi , yLi
)NL

i=1

]

,
[

(

xHi , yHi

)NH

i=1

]}

=
{

[XL,XH] ,
[

yL, yH
]}

= {X, y}
(11)

comprised of NL low-fidelity midwall cell input/output pairs
and NH high-fidelity whole heart input/output pairs. Both
low- and high-fidelity input sets explore the two-dimensional
[0.0, 0.95]2 ion channel blockage parameter space identified in
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section 2.3.1. Both low-and high-fidelity outputs comprise binary
variables yLi , yHi = {0, 1}.

We model the cross-correlation structure between the low-
and high-fidelity level using an autoregressive model for the
latent function fH (Kennedy, 2000),

fH(x) = ρfL(x)+ δ(x) (12)

where ρ is a scalar parameter that needs to be inferred, capturing
linear correlations between the high- and low-fidelity levels. The
function δ aims to capture the bias in the predictions of the low-
fidelity level. To complete the Gaussian model framework, we
assume independent Gaussian priors for

δ ∼ GP
(

0, k
(

x, x′; θH
))

(13)

fL ∼ GP
(

0, k
(

x, x′; θL
))

(14)

where k (·, · ; θH) and k (·, · ; θL) are automatic-relevance
determination squared exponential kernels conform Equation
(10), resulting in parameters θH : =

(

ηH , ℓH1 , . . . , ℓHM

)

, and
θL : =

(

ηL, ℓL1 , . . . , ℓLM
)

. To infer these parameters and the
aforementioned scalar factor ρ, we set ηH , ηL ∼ HalfNormal
(σ = 5), ℓHm , ℓLm ∼ Gamma(α = 2,β = 2) with m = 1, . . . ,M
length scales and ρ ∼ Normal(µ = 0, σ = 10) as weakly
informative prior distributions. We perform Bayesian inference
following the same approach as for the single-fidelity Gaussian
process classifier before.

2.3.3. Active Learning
Given the high computational cost of our multiscale cardiac
electrophysiology simulations, we apply an active learning
strategy to maximally enhance the accuracy of our single- and
multi-fidelity arrhythmogenic risk classifiers with a minimal
amount of additional sample evaluations in the studied
parameter space. More specifically, we exploit the posterior
uncertainty estimates of our Bayesian models to select the next
sampling point expected to increase the accuracy of our classifier
the most.We pick the next sampling point based on the following
minimization problem:

xnew = argmin
x∈Xcand

|µ̂(x)|
√

6̂(x)
(15)

where µ̂ and 6̂ are the Monte Carlo estimates of the mean and
variance of f (x). Here, we apply Latin hypercube sampling to
generate a set of 1,000 candidate locations Xcand to sample. Next,
we compute the electrophysiological response and class label ynew

for the selected sample xnew, and add this input/output pair to
the dataset. We subsequently re-train the classifier for this new
dataset and repeat this process until we reach a well-defined
classification border or computational resources are depleted
(Sahli Costabal et al., 2019b).

2.3.4. Multi-, Low-, and High-Fidelity Arrhythmogenic

Risk Classification
We start by training a male and female single-fidelity classifier
based on low-fidelity mid-wall cell simulations. We explore

the input space with 25 Latin hypercube samples and evaluate
whether or not the resulting ion channel blockings lead to de-
or repolarization abnormalities as defined in section 2.2.1. We
train a single-fidelity classifier based on this dataset D (Equation
7) and further explore and exploit the resulting low-fidelity
arrhythmogenesis classification boundaries using 25 additional
active learning samples.

Next, we combine the 50 low-fidelity input/output pairs with
10 Latin hypercube drug blocking sample evaluations of the full
heart models as described in section 2.2.3. We use this combined
low- and high-fidelity dataset D (Equation 11) to train a multi-
fidelity arrhythmogenic risk classifier. Subsequently, we improve
the accuracy of the classification boundary using 15 additional
high-fidelity active learning sample evaluations.

2.4. Drug Risk Stratification
Using our multi-fidelity arrhythmogenicity classification
boundary, we estimate the arrhythmogenic risk of three drugs,
a high, intermediate and low risk drug (Li et al., 2018), by
computing the critical drug concentration at which arrhythmia
will start developing. We select three drugs for which the
concentration-block response curve is well-described (McMillan
et al., 2017) for the two cardiac currents that have the most
significant impact on arrhythmogenic risk prediction (section
2.3.1). The critical drug concentration is found at the intersection
of the multi-fidelity arrhythmogenesis classification boundary
and the two-dimensional concentration-block trajectory
described by Equation (5). If the drug’s concentration-block
trajectory does not cross the risk boundary, that drug can be
considered safe for the studied sex.

3. RESULTS

3.1. Sex-Specific Cardiac
Electrophysiology
3.1.1. Cell Level Differences
Figure 3 highlights the sex differences in electrophysiological
behavior for endocardial, midwall and epicardial cells based on
the experimentally quantified ion channel activity discussed in
section 2.2.1. Here, the green and purple lines represent the male
and female action potential evolutions, respectively. The black
line in the endocardial cell subplot represents the action potential
profile for the baseline O’Hara-Rudy model for the endocardial
cell, which results from the underlying 56/44% interpolation of
the male and female ion channel activities disclosed in Table 1.
Relative to male cells, the female sex-specific baseline action
potential durations are substantially larger for all transmural cell
types. More specifically, the male and female endocardial action
potential duration at 90% repolarization at 1 Hz pacing amounts
to 233 and 314 ms, respectively. Similarly, it takes 309 and 379
ms for male and female midwall cells, and 221 and 296 ms for
male and female epicardial cells to repolarize, respectively. The
male and female endocardial action potential duration restitution
amounted to 208 and 270 ms at a diastolic interval of 100 ms,
to 217 and 284 ms at a diastolic interval of 200 ms, and 229
and 309 ms at a diastolic interval of 500 ms. Similarly, male and
female action potential duration restitution for the midwall cell
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FIGURE 3 | Sex differences in transmural ventricular cardiomyocyte behavior. Sex-specific differences in endocardial, midwall and epicardial ventricular action

potentials based on the experimentally quantified differences in ion channel activity. The green and purple lines represent the male and female steady state action

potentials (Top) and action potential duration restitution curves (Bottom) for each transmural cell line. For the endocardial cell, the baseline steady-state action

potential evolution and restitution curve of the calibrated and validated O’Hara-Rudy model for the 56% male / 44% female mixed-population is shown in black.

lines amounted to 262 and 348 ms, 275 and 358 ms, and 301 and
371 ms for diastolic intervals 100, 200, and 500 ms, respectively.
For the epicardial cell lines, we computed male and female action
potential duration restitutions of 204 and 272 ms, 215 and 280
ms, and 233 and 288 ms for diastolic intervals 100, 200, and 500
ms, respectively.

