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Obesity and its related metabolic diseases have become great public health threats
worldwide. Although accumulated evidence suggests that circRNA is a new type of
non-coding RNAs regulating various physiological and pathological processes, little
attention has been paid to the expression profiles and functions of circRNAs in white
adipose tissue. In this study, 3,771 circRNAs were detected in three stages of white
adipogenesis (preadipocyte, differentiating preadipocyte, and mature adipocyte) by
RNA-seq. Experimental validation suggested that the RNA-seq results are highly reliable.
We found that nearly 10% of genes which expressed linear RNAs in adipocytes could
also generate circRNAs. In addition, 40% of them produced multiple circRNA isoforms.
We performed correlation analysis and found that a great deal of circRNAs (nearly
50%) and their parental genes were highly correlated in expression levels. A total of
41 differential expression circRNAs (DECs) were detected during adipogenesis and an
extremely high ratio of them (80%) were correlated with their parental genes, indicating
these circRNAs may potentially play roles in regulating the expression of their parental
genes. KEGG enrichment and GO annotation of the parental genes suggesting that
the DECs may participate in several adipogenesis-related pathways. Following rigorous
selection, we found that many up-regulated circRNAs contain multiple miRNAs binding
sites, such as miR17, miR-30c, and miR-130, indicating they may potentially facilitate
their regulatory functions by acting as miRNA sponges. These results suggest that plenty
of circRNAs are expressed in white adipogenesis and the DECs may serve as new
candidates for future adipogenesis regulation.

Keywords: circRNA, adipocyte, adipogenesis, obesity, high-throughout RNA sequencing

INTRODUCTION

Obesity is recognized as one of the severe threats to public health due to its strong positive
association with various diseases, including diabetes, hypertension, cardiovascular diseases, and
even cancers (Blüher, 2019). Obesity is characterized by the accumulation of white adipose tissue,
which is dependent on an increase of adipocyte number (adipogenesis) and enlargement of
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adipocytes (hypertrophy) (Stefan, 2020). One possible approach
to prevent obesity is to reduce adipocyte number, but a better
understanding of the regulators controlling adipogenesis is
needed. In the last few decades, scientists have identified many
key protein-encoding genes, such as PPARγ and C/EBP family
genes, which are essential for adipogenesis (Rosen et al., 2000).
Despite that, there has been a rapidly growing interest in the
role of non-coding RNAs in adipogenesis. A larger number of
microRNAs and long-non-coding RNAs have been reported to
play vital roles in adipogenesis (Sun et al., 2013; Arner and Kulyté,
2015; Lorente-Cebrián et al., 2019). In recent years, circRNA is
emerging as another type of non-coding RNA, with important
functions in physiological systems and disease contexts.

CircRNA is a type of covalently closed and single-stranded
RNA, which is produced by back-splicing of pre-mRNA (Li
et al., 2018). It was first reported in the 1990s. However, it is
considered as an abnormal splicing product with little function.
Until recently, with the progress of high throughout technology,
it has been revealed that circRNAs are widely expressed across all
eukaryotic species and participate in regulating various biological
activities (Kristensen et al., 2019; Patop et al., 2019). CircRNAs
can act as miRNA sponges or protein decoys to regulate
transcription, splicing, and RNA stability (Hansen et al., 2013;
Conn et al., 2017; Du et al., 2017). Some circRNAs may even
encode functional proteins by IRES-driven mechanisms (Fan
et al., 2019). Through the above ways, circRNAs control many
cellular processes such as cell proliferation, differentiation, and
apoptosis, which are deeply related to correct tissue development
and proper tissue functions. CircRNAs have been extensively
studied in the organogenesis of various human organs, such as
the central nervous system, cardiovascular system, and skeletal
muscle (Khan et al., 2016; Piwecka et al., 2017; Zhang P. et al.,
2019). It is also reported that abnormal expression of circRNAs
leads to human disease, including cancers and Alzheimer’s
disease (Haque and Harries, 2017).

