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Sphingolipids are essential components of eukaryotic cells. In this review, we want to 
exemplarily illustrate what is known about the interactions of sphingolipids with various 
viruses at different steps of their replication cycles. This includes structural interactions 
during entry at the plasma membrane or endosomal membranes, early interactions leading 
to sphingolipid-mediated signal transduction, interactions with internal membranes and 
lipids during replication, and interactions during virus assembly and budding. Targeted 
interventions in sphingolipid metabolism – as far as they can be tolerated by cells and 
organisms – may open novel possibilities to support antiviral therapies. Human 
immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for 
other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus 
(HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 
2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid 
metabolism are already in clinical use against other diseases, repurposing studies for 
applications in some viral infections appear to be a promising approach.

Keywords: sphingolipid, ceramide, sphingosine-1-phosphate, plasma membrane, virus entry, virus replication, 
virus budding

INTRODUCTION

As obligate intracellular pathogens, viruses must interact with and overcome cellular membranes 
as a key step of their life cycle. Sphingolipids (Figure  1) are a major structural component 
of the cellular plasma membrane but also act as bioactive lipids transducing signals intracellularly 
as well as to other cells. Their roles in uninfected and infected host cells, with and without 
specific inhibitors of the sphingolipid metabolism, have been studied increasingly using advanced 
quantitative analysis methods and microscopical localization (for recent reviews also see: 
Schneider-Schaulies and Schneider-Schaulies, 2015; Muller et  al., 2019; Beckmann and Becker, 
2021). Targeted manipulations of the host cell sphingolipid metabolism might be  exploited to 
limit viral replication and thus open novel therapeutic options. This review will focus on 
examples of how the viral replication cycle can be affected by targeting sphingolipid metabolism. 
Sphingolipids influence the following three steps of viral replication: (1) structural consequences 
at membranes influencing, for example, the fusion of the plasma membrane with the viral 
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membrane, (2) consequences for cellular processes like 
endocytosis also supporting the endocytosis of viruses, and 
(3) signaling and consequences for the cellular metabolism 
influencing the viral replication cycle. As each individual virus 
exploits a certain set of properties of its target cells, the roles 
of sphingolipids are different and must be investigated in detail 
for each virus.

SPHINGOLIPID INTERACTIONS DURING 
VIRAL ATTACHMENT AND ENTRY

The first steps of the viral life cycle are attachment and entry, 
which enable the pathogen’s passage through the host cell 

plasma membrane and subsequent uncoating and release of 
viral nucleocapsids into the cytoplasm. These steps are 
predominantly influenced by membrane microdomains enriched 
for particular sphingolipid species, which act via segregating 
receptors and modulating biophysical processes such as 
membrane fusion or endocytosis and subsequent fusion. In 
addition, these first interactions between viruses and cells may 
induce signaling cascades which affect uptake, intracellular 
trafficking and replication of viruses (for a schematic 
representation of involved pathways, see Figure  1).

Glycosphingolipids in Viral Entry
It is known for several years now that membrane domains 
enriched in sphingolipids and cholesterol, also referred to as 

A

B C

FIGURE 1 | (A) Schematic representation of the sphingolipid metabolism from de novo synthesis from palmitoyl-CoA and serine to the final degradation to 
phosphoethanolamine and hexadecenal. Involved enzymes are neutral and acid sphingomyelinase (ASM; neutral sphingomyelinase, NSM), sphingomyelin 
synthetase (SMS), ceramidase, sphingosine kinases 1 and 2 (SphK-1,2), and sphingosine-1-phosphate (S1P) lyase. (B) Examples of the chemical structures of 
sphingolipids with sphingomyelin (SM) and ceramides of chain length 16 (C16). (C) Characteristic ratios of amounts of SM, ceramide (Cer), sphingosine, and 
sphingosine-1-phosphate (S1) in primary human peripheral blood lymphocytes (PBL; example form our own research).
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lipid rafts, are involved in cellular signal initiation as well as 
the direct structural support of viral entry by accumulating 
specific receptors. Besides the primary receptor CD4, 
glycosphingolipids (GSLs) present in these membrane 
microdomains, amongst them globo-triasylceramide (Gb3) and 
galactosylceramide (Gal-Cer), were found to interact with the 
human immunodeficiency virus (HIV) envelope proteins gp120 
and gp41 to facilitate their interactions with chemokine receptors 
and to support its entry into CD4-negative cells as, for example, 
mucosal epithelial cells (Figure 2; Cook et al., 1994; Hammache 
et  al., 1998a,b; Alfsen and Bomsel, 2002; Magerus-Chatinet 
et  al., 2007; Yu et  al., 2008; Dorosko and Connor, 2010; 
Lingwood et  al., 2010). The importance of GSLs in HIV entry 
is further supported by its sensitivity to compounds affecting 
GSL biosynthesis, such as D-threo-1-phenyl-2-decanoylamino-
3-morpholino-1-propanol (PDMP), which inhibits glucosyl-
transferase activity (Puri et  al., 2004), and to variations in 
cellular GSL content (Rawat et  al., 2004). Interestingly, Gb3, 
when accumulating to high levels (for instance, in PBMCs of 
Fabry disease patients or certain cell lines), can also act as a 

