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Atrial fibrillation (AF) is the most common cardiac arrhythmia and currently affects more 
than 650,000 people in the United Kingdom alone. Catheter ablation (CA) is the only AF 
treatment with a long-term curative effect as it involves destroying arrhythmogenic tissue 
in the atria. However, its success rate is suboptimal, approximately 50% after a 2-year 
follow-up, and this high AF recurrence rate warrants significant improvements. Image-
guidance of CA procedures have shown clinical promise, enabling the identification of 
key patient anatomical and pathological (such as fibrosis) features of atrial tissue, which 
require ablation. However, the latter approach still suffers from a lack of functional 
information and the need to interpret structures in the images by a clinician. Deep learning 
plays an increasingly important role in biomedicine, facilitating efficient diagnosis and 
treatment of clinical problems. This study applies deep reinforcement learning in 
combination with patient imaging (to provide structural information of the atria) and image-
based modelling (to provide functional information) to design patient-specific CA strategies 
to guide clinicians and improve treatment success rates. To achieve this, patient-specific 
2D left atrial (LA) models were derived from late-gadolinium enhancement (LGE) MRI 
scans of AF patients and were used to simulate patient-specific AF scenarios. Then a 
reinforcement Q-learning algorithm was created, where an ablating agent moved around 
the 2D LA, applying CA lesions to terminate AF and learning through feedback imposed 
by a reward policy. The agent achieved 84% success rate in terminating AF during training 
and 72% success rate in testing. Finally, AF recurrence rate was measured by attempting 
to re-initiate AF in the 2D atrial models after CA with 11% recurrence showing a great 
improvement on the existing therapies. Thus, reinforcement Q-learning algorithms can 
predict successful CA strategies from patient MRI data and help to improve the patient-
specific guidance of CA therapy.
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INTRODUCTION

Atrial fibrillation (AF) is one of the most common cardiac 
arrhythmias, affecting about 1–1.5% of the general population 
with prevalence predicted to double by 2050 (Lip et  al., 2007). 
Currently, the first-line treatment for AF is antiarrhythmic drug 
therapy, which can restore and maintain sinus rhythm 
(Zimetbaum, 2012). However, it has limited efficacy and can 
cause significant toxicity to organs outside the heart (Pollak, 
1999). Catheter ablation (CA) is being increasingly used as a 
first-line treatment for AF with clinical trials demonstrating 
its superiority over antiarrhythmic drugs (Bunch and Michael, 
2015). CA therapy is typically performed by the delivery of 
radiofrequency energy through a catheter which creates 
non-conductive lesions and thus, electrically isolates abnormal 
arrhythmogenic tissue from the rest of the heart.

AF is initiated by electrical triggers outside of the sinus 
node, typically near the pulmonary veins (PVs) – hence, 
pulmonary vein isolation (PVI) has become one of the 
cornerstones of CA (Bunch and Michael, 2015). However, a 
crucial issue concerning PVI and other ablation strategies is 
the high recurrence rate of AF post ablation (Jiang et  al., 
2014). This is often caused by PV reconnection post-ablation, 
which can occur in 94% of cases (Bunch and Michael, 2015). 
Moreover, multiple clinical trials have reported arrhythmia-free 
survival of only 50–75% at 1-year post ablation, with the 
highest recurrence rates associated with persistent AF cases 
(Kirchhof and Calkins, 2017) characterised by the presence of 
new AF triggers and drivers outside of the PVs. The latter 
have been strongly linked with atrial fibrosis (Nattel, 2016).

Fibrosis promotes AF via excessive collagen deposition in 
atrial tissue, which provides slow-conductive substrate for 
re-entrant drivers (rotors; Everett and Olgin, 2007; Boyle et al., 
2019). Late gadolinium enhancement (LGE) MRI has proved 
to be  an effective tool for non-invasive fibrosis quantification 
in AF patients, providing important information on spatial 
distributions of atrial fibrosis (Platonov, 2017). The availability 
of such data has also led to the development of patient-specific 
atrial models that link fibrosis distributions with the dynamics 
of rotors sustaining AF (McDowell et al., 2012; Boyle et al., 2019; 
Roy et  al., 2020).