3.1.2. Organ Level Differences
Figure 4 showcases the baseline spatiotemporal excitation profile
for the male and female heart. The ten snapshots illustrate the
combined effect that sex-differences in subcellular ion channel
activity, tissue-level conductivity and organ-scale geometry
have on the spatiotemporal transmembrane potential evolution,
without the effect of any drugs. In both the male and female
heart, the Purkinje network drives a sharp depolarization front
propagating rapidly from apex to base and across the heart.
At 100 ms, both the male and female ventricles are fully
excited. In the male heart, the repolarization phase, during
which the heart returns to its resting state, is finished between
300 and 400 ms. For the female heart, this repolarization
takes longer, finishing between 400 and 500 ms. The exact
duration between the beginning of the depolarization and the
end of the repolarization is showcased in the electrocardiogram
recordings computed for the male and female baseline heart
model in Figure 5. The QRS complex lasts 73 and 69 ms
for the male and female heart, respectively. This difference
in QRS duration was mainly driven by the smaller female
vs. male heart size and reduced conductivity. In parallel, the
prolongation of the T wave with respect to the end of the

QRS complex results mainly from the sex-specific differences
in ion channel activity at the subcellular level. The multiscale
combined effect of these sex differences amounts to QT
intervals of 348 and 411 ms for the male and female baseline
heart, respectively.

3.2. Sex-Specific Drug-Response
Characteristics
Figure 6 represents the male and female anti- or pro-arrhythmic
sensitivity to drug-induced ion channel blocking. As can be
seen in the upper two plots, the female midwall cells are
more sensitive to drug-induced ion channel blocking than male
midwall cells. For the same set of ion channel blocking samples
B = {βKr,βNa,βNaL,βCaL,βKs,βto,βK1} ∈ [0.0, 0.95]10,000×7,
we recorded 760 and 4,450 abnormalities for the male and female
midwall cell, respectively.

The lower panel plots in Figure 6 depict the normalized
marginal effects of drug-induced ion channel blocking on de- and
repolarization abnormalities. For both male and female midwall
cardiomyocytes, IKr blocking has a strong pro-arrhythmic effect,
whilst ICaL blocking has the largest anti-arrhythmic strength.
The male and female normalized marginal effect of L-type Ca2+

channel blocking amounted to −0.272 and −0.190, respectively.
As such, we selected drug-induced blocking of the rapid delayed
rectifier potassium current, βKr, and the L-type Ca2+ current
channel, βCaL as the two main pro-arrhythmic and anti-
arrhythmic input features β+ and β− for our male and female
arrhythmogenic risk classifier.
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FIGURE 4 | Baseline spatiotemporal excitation profiles for the male and female heart. Evolution of the transmembrane potential for the male and female heart

without drugs. Snapshots are taken from the last simulated beat. During depolarization, the Purkinje fibers drive the sharp depolarization front from apex to base.

During repolarization, both ventricles gradually return to their resting state. The combined sex-differences in ion channel activity, tissue conductivity and organ-scale

geometry lead to a slower depolarization in the female heart than the male heart.

FIGURE 5 | Baseline electrocardiogram recordings for the male and

female heart. Electrocardiogram recordings for the male and female heart

models without drugs. Both male and female electocardiograms display

regular periodic activation patterns, as shown in the upper right inlay plot. The

repolarization delay between the male and female heart is shown in more detail

in the main plot, focusing on the first 500 ms of the last simulated beat. The

resulting male and female QT interval amounted to 348 and 411 ms,

respectively, as shown in the lower right inlay plot.

3.3. Sex-Specific Risk Classifiers
In training our multi-fidelity arrhythmogenic risk classifiers,
we first trained a single fidelity de- and repolarization
classifier for the male and female midwall cell, respectively.
Figures A1, A2 summarize the de- and repolarization
abnormality classification boundary delineation in the

studied {βCaL,βKr} parameter space. The upper panel
plots showcase the initial exploration phase to train these
Gaussian process classifiers. The lower panel plots depict
the subsequent exploration and exploitation phase through
active learning.

The subsequent training and development of the male
multi-fidelity arrhythmogenic risk classifier is showcased in
Figure 7. The upper panel plots showcase the evaluation
of 10 high-fidelity evaluations of {βCaL,βKr} on male drug-
induced arrhythmogenesis. Left, the virtual electrocardiograms
showcase the effect that various drug-induced ion channel
blocking combinations have on the male heart. Here, only one
exploratory sample (βCaL = 6.7%, βKr = 92.6%) resulted in
reentrant arrhythmia in the male heart. The other {βCaL,βKr}

combinations affected the QT interval, but did not lead to
arrhythmogenesis. In the upper middle plot, the NL = 50
low-fidelity evaluations are shown together with the first 10
exploratory high fidelity arrhythmogenicity classifications. On
the upper right, the initial multi-fidelity Gaussian process risk
classifier for male arrhythmogenesis is shown. Concomitantly,
Figure A3 showcases a male single-fidelity risk classifier, only
taking into account these high-fidelity arrhythmia development
evaluations. Comparing the upper panel plots of Figure 7 with
Figure A3, it can be seen that taking the low-fidelity classification
data into account in training a Gaussian process classifier
significantly aids the precision of the high-fidelity classifier with
a limited amount of samples. This is the power of multi-fidelity
Gaussian process classification. In the lower panel plots of
Figure 7, we showcase the multiscale evaluation of 15 additional
high-fidelity active learning samples. These samples allowed us
to capture the bias in the low-fidelity predictions (see Equation
13) showcased in more detail in Figure A5 (left). The virtual
electrocardiogram recordings of a subset of these active learning
samples, four arrhythmic and four non-arrhythmic samples, are
shown in the lower left and mid plots, respectively. Finally, the
fully explored and exploited male multi-fidelity arrhythmogenic
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FIGURE 6 | Sex-specific sensitivity analysis drug-induced ion channel blocking on de- and repolarization abnormalities. (Upper) The effect of

drug-induced ion channel blocking on the male (left) and female (right) midwall transmembrane potential evolution. The black lines represent the baseline male and

female action potential, without any ion channel blocking. The green and purple lines represent the transmembrane potential evolution for 5,000 distinct IKr, INa, INaL,

ICaL, IKs, Ito, and IK1 ion channel blocking combinations. (Lower) Normalized marginal effects of ion channel blocking on early afterdepolarizations development in

male (left) and female (right) midwall cells. Negative normalized marginal effects highlight ion channel blocking leading to anti-arrhythmic effects, whilst positive

marginal effects highlight the ion channels for which drug-induced blocking can have important pro-arrhythmic consequences.

risk classifier is shown in the lower-right plot, with NL = 50 and
NH = 25 low- and high-fidelity risk evaluations, respectively.