Unlike the central nervous system and cancers, fewer studies
have aimed to define circRNA function in adipose tissue.
Arcinas et al. (2019) performed global circRNA profiles in
both epididymal and inguinal fat of humans and mice, they
identified thousands of adipose circRNAs. Liu et al. (2020)
tried to identify differentially expressed adipose circRNAs from
obese and lean individuals. Otherwise, Zhang H. et al. (2019)
reported that exosomal circRNAs, which were derived from a
gastric tumor, could regulate white adipose browning. Liu et al.
(2018) analyzed the expression patterns of circRNAs during
porcine subcutaneous preadipocyte differentiation. However,
the expression of circRNAs in the process of mouse white
adipogenesis remains unknown.

The majority of research investigates adipogenesis molecular
pathways was performed in vitro using cell lines, e.g., 3T3-L1
or C3H/10T1/2 (Bahmad et al., 2020). However, their ability
to differentiate in vivo is limited. An alternative approach is
the use of primary preadipocytes. Cells isolated from WAT
stromal vascular fraction (SVF) can differentiate into mature
adipocytes. Regardless some cells are included in SVF other than
preadipocytes, such as endothelial cells, pericytes, and fibroblasts,
it may more accurately represent adipose tissue function in vivo

(Rodeheffer et al., 2008), thus WAT SVF is a widely used model
to study adipogenesis in vitro.

The main goal of the current study was to determine
the circRNA profiles during adipogenesis. We isolated SVF
cells from mouse white adipose tissue and identify circRNAs
by RNA-seq. We discovered a lot of novel circRNAs and
characterized their expression profiles in the process of
adipogenesis. Furthermore, we identified differential expression
circRNAs (DECs) and determined their correlation with the
corresponding parental genes. The miRNA binding sites of
circRNAs were predicted, suggesting the potential roles of
circRNAs in adipogenesis.

MATERIALS AND METHODS

Animals
Mice were bought from the Model Animal Research Centre
of Nanjing University in a C57BL/6J background. All the
experiments involving mice were guided by the Xinyang Normal
University Animal Care and Use Committee.

Cell Culture
Primary white adipose SVF cells were cultured as we described
previously (Shan et al., 2016). Briefly, the inguinal fat pad
was collected from 6-week-old female mice and washed with
PBS twice. Then, the fat pad was minced with scissors
and digested with collagenase type I (1.5 mg/ml, #SCR103,
Sigma-Aldrich) at 37◦C for 40 min. When the digestion was
finished, the growth medium contained 85% high glucose
DMEM medium (#11965126, Thermo Fisher Scientific) and
15% fetal bovine serum (#10099141, Thermo Fisher Scientific)
was added to dilute the collagenase. The tissue debris was
removed through a 70-µm cell strainer. The medium was
subjected to centrifuge to get SVF cells pellet. SVF cells
were resuspended with the growth medium. When the cells
reached 90% confluence, they were induced to adipogenesis,
with a cocktail containing DMEM, 10% fetal bovine serum,
2.85 mM recombinant human insulin (#I8830, Solarbio), 0.3 mM
dexamethasone (#D8040, Solarbio), and 0.63 mM 3-isobutyl-
methylxanthine (#I7018, Sigma-Aldrich). After 4 days, the
cocktail was switched to a DMEM medium supplemented
with 10% fetal bovine serum, 10 nM triiodothyronine (T3,
#T6397, Sigma-Aldrich), and 200 nM insulin to induce
mature adipocytes.