Recently, patient imaging data and image-based models are 
increasingly used in combination with novel artificial intelligence 
(AI) algorithms (Davenport and Kalakota, 2019), specifically 
to understand the mechanisms of AF and improve CA therapy 
(Lozoya et  al., 2019; Feeny et  al., 2020). Deep learning in 
particular is becoming widely used in applications such as 
image segmentation and patient classification (Yang et al., 2020). 
A promising, but less explored area of AI is Reinforcement 
Learning, where an algorithm learns based on a reward structure, 
similar to how a child learns by receiving rewards and penalties 
(Qiang and Zhongli, 2011).

Reinforcement Learning operates by allowing a free-moving 
agent to explore and interact with a given environment. The 
agent learns not from a predefined set of rules, but rather 
from the consequence of the actions it takes. This provides a 
perfect analogy with an ablation procedure, where a catheter 

moves in an environment of a patient atrial image (or an 
image-based model), and the reward comes in the form of a 
successful procedure, whereas failure to treat AF is a natural 
penalty; optimisation of the procedure comes from a large 
number of trials. Thus, the Q-learning process is similar to a 
cardiologist performing multiple image-guided ablation 
procedures on different patients and learning to apply the most 
suitable lesions in each case.

This study uses Reinforcement Q-learning algorithms to 
predict patient-specific CA strategies on a set of LGE-MRI 
based atrial models. These models include main structural 
features of the left atrium (LA), such as PVs, and employ 
advanced image-processing techniques to represent patient-
specific fibrosis distributions and computational modelling to 
simulate AF scenarios.

MATERIALS AND METHODS

Image-Based 2D Atrial Models
LGE-MRI data was acquired from two different sources. First, 
86 scans were obtained from the 2018 STACOM segmentation 
challenge (Xiong et  al., 2021), with resolution of 
0.625 × 0.625 × 0.625 mm3, and corresponding segmentations of 
the LA, and the second dataset was acquired from St Thomas’ 
Hospital (Chubb et  al., 2018) from 18 AF patients, comprising 
of an additional 36 LGE-MRI images with a resolution of 
1.3 × 1.3 × 4.0 mm3, reconstructed to 0.94 × 0.94 × 2.0 mm3. The 
patient images were processed in CemrgApp (Razeghi et  al., 
2020) using the scar quantification pipeline to first produce 
patient-specific 3D LA geometries with raw LGE intensity 
distributions. Then, the image intensity ratio thresholding 
technique was applied to clearly differentiate between fibrotic 
regions and healthy tissue (Roy et  al., 2018). The resulting 
3D LA dataset was then fed into an existing algorithm which 
unwrapped to a standardised 2D LA disk (Williams et  al., 
2017). The workflow of the image-based 2D LA tissue model 
generation is shown in Figure  1.

The final 2D LA models were used to simulate patient-
specific AF scenarios, as described previously (Muffoletto et al., 
2021). The monodomain equations were combined with the 
ionic Fenton-Karma equations (Roy et  al., 2018) and solved 
on the 2D LA disks using the forward Euler method, using 
a temporal discretisation of 0.05 ms and a spatial discretisation 
of 0.3 mm. Zero-flux boundary conditions were implemented 
at the outer boundary of the disks and around the PVs. To 
model the slow-conducting properties of fibrosis, the 
monodomain diffusion coefficient was reduced from 0.05 mm2/s 
in healthy tissue to 0.0075 mm2/s in fibrotic patches.

Two AF scenarios were simulated for each LA model, each 
sustained by a rotor initiated in the tissue using a cross-field 
protocol, as shown in Figure  2. One rotor was initiated below 
the left superior PV (to initiate a rotor around the LSPV), 
while another was initiated between the inferior PVs (to initiate 
a free moving rotor). The distance between the two rotor 
initiation points was fixed at ~2.5 cm. In the example shown 
in Figure  2, a plane wave is initiated at the top of the tissue 
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and travels down two-thirds of the tissue, where the voltage 
on the left side of the tissue is then set to zero, initiating one 
rotor. The 2D LA models with simulated AF provided the 
environment for the Q-learning algorithm (see sections 
“Reinforcement Q-Learning Algorithm and Q-Learning Reward 
Structure” below). The same two AF scenarios (initial rotor 
locations) were used in both testing and training.