resistance factor for human immunodeficiency virus type 1 
(HIV-1) infection (Lund et al., 2005, 2009; Ramkumar et al., 2009; 
Harrison et  al., 2010).

Glucosylceramide levels proved to be particularly important 
in regulating the uptake of viruses that rely on the late endosomal 
compartment to initiate membrane fusion and entry into the 
cytoplasm. These include influenza, Ebola, and vesicular stomatitis 
virus, the entry of which was sensitive to depletion of both 
anabolic and catabolic enzymes producing and processing 
glucosylceramide (Drews et  al., 2019, 2020). Interaction with 
Gb4Cer (globotetraosylceramide, globoside) triggers viral capsid 
rearrangements of (the non-enveloped) parvovirus B19 required 
for subsequent steps of internalization into cells also expressing 
the erythropoietin receptor (Bonsch et  al., 2010). Gangliosides 
(glycosphingolipids with one or more sialic acid residues linked 
to the sugar moiety) such as GD1a and GT1b or GM1 also 
serve as essential components for the entry of murine 
polyomavirus and SV40 into cells (Burckhardt and Greber, 
2009; Luo et al., 2016). Furthermore, simultaneous engagement 
of gangliosides and 4-integrin was shown to promote endocytosis 

FIGURE 2 | Three examples of viral replication cycles and involvement of sphingolipids: (1) Human immunodeficiency virus (HIV) binds to glycoshingolipids, CD4, 
and co-receptors CCR5 or CXCR4 prior to membrane fusion at the plasma membrane. After reverse transcription of the positive-strand RNA genome and 
integration in the cellular DNA, the virus exploits the cellular machinery for transcription and translation. Assembly and budding take place at the plasma membrane 
with the involvement of sphingomyelin-enriched membrane domains (lipid rafts). (2) Adenovirus (AdV) binds to CAR and integrins, then causes membrane lesions 
which induce Ca++ influx and membrane repair. This occurs with the help of lysosomes requiring ASM activity, which supports viral uptake by endocytosis. After the 
disintegration of the viral capsid, the viral DNA is transported to the nucleus, and after transcription and translation, viral particles are assembled in the nucleus and 
released. (3) SARS Coronavirus-2 (CoV-2) requires protease activity and binds to ACE2, which is supported by sialic acid in ganglioside-enriched membrane 
domains prior to cell entry via fusion at the plasma membrane or endocytosis and subsequent membrane fusion. Transcription and translation take place on the 
cytoplasmic face of the ER. Galactosylceramide supports viral replication. After assembly, virus particles traffic to lysosomes for egress via lysosomal exocytosis (For 
references, see main text).
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and microtubular trafficking of polyoma viral capsids by initiating 
PI3K, FAK/Src, and MAPK signaling pathways (O’Hara and 
Garcea, 2016). Obviously, GSLs can be  of crucial importance 
in the uptake of certain viruses, which implies that interference 
with GSL biosynthesis might represent an interesting therapeutic 
option (Aerts et  al., 2019).