Total RNA Preparation and
RNA-Sequencing
Total RNA was purified from adipocytes using Trizol Reagent
(#15596026, Thermo Fisher Scientific). To enrich circRNAs,
the rRNA was removed with Ribo-zero rRNA Removal Kit
(#RZH1046, Epicentre) and linear RNA was digested with
RNase R (#RNR07250, Epicentre). Then, the sequencing libraries
were prepared by RNA Library Prep Kit (#E7760S, NEB) and
sequenced on an illumine platform. Raw datasets have been
deposited at the Gene Expression Omnibus (#GSE178502).
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Identification of CircRNA
The circRNA was identified as previously described (Zhang P.
et al., 2018). First, the adapter reads and low-quality reads were
removed using Fastp (version 0.20.1) (Chen S. et al., 2018). Then,
the clean data were mapped to the reference mouse genome
mm9 using BWA-MEM (version 0.7.17) (Li, 2013). Subsequently,
circRNAs were identified using CIRI2 (Gao et al., 2018). The
expression levels of circRNAs were measured by “circRNA
counts per million circRNA reads” (circCPM) (Shao et al., 2019).
Then, DECs were detected by DESeq2 (version 1.10.1) with a
likelihood ratio test (Love et al., 2014). Expression patterns of
the DECs were obtained by using degPatterns function from
the R package DEGreport (version 1.28.0) (Pantano, 2021). The
degPatterns function was run using the default parameters, except
that the minimum number of circRNAs in each group was set
to 1 (minc = 1).

qPCR Analysis
Random primers and Reverse Transcription Kit (#RR037A,
Takara) were used to obtain cDNA according to the
manufacturer’s protocol. CircPrimer 2.0 software was used
to annotate and obtain circRNA sequences (Zhong et al., 2018).
Then, the divergent primers, which coved the back-splicing
regions, were designed by Primer31 (Untergasser et al., 2012).
The PCR products of divergent primers were sequenced to
validate the corresponding back-splicing sites. The relative
expression levels of selected circRNAs were detected by qRT-
PCR using TB Green Premix Ex II (#RR820A, Takara) on a
LightCycler 96 system (Roche, Germany) according to the
instructions. 18S was used to normalize the threshold cycle (Ct)
values, and gene expression was quantified using the relative
quantitation method (2−11Ct). All experimental data are
presented as means ± SD.

GO and KEGG Pathway Analyses
The parental genes of circRNAs were subjected to functional
annotation. ClusterProfiler package in Bioconductor was used
to perform GO analysis (Yu et al., 2012) and q-values < 0.05
were considered statistically significant. KEGG pathways
were enriched by KOBAS online software2 (Bu et al.,
2021) and the corrected P-values < 0.05 were considered
statistically significant.

Correlation Analyses Between CircRNAs
and Their Parental Genes
To examine the correlation between each circRNA and the
parental gene, expression levels of mRNA were extracted from
our previous study (GEO accession number GSE173710). Then
the average expression levels of circRNA and mRNA on D0,
D4, and D8 were used to calculate the correlation by using the
Pearson correlation test and the P-values < 0.05 were considered
statistically significant.

1https://primer3.ut.ee/
2http://kobas.cbi.pku.edu.cn/kobas3

Construction of the CircRNA-miRNA
Network
The circRNA-miRNA interactions were predicted using miRDB
with a predicted score over 85 (Chen and Wang, 2020). Then, the
circRNA-miRNA network was constructed using Cytoscape 3.8.2
(Shannon et al., 2003).

RESULTS

Identification of CircRNAs in Growth and
Differentiation WAT Adipocytes
To identify circRNAs in adipogenesis, RNA was collected from
WAT SVF on day 0 (D0), day 4 (D4), and day 8 (D8) post
differentiation, corresponding to the proliferation, premature
and mature stages of WAT adipocytes differentiation, with
two biological replicates for each stage (Figure 1A). To enrich
circRNA, the rRNA and linear RNA were removed. Then the
RNA samples were subjected to RNA-seq. The CIRI2 was
used to predict de novo circRNAs. As circRNAs identified
between replicates are usually showed low consistency, we kept
the circRNAs with a minimum of two reads identified in
both two replicates. A total of 3,711 circRNAs were identified
(Supplementary Table 1). Compared to the publicly available
circBase database,3 we found 1,324 circRNAs were novel
(35.11%). As shown in Figure 1B, circRNAs were identified
on D0, D4, and D8, respectively. It is noticed that 1,023
circRNAs (27.13%) were continually expressed in all stages of
adipogenesis, while 588, 489, and 671 circRNAs were only
detected on D0, D4, and D8 respectively, indicating the stage-
specific expression of circRNAs.