Once training and testing were completed, the successfully 
ablated tissue models were tested for rotor recurrence by 
attempting to initiate rotors in four different locations spread 
through the 2D LA tissue (resulting in simulation Scenarios 
1, 2, 3, and 4). This was done to see whether the ablation 
strategy that was successful in termination of rotors would 
also work in preventing the emergence of new rotors. Recurrence 
testing helps to evaluate the long-term success due to the 
issue with AF reoccurrence after current ablation strategies.

Reinforcement Q-Learning Algorithm
Q-Learning is initiated with a blank Q-table that assigns a 
value to each possible state to find the optimal policy for a 
given reward structure and therefore to maximise cumulative 
reward. The values in the table need to be  enumerated by 

doing an extensive search over the action state space and 
recording, which combinations lead to positive or negative 
rewards. The best path to take in the Q-Learning process is 
mathematically described by Bellman’s Optimality equation 
(Moni, 2021):

 V s max R s,a + V s( ) = ( ) ( )( )¢a g

Here, s is a particular state, a is the action, s′ is the state 
to which the agent moves to, γ is the discount factor, R(s,a) 
is the reward function, which takes a state s and action a 
and outputs a reward value, and V(s) is the value of a total 
reward for a particular state. This formula allows the agent 
to choose the path with the highest reward.

The 2D LA tissue model and simulated AF were used as 
an input for the Q-learning algorithm. Specifically, the agent’s 
environment is set to be  the combination of the 2D diffusion 
matrix (the diffusion coefficients assigned per pixel of the 2D 
tissue), the simulated voltage at every point in the 2D tissue 
and, the values of activation variables at those same space–time 
points. These variables present different structural and functional 
properties of the same 2D LA tissue model that was used as 
the environment for the ablating agent. Figure  3 shows the 

A B

C

D

FIGURE 1 | Generating image-based 2D left atrial tissues. (A) LGE-MR image (greyscale) with segmented LA (red). (B) The 3D LA with LGE-MRI intensity 
distribution and the PVs and LA appendage (LAA) clipped. (C) The thresholded 3D LA with fibrosis in red and healthy tissue in blue. (D) The LA unwrapped onto a 
standardised 2D disk, with fixed four PVs and the LAA and fibrotic areas mapped. PVs and LAA are labelled in (B,D).

A B C D

FIGURE 2 | Rotor initialisation in a 2D LA tissue model. Voltage distributions in consecutive moments of time are shown in (A)–(D), with red corresponding to high 
voltage, blue to the resting potential, and black to the PVs and area of fibrosis; yellow arrows show the directions of wave propagation. Green crosses show the 
locations of rotor initiation in two AF scenarios: a rotor illustrated in this figure corresponds to the lower right location, as seen in (C).
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most relevant part of the environment: 2D LA tissue structure 
with the voltage distribution in the form of a re-entrant wave, 
and the agent moving through this structure trying to terminate 
re-entry.

These variables were updated within an episode loop, which 
ran one different 2D LA tissue every episode, restarting the 
simulation with a new 2D tissue when a termination condition 
was reached. The LA tissues were shuffled during training and 
testing. Each batch consists of 64 randomly selected tissues. 
Within this episode loop, the initial state of the simulation 
was input into the environment and the agent was initiated 
and started to explore the 2D LA tissue and search for the 
best ablation technique. The agent moved with a 10-ms step, 
at each step ablating a small area of 9 × 9 pixels and then 
moving into a new position. The ablator in this simulation 
worked by setting the diffusion coefficient to 0  in the small 
ablated area. Similarly, an agent was trained using a 50-ms 
ablation interval to evaluate the effect of the speed of ablation.