Figure 8 showcases the training of the female multi-fidelity
arrhythmogenic risk classifier. In evaluating 10 high-fidelity Latin
hypercube samples, five ion channel blocking samples drove the
female heart to arrhythmogenesis, as shown in the upper middle
plot. The electrocardiograms of two arrhythmic and two non-
arrhythmic samples are shown in the upper left plots. The upper
right plot depicts the initial female multi-fidelity drug-induced
arrhythmogenicity classifier, taking into account all low-fidelity
abnormality classification samples and the first 10 exploratory
high-fidelity drug-induced arrhythmogenesis evaluations. Again,
comparing this multi-fidelity classifier to the single-fidelity
multiscale classifier shown in Figure A4 showcases the power of
multi-fidelity Gaussian process risk classification. Through active
learning, the low- to multi-fidelity bias (Equation 13) is inferred
from 15 additional high-fidelity arrhythmogenic risk evaluations
and depicted in Figure A5. Compared to the male heart, our
results showcase a larger low- to multi-fidelity bias for the
female heart. The lower left and mid plots in Figure 8 delineate
the virtual electrocardiograms of four arrhythmogenic and
four non-arrhythmogenic high-fidelity active learning sample

evaluations, respectively. The final female multi-fidelity drug-
induced arrhythmogenic risk classifier is shown in the lower-
right plot.

Both male and female multi-fidelity drug-induced
arrhythmogenicity classifiers highlight the pro-arrhythmic
effect of IKr ion channel blocking and the anti-arrhythmic effect
of ICaL ion channel blocking. For the male heart, we predict
drug-induced arrhythmogenicity at 81.7% IKr blocking when
there is no ICaL blocking. At 25.0, 50.0, and 75.0% ICaL blocking,
the critical βKr is 83.8, 88.6, and 94.6%, respectively. For 100%
ICaL blocking, no arrhythmia develops, regardless of the amount
of IKr blocking. For the female heart, our risk classifier predicts
drug-induced arrhythmogenesis at 43.7% blocking without any
ICaL blocking. For 25.0, 50.0, 75.0, and 100% ICaL blocking,
arrhythmia develops at 48.1, 52.2, 56.5, and 59.9% IKr blocking,
respectively. Overall, the female heart can be expected to be
significantly more prone to drug-induced arrhythmogenicity.

3.4. Sex-Specific Drug Risk Stratification
Figure 9 demonstrates how we use our male and female
multifidelity arrhythmogenicity classification boundary to
perform a sex-specific drug risk assessment. More specifically, we
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FIGURE 7 | Male multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the male drug-induced arrhythmogenic risk parameter

space. The first 10 internal Latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for male drug-induced arrhythmogenicity, as showcased

in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity male midwall Gaussian process classifier are shown with “x”

markers. Virtual electrocardiograms of one arrhythmic and three normal {βKr,βCaL} samples are shown in the upper left column plots. The resulting drug-induced

arrhythmogenicity probabilities for the male heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the male drug-induced

arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning high-evaluations of

{βKr,βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower panel middle plot showcases four additional sample

evaluations showcasing normal heartbeats. The final male multi-fidelity drug-induced arrhythmogenicity classification boundary is shown in the lower right plot.

calculate the drug-induced arrhythmogenic risk for dofetilide, a
high risk drug, chlorpromazine, an intermediate risk drug, and
diltiazem, a low risk drug. For each of these drugs, the drug-
specific color-coded block-concentration characteristics map
onto a trajectory in the βCaL/βKr plane. The intersection of this
trajectory with our trained classification boundary defines the
critical drug concentration at which arrhythmia can be expected
to develop. For dofetilide, the block-concentration curve
crosses the male and female arrhythmogenicity classification
boundary at 26.0x and 3.5x the drug’s effective free therapeutic
plasma concentration, respectively. For chlorpromazine, the
block-concentration curve does not cross the male classification
boundary, signifying this drug can be considered safe for men.
For women, the chlorpromazine block-concentration and
classification boundary intersect at a critical concentration of

80.1x. For diltiazem, the block-concentration trajectory does not
cross the male, nor the female arrhythmogenicity classification
boundary, showcasing this drug to be safe for both sexes.

4. DISCUSSION

4.1. Our Motivation for Multiscale Modeling
Until recently, the gold standard to assess pharmacological
pro-arrhythmic risk consisted of assessing the potential of a
drug (1) to cause pharmacological block of the rapid-delayed
rectifier potassium IKr current encoded by the human ether-
à-gogo related gene and (2) to prolong the QT interval in
electrocardiographic animal and human studies. Although these
biomarkers show good sensitivity, they are costly and have
poor specificity, potentially blocking safe new drugs from
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FIGURE 8 | Female multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the female drug-induced arrhythmogenic risk

parameter space. The first 10 internal Latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for female drug-induced arrhythmogenesis, as

showcased in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity female midwall Gaussian process classifier are

shown with “x” markers. Virtual electrocardiograms of two arrhythmic and two non-arrhythmic {βKr,βCaL} samples are shown in the upper left column plots. The

resulting drug-induced arrhythmogenicity probabilities for the female heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the

female drug-induced arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning

high-evaluations of {βKr,βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower middle plot showcases four additional

non-arrhythmic sample evaluations. The final female multi-fidelity drug-induced arrhythmogenic risk classification boundary is shown in the lower right plot.