Characteristics of the Adipocyte
CircRNAs
We analyzed the chromosome distribution of the circRNAs.
We noticed that chromosome 2 generated the greatest number
of circRNAs, while chromosome X was the least (Figure 1C).
Considering that chromosome X is the shortest, we calculated
the relationship between circRNA number and chromosome
length. The results showed that the correlation was significant
(R = 0.69, P < 0.001). As circRNAs share pre-RNAs with
mRNAs, we further analyzed the correlation between linear
mRNA number and circRNA number in each chromosome, and
a much higher correlation was found (R = 0.77, P < 0.05;
Figure 1D), indicating that the generation of circRNAs may
associate with linear mRNAs.

Upon the genomic origin of junction sites, circRNAs can
be classified into exonic, intronic, and intergenic circRNA. As
described in Figure 1E, the ratio of circRNA types was similar
in all the stages. The majority of the circRNAs were derived
from protein-coding exons (94.53%) of circRNAs. The other
circRNAs were derived from introns or intergenic regions. Our
previous study showed that 20,703 mRNAs could be detected
during white adipogenesis (with a minimum of two reads in both

3http://www.circbase.org/
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FIGURE 1 | Identification and characterization of circRNAs in white adipogenesis. (A) Representative pictures of WAT adipocytes during adipogenesis. Scale bar,
20 µm. (B) Identification of circRNAs at each adipogenesis stage. (C) Distribution of circRNAs on each chromosome. (D) Association of circRNAs and mRNA
numbers from the same chromosome. (E) Genomic origins of the circRNA type in each adipogenesis stage. (F) The number of circRNAs derived from per gene.

two replicates, accession number GSE173710). We found nearly
10% (2,018 genes) of them can generate circRNAs. Further, we
found that a great deal of these parental genes (about 40%) gave
rise to more than one type of circRNA isoforms. Arhgap10 even
produced up to 20 distinct circRNA isoforms (Figure 1F). The
above results suggest that alternative splicing is very common
in circRNA biogenesis, thus expand the diversity of circRNA
expression profiles in adipogenesis.

Experimental Validation of the Predicted
CircRNAs
To confirm the authenticity of the RNA-seq results, we randomly
chose 12 circRNAs and designed divergent primers (primers
are list in Supplementary Table 2). As shown in Figure 2A,
11 of the 12 circRNAs were successfully amplified. In some
of the cases, double products were detected which may be
generated by multiple rounds of RT around a circular RNA

template (Danan et al., 2012). Further, Sanger sequence results
detected the expected back-splicing sites (Figure 2B). Next, we
checked circRNAs expression levels of the 11 circRNAs by qPCR
(Figure 2C). Then the correlation between the RNA-seq results
and qPCR results was examined. We found a strong correlation
between them (R = 0.800, P < 0.0001; Figure 2D). The above
results suggested that RNA-seq results are reliable.

Differential Expression of CircRNA
During Adipogenesis
To compare expression levels of circRNA between different
stages, we first checked the overall expression of circRNAs with
the boxplot. As shown in Figure 3A, the average abundance of
circRNAs in all the three stages of adipogenesis was comparable
to each other. To explore the similarity of the samples,
we performed principal component analysis. As indicated in
Figure 3B, the distance between two biological replicates was
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FIGURE 2 | Verification of circular RNAs. (A) Electrophoretic band of circRNAs. The red triangle represents double-size products. (B) Representative Sanger
sequencing results of circRNAs. The red star represents the back-splicing site. (C) Relative circRNA expression levels detected by qPCR (n = 3). (D) Correlation
analysis of qPCR results and RNA-seq results.