Ceramide Enriched Membrane 
Microdomains in Viral Uptake and 
Trafficking
Ceramide-enriched membrane domains condense into larger 
platforms in response to sphingomyelinase activation or 
ceramidase inhibition and are also sites of endocytic uptake 
of pathogens due to concentration of pathogen receptors or 
the action of membrane-proximal signaling complexes (Zha 
et  al., 1998; Holopainen et  al., 2000; Gulbins and Grassme, 
2002; Gulbins et  al., 2004; Bollinger et  al., 2005; Grassme 
et  al., 2007). Therefore, conditions favoring the generation of 
these domains create an environment enhancing viral infections. 
It has, for instance, been shown that the ability of CD300lf 
to support murine Norovirus entry depends on sphingolipid 
biosynthesis and ceramide generation. Furthermore, exogenous 
addition of ceramide restored susceptibility of serine palmitoyl-
transferase deficient cells, which cannot synthesize ceramide 
themselves. This relied on both formation of ceramide enriched 
membrane domains and ceramide-induced conformational 
changes of surface resident CD300lf proteins (Orchard et  al., 
2018). Sphingomyelinase activation also supported pH and 
clathrin-dependent entry and replication of Japanese encephalitis 
virus (JEV) in tissue culture (Tani et  al., 2010). Strikingly, 
sphingomyelin-synthetase-1 (SMS-1) generated sphingomyelin 
proved to be  important in JEV attachment and subsequent 
infection, and SMS-1 deficiency in mice led to attenuation of 
the JEV infection in vivo (Taniguchi et  al., 2016). Interestingly, 
rhinovirus raft interaction promoted biphasic activation of p38 
MAPK in a RhoA-dependent manner, with late activation 
relying on viral replication (Dumitru et  al., 2006).

In addition to sphingomyelin, acid sphingomyelinase (ASM) 
activity was also implicated in the early steps of Ebola virus 
infection. While sphingomyelin was required for attachment, 
viral particles strongly associated with surface displayed ASM 
indicating that viral interaction may occur in sphingomyelin-
enriched membrane domains followed by ASM activation (Miller 
et  al., 2012b). As for rhinovirus, receptors involved in ASM 
activation were not identified, and it also remained unclear 
whether ASM activation would be  important in Ebola virus 
endocytosis and thereby rendering the endo/lysosomal cholesterol 
transporter Niemann-Pick C protein 1 (NPC1) accessible to 
the viral particle. NPC1 was identified as crucial for Ebola 
virus uptake by enabling fusion between viral and endosomal 
membranes (Carette et al., 2011; Cote et al., 2011). Thus, NPC1 
acts as a receptor for the proteolytically activated viral envelope 
protein in an intracellular compartment rather than at the 
plasma membrane (Miller et  al., 2012a).

Interaction with its surface receptors CAR and αvβ3 integrin 
causes limited uncoating of the non-enveloped adenovirus 
particle at the cell surface, which leads to exposure of the 

adenoviral protein-IV causing membrane lesions followed by 
Ca2+-influx promoting a wound repair process with subsequent 
lysosomal exocytosis (Figure  2). Along with that, ASM is 
activated and displayed at the surface and generates ceramide 
enriched membrane domains (Luisoni et  al., 2015). These act 
to enhance viral endocytosis and recruit as well as to concentrate 
lytic protein-VI in endosomes, thereby catalyzing endosomal 
leakiness and finally rupture as required to release the viral 
capsid into the cytosol. Thus, adenovirus uses a positive feedback 
loop between virus uncoating and lipid signaling for efficient 
membrane penetration.

Acid sphingomyelinase (and neutral sphingomyelinase, NSM) 
activation was also observed after the interaction of dendritic 
cells (DC) with MV (Avota et  al., 2011). In this case, the 
interaction of the viral glycoproteins with DC-SIGN on the 
cell surface induced the sphingomyelinase activation and 
subsequent ceramide release. Interestingly, this was also promoted 
by DC-SIGN ligation with specific antibodies or the ligand 
mannan, revealing that this reflected DC-SIGN signaling per 
se and was not MV-specific. Along with ASM, the MV entry 
receptor CD150 translocated from an intracellular storage 
compartment to the cell surface and thereby was made available 
to promote viral infection of dendritic cells. Whether or not 
CD150 translocation on the surface of dendritic cells may 
be  important for pathogens other than MV has not been 
investigated. In murine macrophages, CD150 can also serve 
as a microbial sensor routing Gram-negative bacteria into 
phagocytic compartments (Berger et  al., 2010).