ever reaching the market (Sager, 2008). In response to this
problem, the Comprehensive in vitro Proarrhythmia initiative
was launched (Sager et al., 2014). This incentive aimed to
develop novel drug-induced arrhythmia biomarkers through a
combined in vitro and in silico approach. in vitro, insights into
the effect of drugs on multiple ion channels in the cardiomyocyte
were collected. In silico, these insights were used to develop
a mechanistic understanding how these ion channel blockings
affect cardiac electrophysiology and function. Over the past
decade, our in silico mechanistic understanding of the effects of
drugs on cardiac electrophysiology has taken big leaps forward.
As such, drug cardiotoxicity has been extensively studied in
ventricular myocyte models (Mirams et al., 2011; Passini et al.,
2017), transmural cable simulations (Moreno et al., 2013; Romero
et al., 2018), planar and cubic tissue slabs (Kubo et al., 2017;

Yang et al., 2020; Margara et al., 2021), and even ultra-high
resolution, multiscale heart models (Wilhelms et al., 2012;
Okada et al., 2015; Sahli Costabal et al., 2018a; Hwang et al.,
2019). Within this paradigm, multiple groups have used such
models to develop arrhythmogenic risk classifiers. These in
silico augmented biomarkers showcase improved sensitivity and
specificity with respect to the gold standard human ether-à-gogo
and QT prolongation guidelines (Passini et al., 2017; Li et al.,
2019). Currently, these in silico arrhythmogenicity biomarkers
focus mainly on lower-fidelity isolated cardiac cell models
(Lancaster and Sobie, 2016; Britton et al., 2017; Fogli Iseppe et al.,
2021) or simplified cable simulations (Polak et al., 2018; Romero
et al., 2018; Yang et al., 2020). The underlying motivation for
such an approach is the role of cellular early afterdepolarizations
and repolarization failures in providing a trigger for the
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FIGURE 9 | Sex-specific drug-induced arrhythmogenic risk assessment. Male (Upper) and female (Lower) drug-induced arrhythmogenic risk assessment for

dofetilide, a high risk drug, chlorpromazine, an intermediate risk drug, and diltiazem, a low risk drug. The color-coded line represents drug-specific

concentration-dependent ICaL/IKr ion channel blocking trajectory, normalized with respect to the drug’s effective free therapeutic plasma concentration. The gray

diamond shaped marker highlights the critical concentration, annotated in the plot’s bottom corner, at which the drug’s block-concentration trajectory crosses the

mean multi-fidelity arrhythmogenicity classification boundary.

development of arrhythmia. Nevertheless, arrhythmogenicity
is not completely governed by, nor exclusively limited to,
depolarization or repolarization abnormalities (Pugsley et al.,
2015). Overall, the spatial dispersion of repolarization within
the ventricular myocardium has been identified as the principal
arrhythmogenic substrate (Antzelevitch and Burashnikov, 2011).
A recent computational multiscale cardiac electrophysiology
study showcased that the electrotonic coupling effect in tissue
is an essential factor to predict drug effects on the living organ
(Kubo et al., 2017). More specifically, computational 2D tissue
slab results revealed no tachyarrhythmia in the presence of early
afterdepolarizations at the cellular level, and arrhythmogenic
induction in between the endocardial and midwall tissue
layers, rather than in the midwall tissue itself. As such, it

can be appreciated that accurate mechanistic understanding of
arrhythmogenesis requires a high-fidelity multiscale modeling
approach coupling the effect of drugs to subcellular ion channel
activity, to cell-to-cell coupling at the tissue scale, and the tissue’s
three-dimensional heterogeneous and anisotropic organization
at the organ scale.

4.2. Our Motivation for Multi-Fidelity
Gaussian Process Classification
The current lack of multiscale computional modeling in the
development of novel in silico augmented arrhythmogenic
risk classifiers can be associated to their computational cost.
Whereas a single cell action potential takes seconds to compute
on a single CPU, a coupled cell-tissue-organ scale exposure-
response simulator can easily take multiple hours to compute
on a high performance computing cluster (Towns et al., 2014;
Sahli Costabal et al., 2018a). Upon developing a risk classifier that
evaluates the arrhythmogenic susceptibility to a whole series of
drugs at multiple drug concentrations, the computational burden
of performing a multiscale evaluation for each case becomes too
high. To overcome this limitation, our study took a different
approach. Instead of evaluating the case-by-case drug- and
concentration-specific response, we trained a risk classifier based
on the most important drug-induced ion channel blockings. We
used a combined multiscale modeling and machine learning
approach, entailing logistic regression, single- and multi-fidelity
Gaussian process classification, and active learning techniques.
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First, we quantified the principal role that drug-affected ion
channel currents play in developing arrhythmia. Using these
insights, we established a two-dimensional drug blocking
parameter space in which we evaluated the arrhythmogenic
susceptibility of various drug-induced ion channel blocking
combinations. Next, we relied on Gaussian process classification
to delineate the arrhythmogenicity border within the considered
parameter space. Given the high computational cost of each
multiscale evaluation, we set up a multi-fidelity framework.
Here, we used cellular midwall cell evaluations as a low-
fidelity proxy for arrhythmogenic risk classification. This low-
fidelity classifier was subsequently used to inform the underlying
shape of the multi-fidelity classifier. Doing so, we minimize
the amount of high-fidelity evaluations within the studied
parameter space, and still end up with a precise multiscale
arrhythmogenic risk classification boundary. This multi-fidelity
ion channel blocking classifier subsequently allows us to post-
process the intrinsic arrhythmogenic risk for each possible drug
and concentration at no additional computational cost, without
losing accuracy of the underlyingmultiscale arrhythmic and non-
arrhythmic classification. We took advantage of the probabilistic
nature of our Gaussian process classifiers to implement an
effective data acquisition via active learning strategies. These
strategies sought a balance between parameter space exploration
and classification boundary exploitation. Consequently, our
methodology allowed us to maximized classifier accuracy under
a constrained computational budget and provided a significant
advantage over other classifiers including logistic regression and
support vector machines.

4.3. Our Motivation for Studying Sex
Differences
About a century ago, sex differences in cardiac electrophysiology
were reported for the first time (Bazett, 1920). Throughout
the past two decades, these insights have matured into the
recognition that female sex is an essential risk factor for multiple
adverse cardiac events (Yarnoz and Curtis, 2008). Especially for
drug-induced arrhythmogenesis, women turn out to be impacted
twice as much as men (Makkar, 1993; James et al., 2007; Coker,
2008). Nevertheless, the effect of sex differences on cardiac
electrophysiology and drug-induced arrhythmogenicity remain
largely underexplored. With current sex-agnostic population-
based models (Muszkiewicz et al., 2016; Li et al., 2019) being
calibrated on in-vitro studies, which tend to be male-dominated
(Ramirez et al., 2017), sex bias is expected to propagate through
these novel in silico augmented arrhythmogenic risk classifiers.
This study sought to take female sex into account as an
independent biological variable by developing two sex-specific
in silico augmented multiscale arrhythmogenic risk classifiers.
To accomplish this, we first extended the multiscale envelope of
studying sex-differences in cardiac electrophysiology beyond the
cell or tissue level (Yang et al., 2017; Fogli Iseppe et al., 2021)
up to the organ scale. Next, we used the developed framework
to delineate male vs. female arrhythmogenic sensitivity to drugs.