very close to each other, indicating high repeatability. Meanwhile,
the D0 group was located far away from the other groups,
suggesting a great difference in circRNA expression patterns
between the proliferation and differentiation stages. Consistent
with the principal component analysis, the hierarchical tree also
showed biological replicates were highly correlated with each
other (Figure 3C). Subsequently, we identified DECs across
adipogenesis by DESeq2 with the Likelihood ratio test. We
set the cut-off as padj < 0.05. Only 41 DECs were identified.
The majority of them were upregulated (28 of 41) and 13
were downregulated (Figure 3D and Supplementary Table 3).
Consistent with the above results, the heatmap showed marked
differences between the proliferation stage and the differentiation
stages (Figure 3E). As many circRNAs regulate the expression
of their parental genes, the roles of circRNAs may be revealed
through functional analysis of their parental genes. Despite the
two circRNAs fell outside the genomic regions of annotated
genes, the parental genes of the other 39 DECs were used. KOBAS
gene-list enrichment showed that many adipogenesis and fat
metabolism pathways were significantly enriched, such as GnRH
signaling pathway, MAPK signaling pathway, type II diabetes
mellitus, calcium signaling pathway, and cAMP signaling
pathway. GO annotations indicated that calcium channels,
actinin binding, and transmembrane receptor protein kinase
activity were significantly enriched (Supplementary Table 4).

We further examined the expression patterns of the 41
DECs using DegPatterns function of R package DEGreport.
A total of four groups were identified (Figure 3F and

Supplementary Table 3). The circRNA numbers ranged from
2 to 26 in the four groups. Group 1 was the largest, which
contained 26 circRNAs. In group 1, the circRNAs showed
increased expression levels in the differentiation stages compared
to the proliferation stage. In contrast to group 1, group 4 showed
an opposite trend, the circRNAs decreased in the differentiation
stages. Both group 2 and group 3 contained only two circRNAs.
Group 2 showed a transient increase on D4 followed by a
decrease. Group 3 showed a transient decrease on D4 followed
by a sharp increase. To annotate the role of the circRNAs in
group 1 and group 4. We performed GO and KEGG analysis
(Supplementary Table 5). Unfortunately, few GO terms were
significantly enriched. The results showed four GO terms were
enriched in group 1, they were transmembrane receptor protein
kinase activity, transmembrane receptor protein serine/threonine
kinase activity, activin binding, growth factor binding, and
growth factor binding. In group 4, actinin binding and alpha-
actinin binding were enriched. KOBAS enrichment showed no
pathway was significantly enriched in group 4 and only a
few pathways were enriched in group 1, such as propanoate
metabolism, MAPK signaling pathway, GnRH signaling pathway,
and TGF-beta signaling pathway.

Correlation of the Expression Between
CircRNAs and Linear RNAs
To evaluate the change of circRNAs expression and their
parental genes between different stages of adipogenesis. The
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FIGURE 3 | Differential circRNAs expression during adipogenesis. (A) Relative expression abundance of circRNAs during adipogenesis (circCPM). (B) Principal
component analysis (PCA) plot of RNA samples. (C) Hierarchical clustering analyses of samples correlation using DESeq2 rlog-normalized RNA-seq results.
(D) Volcano plot comparing circRNAs abundance between different adipogenesis stages. The green color indicates the differentially expressed circRNAs
(padj < 0.05), while the red color indicates not significant change circRNAs. (E) Heatmap showing differentially expressed circRNAs across different stages of
adipogenesis. (F) Expression patterns of the differential expressed circRNAs during adipogenesis.

expression data of mRNA counterparts were collected from
our previous study (GEO accession number GSE173710). We
tried to calculate the overall correlation between circRNAs
expression and their parental genes, but no significant correlation
was found. However, when we checked the expression of
individual circRNA and the parental gene in adipogenesis,
we identified 1,806 circRNA-mRNA pairs (48.67%) that were
significantly correlated with each other, including 1,379 (37.16%)
positively correlation and 427 (11.51%) negatively correlation
(Supplementary Table 6).

We further analyzed the correlation between the 39 DECs
and their linear counterparts. We found 33 of the DECs were
correlated with their linear counterparts. Interestingly, all of
them showed positive correlation, ranging from 0.812 to 0.999
(P < 0.05, Figure 4 showed the representative results and
the other results could be found in Supplementary Figure 1).