The recent severe acute respiratory syndrome coronavirus 
type 2 (SARS-CoV-2) pandemic has initiated an intensive search 
for therapeutic approaches, including studies on drug 
repurposing. It was found that sphingolipid and cholesterol-
enriched membrane microdomains (lipid rafts) are also associated 
with the uptake of SARS-CoV-2 involving the receptor ACE-2 
(Figure  2; angiotensin-converting enzyme-2; Hoffmann et  al., 
2020; Wan et  al., 2020; Yan et  al., 2020). The spike protein 
of SARS-CoV-2 has been found to interact with the ganglioside 
GM1, which may mediate attachment to lipid rafts and facilitate 
the contact of the virus with its receptor ACE-2 (Fantini et  al., 
2020). By catalyzing the hydrolysis of sphingomyelin to ceramide, 
sphingomyelinases convert rafts into ceramide-enriched platforms 
(Bieberich, 2018). In this context, targeting the ASM activity 
by well-known inhibitors (Kornhuber et  al., 2011) led to 
promising results. Both, genetic ASM ablation, as well as 
pharmacological ASM inhibition by fluoxetine (and other 
functional ASM inhibitors) reduced SARS-CoV-2 infection in 
several cell lines and primary nasal epithelial cells by preventing 
the formation of ceramide-enriched membrane platforms required 
for viral uptake (Carpinteiro et  al., 2020, 2021; Zimniak et  al., 
2021). The accumulation of cholesterol and pH buffering 
downstream of the ASM inhibition in late endosomal 
compartments prevented the fusion of viral and late endosomal 
membranes required for viral uncoating (Schloer et  al., 2020). 
For a recent review, see also Tornquist et  al. (2021).

Ceramide generation, as observed after ASM activation, may 
also act antivirally at the level of uptake: Entry of HIV-1 into 
T cells, monocytes or macrophages was highly sensitive to 
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compounds elevating levels of ceramides such as exogenous 
addition of long-chain ceramide (C16), because this prevents 
lateral diffusion of CD4 toward the chemokine co-receptors, 
and thus separates receptors and co-receptors (Finnegan et  al., 
2004, 2007; Rawat et  al., 2008). In contrast, optimal HIV-1 
gp41-mediated membrane fusion was found to be  dependent 
on sphingomyelin synthase-2 activity, indicating that 
sphingomyelin rather than ceramide accumulation was important 
in this process (Hayashi et  al., 2014). Similarly, the overall 
elevation of ceramides by bacterial sphingomyelinase interfered 
with the uptake of the hepatitis C virus (HCV) at the level 
of receptor segregation. CD81, a major entry factor, was partially 
internalized, and this and other components required for HCV 
entry, scavenger receptor B1 and claudin-1, were excluded from 
detergent-resistant microdomains (Voisset et al., 2008). Depletion 
of sphingomyelins and generation of ceramides also affects 
the entry of pseudorabies virus (Pastenkos et al., 2019), rubella 
virus (Otsuki et al., 2018), and influenza virus (Audi et al., 2020).

A further consequence of ASM activation is interference with 
actin dynamics in viral target cells. This affects, for example, 
drifting and surfing of receptors engaged by viruses along filopodia 
or on the cell surface (Ewers et  al., 2005; Lehmann et  al., 2005; 
Schelhaas et  al., 2008), receptor clustering, and formation of and 
viral transmission by defined structures such as virological synapses 
or filopodial bridges (Sherer et  al., 2007; Mothes et  al., 2010). 
Moreover, actin-mediated membrane ruffling and blebbing are 
essential for macro-pinocytic uptake of vaccinia, picorna and 
adenoviruses (Mercer and Helenius, 2008, 2009). Thus, interference 
with actin dynamics would be  expected to have a significant 
impact on viral uptake. In this context, it is noteworthy that 
the breakdown of actin cytoskeletal protrusions after ASM activation 
and subsequent ceramide accumulation were observed in MCF-7 
breast cancer cells (Zeidan et  al., 2008), and, NSM- and 
ASM-dependently, upon measles virus (MV) interaction with T 
cells (Gassert et  al., 2009; Mueller et  al., 2014).

INTRACELLULAR SPHINGOLIPID 
INTERACTIONS DURING VIRAL 
REPLICATION

Individual sphingolipid species accumulating inside host cells 
may be  favorable for either the host cell or the virus. Evidence 
for a protective role of ceramides was provided, for instance, 
in human lung epithelial cells where replicating, but not 
UV-inactivated, influenza A virus induced de novo biosynthesis 
of ceramide, which limited viral replication (Soudani et  al., 
2019) as previously also suggested for hepatitis and B virus 
(Tatematsu et  al., 2011; Perera et  al., 2012b). In contrast, 
sphingolipids including ceramides may also act pro-virally by 
supporting viral replication as revealed for HCV, West Nile 
virus (WNV), and Dengue virus (Perera et  al., 2012a; Zhang 
et  al., 2019). These are positive-strand RNA viruses known to 
extensively remodel cellular membranes into distinct 
compartments referred to as viral replication compartments 
(VRCs). VRCs act as platforms to concentrate viral proteins, 
assemble replication complexes, and protect those from 