4.4. Male vs. Female Cardiac
Electrophysiology Across the Scales
Our male and female cell models were based on a high-
throughput quantitative assessment of genome-scale sex
differences in male and female human endo- and epicardial tissue
(Gaborit et al., 2010). The resulting female endo- and epicardial
action potential duration is significantly longer than the male
action potential durations. Both the male and female endo- and
epicardial action potential durations in this study are smaller
than those computed in other studies (Yang and Clancy, 2012).
Whereas other studies considered the baseline O’Hara-Rudy
model and ion channel conductances to form the male baseline
cell model (Yang and Clancy, 2012), our approach acknowledged
the originally reported data population (O’Hara et al., 2011)
and regarded the baseline model as a mixed 56% male / 44%
female generalized model. Despite these differing views, our
computed action potential durations fall well within the reported
ranges based on experimental variability (Gaborit et al., 2010;
Yang and Clancy, 2012). Similarly, the range of our sex-specific
endo- and epicardial action potential durations are in agreement
with reported populations of ventricular cell models (Britton
et al., 2017). Our midwall cell action potential durations also fall
within the same reported population variability. Averaged over
the three cell types, our simulated female cells take 30% longer
to repolarize than their male counterparts, which is consistent
with the reported 29% relative female-to-male action potential
differences for human ventricular myocytes (Verkerk et al.,
2005). Focusing on the restitution behavior, our reported male
and female action potential durations at 90% repolarization in
Figure 3 agree favorably with previously reported experimental
data for human tissue (Morgan et al., 1992; Drouin et al., 1995;
Li et al., 1998; ten Tusscher et al., 2004; O’Hara et al., 2011).

At the organ scale, the combined effect of sex-specific
cell-scale ion channel activity, tissue-scale conductivity and
organ-scale geometry results in a shorter QRS and longer QT
interval for women. Both results are in agreement with clinical
population studies. Female vs. male QRS shortening of 5 ms,
vs. 4 ms here, and a QT prolongation of 20 ms, vs. 63 ms here,
have been reported in the literature (Vicente et al., 2014). The
mismatch between a recorded 29%AP prolongation and a clinical
QT prolongation of ‘only’ 2-6% has been hypothesized to be
related to the mismatch between single isolated cell behavior and
three-dimensional electrophysiologically coupled heterogeneous
tissue (Verkerk et al., 2005). Indeed, our multiscale models
showcase that a 30% action potential prolongation between both
sexes at the cell scale only resulted in a male QT interval which
was 15% shorter than the female QT interval at the organ scale.
Nevertheless, this sex difference in QT interval duration is still on
the higher end. This discrepancy seems to be related to our male
multiscale heart model. The computed male QT interval of 348
ms corresponds to the 5th percentile of the clinically reported
ranges for men (Asatryan et al., 2021), whereas our computed
female QT interval of 411 ms aligns perfectly with the clinically
reported range of 386–445 ms (Vicente et al., 2014). As our
multiscale models demonstrated the dominant role that changes
in ion channel activity have on the timing of the T wave end,
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there is a strong need for an in-depth experimental study on the
sex-specific differences in functional ion channel activity of non-
diseased human ventricular myocytes. Unfortunately, we are not
aware of such data being currently available. Similarly, studies
have shown that the inclusion of interventricular and apicobasal
ion channel gradients at the tissue scale can further impact ECG
morphology (Okada et al., 2011). Emerging electrocardiographic
imaging techniques show great potential to study sex differences
in healthy tissue-scale conductivity in more detail but remain
challenging (Cluitmans et al., 2018; Andrews et al., 2019).

4.5. A Novel Multiscale Sex-Specific
Arrhythmogenic Risk Classification
Given the high amount of ionic currents constituting
the electrophysiological behavior of human ventricular
cardiomyocytes (Equation 4), studying the drug-induced
risk to develop arrhythmia requires the exploration of a large
parameter space constituting different amounts of drug-induced
blocking of each and every possible ion channel. To keep the
parameter space computationally tractable, we focused on
the seven most important ion channels for arrhythmogenic
risk stratification, and used logistic regression to quantify
their relative importance. The normalized marginal effects of
drug-induced ion channel blocking on arrhythmic sensitivity
in Figure 6 identify βKr and βCaL as the key pro-arrhythmic
and anti-arrhythmic ion channel blockings, respectively. This
conclusion is consistent with previous sex-agnostic risk analyses
(Crumb et al., 2016), and is thus found to hold true across men
and women. Interestingly, our analysis highlights a relatively
decreased protective role of L-type Ca2+ channel blocking in
women. The higher amount of recorded de- and repolarization
abnormalities confirmed the higher susceptibility of female
cardiomyocytes to drug-induced arrhythmogenicity. These
results agree well with experimental exploratory studies on
cell-scale sex differences in drug-induced arrhythmogenicity
(Liu et al., 1999; Verkerk et al., 2005). The male and female
multi-fidelity arrhythmogenic risk classifiers in Figures 7, 8,
respectively quantify this differing risk with increased fidelity,
as shown in Figure A5. Overall, we found the female heart to
demonstrate arrhythmogenicity at lower drug-induced IKr and
ICaL ion channel blocking than the male heart. Interestingly, our
previous work on sex-agnostic arrhythmia risk assessment in the
heart showcased an arrhythmogenic risk classification boundary
in between the male and female arrhythmia risk classification
boundary developed in this study (Sahli Costabal et al., 2019c).
As such, we conclude that a generalized sex-agnostic arrhythmia
risk classification underestimates and overestimates the cardiac
toxicity of drugs for women and men, respectively. This directly
puts women at higher risk for drug-induced arrhythmogenicity
events, explaining the higher incidence reported in women
(Makkar, 1993; James et al., 2007; Coker, 2008).