Notably, circRNA generated by Acvr2a showed almost the same
trend as the linear counterpart (R = 0.999), while circRNAs
generated by Fancl and Megf8 were not significantly correlated
with their linear counterparts. In Figure 4D, the expression of
Fancl linear counterpart continuously decreased in the process of
adipogenesis, while the expression of circRNA showed a transient
increase on D4 followed by a decrease on D8. As shown in
Figure 4A, both two circRNA isoforms generated by Acss3 were
highly correlated with the linear counterpart. But in Figure 4C,
only one of the circRNA isoforms generated by Arhgap10 was
significantly correlated with the linear counterpart. In Figure 4L,
it seemed that the expression of the Zfx linear counterpart and
the circRNA were not correlated. However, after we inspected
the data, we found that the Zfx linear counterpart increased
by 20% on D4, then it decreased to a similar level as D0. The
corresponding circRNA showed the same expression pattern
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FIGURE 4 | Representative results of correlation analysis between differentially expression circRNAs and their parental genes during adipogenesis. For the
convenience of drawing both circRNA and mRNA expression in the figure, the relative expression level was used (expression level at each time point was divided by
its average expression level across adipogenesis). (A–P) The correlation between Acss3, Acvr2a, Arhgap10, Fancl, Cacna1d, Cped1, Egfr, Fkbp5, Bckdhb, Bmper,
Pde4d, Zfx, Cacna1c, Dcbld2, Megf8, Rad18, and their corresponding circRNAs.

despite much more change on D4, hence they showed a high
correlation. In summary, these results indicated that many of
the circRNAs are highly correlated with their linear counterparts.
CircRNAs may be potentially involved in the regulation of linear
RNA expression in adipogenesis.

Potential CircRNA-miRNA Interaction
Network
CircRNAs may affect gene expression by interacting with
miRNAs (Zhong Q. et al., 2019). In the up-regulated circRNAs,
we chose the top 15 highly expressed circRNAs. The potential
miRNA binding sites of these circRNAs were predicted using
miRDB. As some of the circRNAs may not express in adipocytes,
we filtered them according to the previous data studying miRNA
profiles in adipogenesis (GEO accession: GSE75697). Then, 8 of
the15 circRNAs were left, which contain many miRNA binding
sites. A total of 148 circRNA-miRNA interactions were identified

with a predicted score over 85. Then the circRNA-miRNA
interactions were used to draw an interaction network (Figure 5
and Supplementary Table 7). We noticed several miRNAs which
have been reported to regulate adipogenesis were included in
the network, such as miR17, miR-30c, and miR-130. These
results indicating that these circRNAs may potentially regulate
adipogenesis by interacting with miRNAs. However, it should be
noted that those results were not obtained experimentally and
future work should validate the circRNA-miRNA interactions.

DISCUSSION

Prior studies have described circRNAs are abundant in white
adipose tissue. Arcinas et al. (2019), for example, reported
that up to 6,000 and 2,000 circRNAs were detected in
human adipose tissue and mouse adipose tissue respectively.
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FIGURE 5 | The potential circRNA-miRNA interaction network. The width of the edge indicates the prediction score (range from 85 to 100).

Liu et al. (2020) compared the circRNA expression profiles of
obese and lean individuals. They identified that circSAMD4
was highly expressed in obese individuals. However, these
studies mainly focused on mature adipose tissue. Little attention
has been paid to the expression profiles and functions of
circRNAs in adipocytes. In the present study, we detected the
expression profile of circRNAs in proliferation, pre-mature and
mature stages of adipogenesis. We identified 3,711circRNAs and
nearly 35% of them are novel. We noticed a dramatic change
of circRNA expression profiles between the proliferation and
differentiation stages. These findings confirmed that circRNAs
are abundant in adipose tissue, not a by-product of splicing.
In addition, we noticed the circRNA number in our study
is different from the previous study, which may result from
differences in cell conditions, circRNA identification methods,
and sequence depth. Thus, it is essential to investigate
circRNAs expression profiles in various cell lines, tissues, and
developmental stages.