recognition by innate immune defense mechanisms. This has 
been extensively studied with respect to sterols and 
glycerophospholipids (reviewed in Strating and van Kuppeveld, 
2017), while the role of sphingolipids in this process is less 
well understood. Pharmacological inhibition of sphingomyelin 
biosynthesis interfered with replication of HCV and WNV, 
and sphingomyelin, glycosphingolipids, or ceramide, respectively, 
were detected in association with VRCs (Weng et  al., 2010; 
Khan et  al., 2014; Martin-Acebes et  al., 2016).

If infected by an intracellular bacterial genus called Wolbachia, 
mosquitos are much less efficient in transmitting Dengue Virus 
to humans. Supporting a pro-viral role of sphingolipids in Dengue 
virus replication, all sphingolipid classes found to be  enriched 
in Dengue-infected mosquito cells were depleted in the presence 
of Wolbachia, which obviously created an unfavorable lipid 
environment for the virus (Molloy et al., 2016). A comprehensive 
lipidomic study recently revealed significantly remodeled lipid 
composition in Huh7 cells upon infection with Zika virus (another 
flavivirus), which particularly affected sphingolipid subclasses 
(Leier et  al., 2020). Inhibition of the sphingolipid biosynthesis 
interfered with viral replication in various cell types, while the 
exogenous supply of ceramide sensitized target cells for viral 
infection. Interestingly, ceramide was found to redistribute to 
Zika virus replication sites and interact with the viral non-structural 
protein 4B (NS4B), suggesting that ceramide flux takes part in 
VRC formation and activity.

Interestingly, a recent study identified sphingosine accumulation 
as a result of ceramide breakdown by acid ceramidase as a cell-
intrinsic antiviral defense mechanism in macrophages. In these 
cells, the herpes simplex virus (HSV-1) was found to get trapped 
in endosomal compartments enriched for sphingosine and ablation 
of acid ceramidase promoted HSV-1 capsid export into the cytosol 
(Lang et  al., 2020). Acid ceramidase expression was induced 
downstream of IRF-8 signaling, and in this model, sphingosine 
production proved to be  the crucial effector for the protection 
of macrophages from infection in vitro and in vivo. Furthermore, 
sphingosine kinases and sphingosine-1-phosphate (S1P)-dependent 
signaling pathways support the replication of HSV-1 in endothelial 
cells (Graber et  al., 2020).

Sphingosine-1-phosphate metabolizing enzymes and associated 
sphingolipids may provide targets for antiviral strategies against 
a number of viruses (summarized in Wolf et  al., 2019). 
Non-structural 3 (NS3) protein of bovine viral diarrhea virus 
(BVDV), a close relative of HCV, was found to bind to and 
inhibit sphingosine kinase 1 (SphK1) and to be  important for 
efficient viral replication (Yamane et al., 2009). In contrast, activation 
of neutral ceramidase and SphK1, with resulting S1P generation 
and AKT and ERK activation (see also Figure  3), supported 
replication of the respiratory syncytial virus (RSV) in lung epithelial 
cells (Monick et  al., 2004). Sphingosine kinase 2 (SphK2), which, 
unlike its more extensively studied isoform SphK1, additionally 
possesses a nuclear localization signal (NLS) and a nuclear export 
signal (NES), was observed to co-localize with the replication 
complex of Chikungunya virus and pharmacological inhibition 
of its kinase activity reduced viral infection (Reid et  al., 2015).

A pro-viral role of sphingosine kinase/S1P was also seen for 
influenza A (IAV), measles (MV), and human cytomegalovirus 
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replication (HCMV; Seo et  al., 2010; Vijayan et  al., 2014; Zilch 
et  al., 2018). Thus, SphK1 overexpression enhanced IAV protein 
synthesis and synthesis of viral progeny (Seo et  al., 2013), while 
SphK1 inhibition reduced viral replication by interfering with 
the nuclear export of viral RNPs (Vijayan and Hahm, 2014). 
IAV infection itself activates SphK1 (Seo et al., 2013) and thereby 
stimulates the NFκB pathway, promoting viral RNA synthesis 
(Kumar et  al., 2008). Similar observations were made for MV 
infection, where SphK1 inhibition impaired viral protein expression 
and suppressed MV-induced activation of NFκB in certain cell 
lines (Vijayan et al., 2014). Also, in its natural target cells, primary 
human peripheral blood cells, inhibition of both acid ceramidase 
or sphingosine kinase impaired MV replication (Grafen et  al., 
2019). Rather than acting on a viral target directly, the latter 
particularly affects components of the cellular machinery, including 
Hsp90 and mTORC1, required for efficient MV replication 
(Bloyet et  al., 2016; Tiwarekar et  al., 2018).