In applying our novel sex-specific arrhythmogenic risk
classifier to a high, intermediate and low risk drug, we quantify
this increased risk for women in more detail. For dofetilide,
a class III anti-arrhythmic agent, both the male and female
arrhythmia risk classifier confirm the general notion that

dofetilide can have dramatic consequences if not dosed correctly
(Briceño and Supple, 2017). For men, our risk classifier predicts
a spontaneous transition from a sharp but smoothly propagating
excitation pattern into rapid, irregular, asynchronous activation
patterns at a critical concentration of 26.0x. For women, the
same risk is predicted at 3.5 times the drug’s free therapeutic
plasma concentration. These results agree well with clinical trials
where female sex was associated with three-fold higher odds
of dofetilide discontinuations or dose reductions relative to the
male sex (Pokorney et al., 2018). Most dosage reductions led
to half of the recommended dosage for women. Interestingly,
women were highly underrepresented in original clinical trials
assessing the safety of dofetilide, only accounting for 28 and
16% of the total amount of enrolled patients (Køber et al.,
2000; Singh et al., 2000). For chlorpromazine, an antipsychotic
drug, our female arrhythmogenic risk classifier estimated a
risk for arrhythmogenesis at 80.1x concentration, whilst for
men no arrhythmogenicity was predicted. As expected from
such a high critical risk concentration, chlorpromazine-induced
arrhythmogenicity can be expected to be uncommon. Indeed,
a comprehensive literature search spanning four decades of
clinical case report data identified only seven published cases
of chlorpromazine-associated ventricular arrhythmia. All
these cases involved women (Hoehns et al., 2001). Finally,
for diltiazem, a calcium channel blocker used to manage blood
pressure and chest pain, the drug’s concentration-block trajectory
does not cross ourmale nor female multi-fidelity arrhythmogenic
risk classification boundary. Consequently, we predict no
arrhythmogenesis for diltiazem and consider this drug to be
safe, both for men and women. This risk assessment corresponds
well with diltiazem’s ‘low/no arrhythmia risk’ classification by
a team of clinical cardiologists and electrophysiologists based
on publicly available data and expert opinion (Colatsky et al.,
2016). Additionally, the arrhythmogenic safety of diltiazem
was also confirmed by recent sex-agnostic population-based
arrhythmia risk classifiers from other research groups (Lancaster
and Sobie, 2016; Li et al., 2019). Importantly, these sex-specific
drug-induced arrhythmogenic risk assessments assume no other
medications to be taken concomitantly with these drugs.

In this study, we first build a multiscale mechanistic
understanding of arrhythmogenesis in the male and female
heart, and subsequently use these computational insights
to evaluate the sex-specific drug-induced arrhythmogenic
risk. This approach is inherently different from a recent first
approach toward sex-specific drug-induced arrhythmogenicity
classification (Fogli Iseppe et al., 2021). In this study, the authors
focus on the in silico computed effect of drugs onmale and female
human epicardial cardiomyocytes. Using statistical learning
techniques, they identify the key synthetic action potential
biomarkers contributing to the most accurate prediction of
arrhythmogenicity outcomes for men and women specifically.
This approach relied on a ground truth classification assumption
that risky drugs are dangerous for men and women, and safe
drugs are safe for both men and women. These classifications
were deduced from reported adverse event analyses performed
within the Adverse Drug Event Causality Analysis (Woosley
et al., 2017). With female sex reported to be historically highly

Frontiers in Physiology | www.frontiersin.org 15 August 2021 | Volume 12 | Article 708435

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Peirlinck et al. Sex Differences in Drug-Induced Arrhythmogenesis

underrepresented in clinical studies (Vitale et al., 2017), such
an assumption could potentially be problematic, especially
for older drugs. Our study offers the benefit of using a full
multiscale framework to inform arrhythmogenic risk from a
mechanistic understanding. Apart from this differing approach
to arrhythmogenic risk classifier development, our study also
takes into account the effect of midwall cells in an individual’s
predisposition to arrhythmogenesis (Drouin et al., 1995; O’Hara
et al., 2011) and did not assume the baseline O’Hara-Rudy
model to represent a purely male endocardial cell model,
as discussed in section 2.2.1. Consequently, these differing
approaches render a one-on-one comparison between our
studies difficult. Nonetheless, for chlorpromazine, the only
drug that was studied in both studies, both our studies classify
this drug safe for men and at medium risk for women. Based
on our sex-specific arrhythmia risk classifiers in which the
male arrhythmogenic {βCaL, βKr} risk zone ⊂ the female
arrhythmogenic {βCaL, βKr} risk zone, our classifiers do not
predict any drug to have a higher risk for women than for
men. Interestingly though, the alternative approach identified
specific drugs that are safer for women than for men (Fogli
Iseppe et al., 2021). This disagreement might be associated with
the current ambiguity on functional sex differences in Ca2+

handling (Parks and Howlett, 2013; Parks et al., 2014) which led
the authors to disregard the genomic sex differences in sodium
potassium INaK pump and Ca2+ uptake channel activities
and relatively upscale the female sodium calcium exchange
currents we deduced in Table 1. Currently, experimental data
on Ca2+ in healthy human myocardium are lacking, and
further investigation on these functional sex differences is
warranted to improve our sex-specific arrhythmogenic risk
classifiers in the future. Additionally, limiting our risk classifier
to only take βCaL and βKr into account might not uncover
this behavior. It can for example be seen from Figure 6 that
βNaL has a stronger anti-arrhythmic effect for female midwall
cardiomyocytes than it does for men, and thus including this
feature as a third drug-induced ion channel blocking input
feature to our arrhythmia risk classifier might lead to male
and female three-dimensional arrhythmogenic risk zones that
do not completely overlap. Apart from these discrepancies,
the overall conclusion is the same: including sex as a new
independent factor in preclinical cardiotoxicity risk assessment
is crucial to avoid potentially life-threatening consequences for
the female population (Chorin et al., 2017). Given the absence of
reliable large-scale arrhythmogenic risk assessments for women
specifically, and the male dominance in clinical studies, our study
forms an important first step toward mechanistically uncovering
the role that sex differences on the subcellular, cellular, tissue,
and organ scale play in drug-induced arrhythmogenicity. An
improved understanding of these sex-specific mechanisms will
be crucial to provide new therapeutic approaches that do no
longer put women at increased risk.