Several reports indicated that circRNAs can regulate the
expression of their parental genes. It has been suggested that
circRNAs and their linear counterparts share the same pre-RNA
(Aufiero et al., 2018), thus they may compete and negatively
regulate the abundance of each other. In contrast to that, other
reports suggested that circRNAs can also positively regulate
gene expression. Some circRNAs accumulate at promoter
regions and interact with Pol II and U1 snRNP to increase
transcription of their parental genes (Li et al., 2015). Another
circRNA, circFECR1, can bind to its parental gene and regulate
transcription by an epigenetic mechanism. CircFECR1 recruits
a demethylase and induces DNA hypomethylation in CpG

islands of the promoter, thus enhanced parental gene expression
(Chen N. et al., 2018). We examined the correlation between
individual circRNA and parental genes. We discovered that
nearly 50% of circRNAs were significantly correlated with their
parental genes. When we checked them in detail, we found 37%
of them were positively correlated, while the other 12% were
negatively correlated. The complex correlation between circRNAs
and parental genes may explain why the overall correlation is very
weak and not significant. Further, when we check the correlation
of the DECs and their parental genes, a much higher ratio of
positive correlation was found. We also noted that the circRNAs
which were derived from the same parental gene show different
expression trends.

The functions of circRNAs largely remained to be investigated.
One clue to predict circRNA functions is their parental genes.
Functional analysis showed that the parental genes of DECs
were enriched in many adipogenesis and fat metabolism-related
pathways, such as GnRH signaling pathway, MAPK signaling
pathway, type II diabetes mellitus, and cAMP signaling pathway.
We also found several parental genes of the DECs play key
roles in regulating adipogenesis. Nsd2 is the parental gene of
circ_0001335. Depleting Nsd2 impairs adipogenesis by increasing
H3K27me3, thus preventing the induction of C/EBPα and
PPARγ (Zhuang et al., 2018). The parental gene Selenbp1
is identified as an H2S-producing enzyme. Selenbp1 silencing
downregulates H2S levels and inhibits adipogenesis (Randi et al.,
2021). The Fkbp5 and Fndc3b are also circRNA parental genes
that are essential for adipogenesis (Tominaga et al., 2004; Zhang
L. et al., 2017). Another clue to predict circRNA functions
is based on miRNAs. As circRNAs were reported to act as
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sponges to titrate the levels of miRNAs, they can regulate miRNA
target genes indirectly. CircSAMD4A is highly expressed in
obese people and acts as a sponge for miR-138-5p to promote
adipogenesis (Liu et al., 2020). The miR-138 effectively reduces
lipid droplet accumulation by targeting adipogenesis genes (Yang
et al., 2011). In bovine adipose tissue, circFUT10 directly interacts
with let-7c/let-e to promote adipocyte proliferation and inhibit
differentiation (Jiang et al., 2020). In the current study, we noticed
that DECs could interact with a great number of miRNAs and
many of the miRNAs have been reported to regulate adipogenesis.
We predicted that circ_0010609 may act as a sponge for miR130a
which was reported to inhibit adipogenesis differentiation via
suppressing PPARγ expression (Lee et al., 2011). The miR-30
family represents 4.9% of the miRNA reads in adipocytes and
positively regulates adipogenesis (Zaragosi et al., 2011; Irani
and Hussain, 2015). According to our results, circSlc10a7 and
circ_0010609 contained multiple binding sites for distinct miR-30
family members, indicating the potential roles of these circRNAs
in regulating adipocyte activity.

CONCLUSION

In summary, we globally detected the circRNA expression
profiles during adipogenesis. We concluded that circRNAs are
abundant and dynamically express in adipogenesis. Nearly
50% of the circRNAs are correlated with their parental gene
expression. Adipose circRNAs may be involved in adipogenesis-
related pathways and act as miRNA sponges to modulate
gene expression. These identified circRNAs may serve as
new candidates to regulate adipogenesis and combat obesity.
However, some limitations are worth noting. Although our
hypotheses were supported statistically, future experimental work
is needed to understand the functions of the indicated circRNAs
in adipogenesis.
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