A negative effect of elevated S1P concentrations induced 
by the SphK activator K6PC-5 has been observed for Ebolavirus 
infections. The effect was independent of S1P receptors and 
appears to be  mediated intracellularly, affecting the viral entry 
process (Imre et  al., 2021). Thus, sphingosine kinases and 
intracellular S1P can have differential effects on virus replication 
depending on the virus and the target cell. By activating NFκB 
via interaction with tumor necrosis factor associated factor 
(TRAF2; Alvarez et  al., 2010) or NOD1/2 (Pei et  al., 2021), 
S1P also induces an inflammatory cytokine response.

In addition to its intracellular effects, S1P also acts on S1P 
receptors influencing immune cell trafficking and other functions 

of the immune system. In this respect, it is interesting that 
studies performed in 3D cultures modeling the respiratory 
tract supported a key role of MV-induced S1P to promote 
fast ameboid migration of dendritic cells toward the lung 
epithelial cell layer. As dendritic cells function as cellular ferries 
of MV, this may be  important for transmitting MV during 
viral exit from the infected individual (Derakhshani et al., 2019).

These findings show that predominantly ceramide and S1P 
are important signaling molecules regulating not only the cell 
metabolism, but which are also intrinsically tied to the capacity 
of a target cell to replicate viruses. To provide an overview 
over the multiplicity of involved pathways, we  schematically 
summarized sphingolipid-associated signaling pathways and 
intracellular consequences potentially affecting viral replication 
in Figure 3. The figure may give an impression of the complex 
network involved. It is likely that within the next years, more 
interactions with more viruses will be  revealed.

SPHINGOLIPIDS IN VIRAL ASSEMBLY 
AND BUDDING

As indicated above for VRCs, the biogenesis of lipid structures 
can be  intimately coupled to viral replication and/or assembly. 
The latter process has been intensely studied for HCV and 
Dengue virus, where biogenesis of lipid droplets was shown 
to play a crucial role in the initiation of viral assembly (Alvisi 
et  al., 2011; Fischl and Bartenschlager, 2011). Interestingly, 
ceramide transfer protein (CERT) was required for HCV 

FIGURE 3 | Schematic representation of a number of sphingolipid-associated signaling pathways and interactions with cellular functions potentially supporting or 
inhibiting viral replication. NSM, neutral sphingomyelinase; ASM, acid sphingomyelinase; SphK-1,2, sphingosine kinases 1 and 2; S1P, sphingosine-1-phosphate; 
CAPK, ceramide activated protein kinase; PKC, protein kinase C; PP2A, protein phosphatase 2 A; TRAF2, tumor necrosis factor associated factor 2; GRP94, 
glucose-regulated protein 94; IRE1a, inositol requiring enzyme 1 alpha; Hsp90, heat shock protein 90; RIP1, receptor-interacting protein 1; HDAC, histone 
deacetylase; and HIF-1a, hypoxia inducing factor 1 alpha.
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maturation, suggesting an important contribution of the 
sphingolipid pathway in flavivirus replication (Amako et  al., 
2011). SARS CoV-2, as a further positive-strand RNA virus, 
uses an unusual egress mechanism involving lysosomal exocytosis 
(Ghosh et  al., 2020). Newly synthesized viral particles traffic 
from the ER and the ER-Golgi intermediate compartment to 
lysosomes, which induces deacidification and inactivation of 
lysosomal enzymes (Figure  2).