4.6. Limitations and Outlook
Although our proposed methodology holds great promise to
rapidly assess the sex-specific risk of a new drug, without relying
on clinically reported adverse event occurrence, it has a few

limitations: first, our sex-specific multiscale exposure-response
simulators are only as good as their input. In the long term, more
sex-specific human cell and tissue experiments are needed to
fine-tune the cell- and tissue-scale sex differences in ion channel
activity and conductivity currently deduced from genomic data.
Such experimental data would also be highly desirable to resolve
the current debate on the existence or non-existence of sex
differences in Ca2+ handling. The lacking human experimental
data for more in-depth sex-specific validation of our multiscale
simulation outcomes suggest important avenues for further
studies. Novel developments of male and female hIPSC-derived
cell lines might provide an interesting route to study this further
(Huo et al., 2019). Second, our developed risk classifiers currently
focused on the risk of drug-induced IKr and ICaL blocking. Even
though we identified these ion channel blockings to be the most
critical channels for drug-induced arrhythmogenesis for both
the male and female heart, arrythmogenic risk stratification for
drugs that mainly target other channels might require including
additional ion channel blockings to our risk classifiers. As our
results in Figure 6 showcase, extending both the male and female
risk classifiers to take into account drug-induced IKs and INaL
blocking would be the most logical next step. Third, given the
role that the excitation rate has on the electrophysiological
behavior of the human heart, we aim to extend our classifiers
to take into account heart rate in our future work. Fourth,
at this point, we did not take into account male and female
population variability. As additional experimental data becomes
available, more in-depth sex-specific population studies form an
interesting next step. We have developed efficient frameworks to
quantify and propagate such uncertainty through computational
models in the past (Peirlinck et al., 2019; Sahli Costabal et al.,
2019a), and look forward to apply these techniques to this
problem. Prior to this, a critical and logical next step would be
to validate our method using our own independent experiments
with human adult cardiomyocytes, and ideally, healthy human
volunteers. Ultimately, with a view toward precision cardiology,
this sex-specific approach forms an important initial step toward
identifying the optimal course of care for each individual patient
based on personalized block-concentration characteristics and
personalized cardiac heart models (Trayanova, 2018; Peirlinck
et al., 2021; Rodero et al., 2021).

5. CONCLUSION

The objective of this study was to quantify sex differences in
drug-induced arrhythmogenesis. Toward this goal, we created
sex-specific male and female multiscale exposure-response
simulators. These simulators differ in subcellular ion channel
activity, tissue-level conductivity, and organ-scale geometry.
Using logistic regression, we identified the rapid delayed rectifier
potassium channel IKr and the L-type calcium channel ICaL as
the most importance ion channels to modulate male and female
arrhythmogenesis on the cellular level. Based on these findings,
we created an exploratory ion channel block parameter space
and combined low-fidelity cell-scale and high-fidelity multiscale
modeling to delineate arrhythmogenic risk classification
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boundaries. Our study quantitatively confirms and delineates
women’s intrinsically higher risk for drug-induced arrhythmia
both on the cell and organ scales. We applied our new sex-
specific multi-fidelity pharmacological risk classifiers to assess
critical drug concentrations for a high, an intermediate, and a
low risk drug. For the high risk drug dofetilide, our predicted
critical drug concentration for female hearts is seven times
lower than for male hearts. This result explains, at least in part,
why women are more likely than men to develop drug-induced
arrhythmia. Acknowledging and understanding sex differences
in drug safety evaluation is critical when developing new drugs
and prescribing existing drugs in combination with other drugs.
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A. APPENDIX

A.1. Single-Fidelity Cell-Scale Risk
Classifiers
Figures A1, A2 showcase the exploration and exploitation
progress in training a single-fidelity Gaussian process classifier
for drug-induced de- and repolarization abnormalities in male
and female midwall cardiomyocytes respectively. In the upper
middle plots, we summarize the binary risk classifications in 25
latin hypercube samples of the B = {βKr,βCaL} using Myokit.
We highlight two exploratory {βKr,βCaL} sample evaluations
from each class in the upper left plot. Using this initial B

classification dataset, we trained the initial risk classifier shown
in the upper right plot. Subsequently, the risk classification

FIGURE A1 | Male single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space.

The first 25 internal latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for male midwall cell abnormalities, as showcased in the upper

middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory B

dataset, an initial single-fidelity drug-induced risk classifier was trained for the male midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the

drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr,βCaL}

samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample

evaluations that showed normal action potentials. The final male cellular drug-induced risk classification boundary is shown in the lower right plot.

boundary was further explored and exploited using active
learning. By actively sampling new {βKr,βCaL} samples with
high variance in the posterior Gaussian Process classification
distribution close to the classification boundary, we cost-
effectively enhance the accuracy of our classification boundary.
We showcase four active learning samples for which we recorded
de- or repolation abnormalities in the lower left plots, and four
active learning samples for which no abnormalities were recorded
in the lower middle plots. With a total of 25 additional active
learning samples, we produced the cellular male and female
single-fidelity risk classifier displayed in the lower right plots of
Figures A1, A2 respectively. Comparing the initial and final risk
classifier, we showcase the power of active learning to improve
classification confidence.
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FIGURE A2 | Female single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space.

The first 25 internal latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for female midwall cell abnormalities, as showcased in the upper

middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory B

dataset, an initial single-fidelity drug-induced risk classifier was trained for the female midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the

drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr,βCaL}

samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample

evaluations that showed normal action potentials. The final female cellular drug-induced risk classification boundary is shown in the lower right plot.