The membrane patch where viral assembly occurs defines the 
composition of the viral particle’s envelope membrane. Initially 
established as highly relevant in membrane model systems, the 
importance of lipid-based protein sorting in mammalian cell 
membranes has, in fact, been established by pioneering studies 
on HIV-1 biogenesis (Sengupta et  al., 2019; Sengupta and 
Lippincott-Schwartz, 2020). Compared to the lipid composition 
of the cell membrane in general, the HIV-1 particle substantially 
differs in its lipid composition, i.e., it is selectively enriched for 
sphingomyelin and dihydro-sphingomyelin, while ceramides are 
barely represented (Figure  2; Brugger et  al., 2006; Lorizate et  al., 
2013). This suggested that the viral core either selects already 
existing lipid species or actively remodels lipid composition of 
host cell membranes during the assembly and subsequent budding 
process. It was only after techniques had become available to 
visualize and trace single virus assembly by quantitative live-cell 
imaging that, driven by oligomerized HIV-1 Gag protein at the 
inner membrane leaflet, formation of ordered membrane domains 
orchestrating lipid and protein composition could be demonstrated 
(Favard et  al., 2019; Sengupta et  al., 2019). The molecular 
mechanisms induced by the viral core described in these and 
earlier elegant studies include modulation of membrane curvature, 
partitioning of lipid phases and, sequentially, sorting of proteins. 
Moreover, these studies highlight the importance of trans-bilayer 
coupling of lipid composition through acyl chain interactions, 
through which phase separation of the outer membrane leaflet 
assembly site is achieved (Carlson et al., 2008; Briggs et al., 2009).

Finally, the lipid composition of the enveloped viral particle 
may substantially affect its infectivity. Treatment of bovine 
herpesvirus particles with bacterial sphingomyelinase, but not 
that of the target cells, reduced viral entry suggesting that the 
sphingomyelin content of the particle is important. However, 
this cannot be  generalized because pseudorabies virus entry 
was sensitive to sphingomyelinase at the level of the host cell 
and not the particle, while HSV-1 entry was insensitive to 
sphingomyelinase exposure of either the cell or viral membrane 
(Pastenkos et  al., 2019). Again, in contrast, sphingomyelin was 
found to be  important in influenza virus infection both at 
the level of the viral particle and the host cell (Audi et  al., 
2020). As revealed for HIV-1 and Ebola virus particles, viral 
uptake into dendritic cells is substantially enhanced upon 
recognition of sialylated gangliosides anchored to viral 
membranes by Siglec-1 on the dendritic cells (Puryear et al., 2013; 
Perez-Zsolt et  al., 2019).

The infectivity of viral particles budding into intracellular 
compartments may also be  determined by their sphingolipid 
composition. Thus, the HCV RNA-dependent polymerase NS5B 
and p7 protein cooperatively promote infectivity of the viral 
particle by decreasing its sphingomyelin content (Aligeti et al., 2015). 

The morphogenesis of BVDV, which is budding into the ER, 
also involves a lipid sorting mechanism (Callens et  al., 2016). 
BVDV particles were found to be  particularly enriched for 
cholesterol, sphingomyelin, and hexosyl-ceramide, with both 
cholesterol and sphingomyelin being of functional importance 
for attachment and entry of the virus.

CONCLUSION

Many chemical compounds affecting sphingolipid metabolism 
have been tested in animal models in vivo or are already in 
clinical use against diseases as divers as cancer and multiple 
sclerosis. For example, the S1P analog FTY720 (Wolf et al., 2019; 
Wang et  al., 2020) is approved for the treatment of multiple 
sclerosis, and inhibitors of ASM and NSM are in use against a 
number of diseases including Parkinson’s disease and forms of 
depression (Kornhuber et  al., 2014). Other inhibitors targeting 
ceramidase or SphK1 and -2 are in use or under investigation 
against certain tumors (Don et  al., 2014). As such inhibitors 
have not only structural consequences but also affect signaling 
and the cellular metabolism, it is not surprising that also the 
replication of viruses is affected. So far, the effectivity of such 
inhibitors against viral infections has mostly been investigated 
in cell culture experiments. Yet, the knowledge concerning potential 
antiviral applications and side effects in vivo (especially in humans) 
is still very limited. Side effects can only be  studied in a whole 
organism in the presence of a functional immune system. Often, 
effects on the immune system dominate the overall antiviral 
response, as for example, in the case of persistent lymphocytic 
choriomeningitis virus (LCMV) infection of mice, where inhibition 
of the SphK2 stimulates the T cell response and elimination of 
the infection (Studstill et  al., 2020). Especially with respect to 
SARS-CoV-2 infection, it will be  interesting to see if repurposed 
drugs affecting sphingolipid metabolism will be  of use to reduce 
viral replication in vivo and accelerate viral clearance.
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