A.2. Single-Fidelity Multiscale
Arrhythmogenic Risk Classifiers
Figure A3 showcases the exploration of male drug-induced
arrhythmogenic risk classification based on 10 high-fidelity
evaluations of the B = {βKr,βCaL} parameter space. By
training a single-fidelity Gaussian process classifier with a dataset
that comprised one arrhythmogenic and nine non-arrhythmic
{βKr,βCaL} samples (see Figure A3 - left and mid), the resulting
exploratory Gaussian process risk classifier (Figure A3 - right)
predicts a low probability for drug-induced arrhythmogenesis.
It can be expected that a significant amount of additional
computationally expensive high-fidelity sample evaluations
would be needed to accurately detect the yH = 1 region
(Sahli Costabal et al., 2019b). If we compare this exploratory
single-fidelity arrhythmogenic risk classifier to the exploratory

multi-fidelity arrhythmia risk classifier shown in the upper panels
of Figure 7, it can be seen that the multi-fidelity classifiers
greatly benefits from the candidate boundary encoded in the
low-fidelity data. As such, for the same amount of high-fidelity
evaluations, the exploratory multi-fidelity arrhythmogenic risk
classifier in Figure 7 showcases a significantly higher precision
and accuracy than the exploratory single-fidelity arrhythmia
risk classifier in Figure A3. This power of multi-fidelity risk
classification, opposed to single-fidelity risk classification, can
also be appreciated in Figure A4. Even though the initial
exploratory dataset consisted of five arrhythmogenic and five
non-arrhythmic samples (see Figure A4 - left and mid), the
resulting single-fidelity risk classifier (Figure A4 - right) provides
lower classification confidence than the exploratory multi-fidelity
risk classifier in Figure 8 (top).
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FIGURE A3 | Male single-fidelity multiscale arrhythmia risk classifier. Initial single high-fidelity exploration of the male drug-induced arrhythmogenic risk parameter

space. The middle plot showcases 10 internal latin hypercube {βKr,βCaL} sample evaluations of arrhythmogenesis in the male heart. The virtual electrocardiograms for

one arrhythmogenic and three non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory male single high-fidelity drug-induced

arrhythmogenic risk classifier is shown in the right plot.

FIGURE A4 | Female single-fidelity multiscale arrhythmogenic risk classifier. Initial single high-fidelity exploration of the female drug-induced arhhythmogenic risk

parameter space. The middle plot showcases 10 internal latin hypercube {βKr,βCaL} sample evaluations of arrhythmogenesis in the female heart. The virtual

electrocardiograms for two arrhythmogenic and 2 non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory female single high-fidelity

drug-induced arrhythmogenic risk classifier is shown in the right plot.

A.3. Low- Versus Multi-Fidelity
Arrhythmogenicity Bias
Figure A5 highlights the recorded mismatch between the use
of a low-fidelity midwall cell proxy for arrhythmogenic risk
classification and a multi-fidelity risk classifier taking into
account high-fidelity multiscale evaluations of the drug effect on
the transmembrane potential evolution at the cell, tissue, and
organ scale.

It can be seen that for the male arrhythmogenicity classifier,
this mismatch is rather limited. However, for the female
arrhythmogenic risk classification boundaries, the low-fidelity
risk classification boundary predicts arrhythmogenesis at lower
drug-induced {IKr, ICaL} blocking combinations. This mismatch
showcases the importance of taking the effect of electrotonic
coupling and repolarization dispersion across the three-
dimensional heterogeneous tissue organization into account.
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FIGURE A5 | Low- vs. multi-fidelity arrhythmogenicity mismatch. Mismatch between the low-fidelity midwall cell proxy and the full high-fidelity multiscale simulations

for arrhythmogenic risk classification. For the male arrhythmogenic risk classification (Left), this mismatch is limited. For the female arrhythmogenicity classification

(Right), the multi-fidelity classifier predicts arrhythmogenesis at larger {IKr, ICaL} channel blocking combinations than the low-fidelity risk classifier.
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TABLE A1 | Sex-based differences in ion channel subunit expression from non-diseased human ventricles.

Ion channel Gene/protein Epi Endo Mid

male female male female interp male female

INaL NaV1.5 310.6 260.8 426.8 373.8 403.5

Ratio 0.77 0.65 1.06 0.93 1.06 0.93

Based on 1NaV1.5 expression (O’Hara et al., 2011).

IpCa Ca2+ ATPase 4 377.0 682.1 426.8 685.2 540.5

Ratio 0.70 1.26 0.79 1.27 1.97 3.17

Based on 1Ca2+ ATPase 4 expression (Yang and Clancy, 2012).

IKr hERG 179.5 144.2 164.8 130.5 149.7

Ratio 1.20 0.96 1.10 0.87 0.88 0.70

Based on 1hERG expression (O’Hara et al., 2011).

IKs MinK 13.6 7.3 11.9 5.8 9.2

Ratio 1.16 0.93 1.10 0.88 1.10 0.88

Based on 1/3 1 MinK expression (Yang and Clancy, 2012).

IK1 Kir2.3 91.2 21.4 92.7 55.2 76.2

Ratio 1.07 0.76 1.07 0.91 1.39 1.18

Based on 1/3 1 Kir2.3 expression (Yang and Clancy, 2012).

INaCa,i/ss NCX1 821.1 801.4 754.5 739 747.7

Ratio 1.10 1.07 1.01 0.99 1.41 1.38

Based on 1 NCX1 expression (O’Hara et al., 2011).

INaK Na+/K+ ATPase α1 207.7 513.4 269 622.5 424.54

Na+/K+ ATPase α3 1481 917.8 1547.6 1014.2 1312.904

Ratio 0.92 0.87 1.00 1.00 0.70 0.70

Based on 1/3 1Na+/K+ ATPase α1 and 2/3 1Na+/K+ ATPase α3 expression (Yang and Clancy, 2012).

IKb KV1.5 12.7 6.5 19.5 10.5 15.54

Ratio 0.82 0.42 1.25 0.68 1.25 0.68

Based on 1KV1.5 expression (O’Hara et al., 2011).

Ca2+ release RYR2 6213.7 4890.6 5463.9 5582.5 5516.084

Ratio 1.13 0.89 0.99 1.01 1.68 1.72

Based on 1RYR2 expression (O’Hara et al., 2011).

Ca2+ uptake SERCA2 4850.5 6728.4 3410.4 3921.9 3635.46

Ratio 1.33 1.85 0.94 1.08 0.94 1.08

Based on 1SERCA2 expression (Yang and Clancy, 2012).

[CMDN] CALM3 1326.9 1955.5 1206.9 1600.5 1380.084

Ratio 0.97 1.28 0.92 1.11 0.92 1.11

Based on 2/3 1 CALM3 expression (Yang and Clancy, 2012).

Overview of the sex differences in ion channel subunit expression for the channels used in our cell-scale and multi-scale computational models. The gene/protein data represents the

normalized relative expression (2-1Ct) deduced from Gaborit et al. (2010). The endocardial interp column represents the relative ion channel subunit expression for the hypothesized

56% male, 44% female model that the original endocardial O’Hara Rudy cell model was based on. To compute the individual ion channel activity scalings, we followed scaling rules

established by O’Hara et al. (2011) and Yang and Clancy (2012), as reported below each set of scaling ratios.
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