At first, the agent moved randomly ablating at each step, 
receiving positive or negative rewards. With time, the agent 
learned to predict that the most beneficial moves maximise 
the cumulative reward, which due to the nature of the reward 
structure, was achieved when AF was terminated. At each 
time step, the current state – the agent’s position, the action 
it made, the corresponding reward acquired – as well as the 
new state after the move was completed and whether it was 
a terminal state, were stored. This process is schematically 
illustrated in Figure 3. The success rate was stored and compared 
to previous success rates every 50 episodes, and if the success 
rate was higher than any previous one, the algorithm saved 
the Q-values corresponding to this reward structure, which 
was later used in testing on an unseen set of 2D LA tissues.

Q-Learning Reward Structure
To learn how to predict the value of actions, the agent needs 
an assignment of numerical values to sets of states, which is 

called as the reward policy. This acts as a ground truth from 
the perspective of the agent and is therefore essential in this 
algorithm. The first reward to be  implemented was a positive 
reward if the ablation strategy was successful. This was defined 
by rotor termination when the voltage at every point in the 
tissue was lower than a threshold of 0.2. This would mean 
that the episode was completed, and the agent had successfully 
terminated the rotor, rewarding the agent with +420 points, 
the highest reward possible.

On the other hand, there was also a negative reward, which 
was implemented every time the agent took a step. This was 
done to avoid too much scarring of the tissue, making the agent 
look for the fastest way of terminating AF; the episode was 
aborted if too much tissue was ablated. This was implemented 
by calculating the percentage of tissue being ablated and stopping 
the episode if it reached a rate of 40% ablation of healthy tissue, 
giving the agent −50 reward and terminating the episode. Moreover, 
the agent was given a negative reward each time, and it took 
a step to make it prioritise faster routes to a successful ablation, 
further avoiding destroying healthy tissue. The agent was also 
given a negative reward for stepping on the same tissue it had 
already ablated. The reward structure was further enhanced to 
prevent the agent from going in a straight line as that was the 
easiest way to stop a rotor by creating an obstacle between two 
boundaries of the 2D tissue. This was done by giving the agent 
an exponentially growing negative reward the more consecutive 
moves in the same direction it made.

Rotor tip locations were calculated at each ablation time 
step, and the agent was rewarded for moving closer to the 
rotor tip and was given a negative reward for moving away 
from it. Pre-determined successful lesions (such as PVI and 
fibrosis-based ablation) have been obtained for the 2D LA 
tissues (Muffoletto et  al., 2021) and used to train the agent, 
giving it a reward of 15 for moving closer to these lesions 
and −15 for moving further away from them. All the rewards 
used to train the agent are summarised in Table  1.

FIGURE 3 | A schematic overview of how a deep Q-Learning network functions. Initially a state is observed, which is then passed through a CNN. The output of 
this network maps to the predicted Q values of all eight actions available. From here the action is chosen via a ɛ-greedy action selection policy. One notable addition 
to the implementation used in this paper is there are two copies of the network to ensure stability.
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Deep Learning Networks
Two identical CNNs were created to ensure stable predictions 
for the Q-values of the available actions. These were both 
initialised with the same weights. This was done to have a 
time delayed version of the network for prediction, while the 
other network was trained. After five episodes the predicting 
network was updated to share the same parameters as the 
trained network. This was done with the purpose of increasing 
stability in the network and to create a classifier, which avoids 
overfitting. To select an action for the agent to take, the state 
consisting of 150 × 150 RGB image was observed. This state 
was recorded and passed through the CNN.

Both CNNs were built using the Keras Sequential package 
in Python, starting with a 150 × 150 × 3 input layer using separate 
RGB channels, the input being the 2D LA tissue with the 
initiated rotor wave. The input is connected to a 2D convolutional 
layer with 3 × 3 kernel size and a dimensionality of the output 
space equal to 256, which signifies the number of output filters 
in the convolution. A 2D maximum pooling layer (with the 
pooling layer size of 2 × 2) was then added in order to down 
sample the input and only take into account the maximum 
values. A dropout layer of 0.2 was then added to subsample 
the input and avoid overfitting.

All the layers mentioned above, starting from the 2D convolution 
layer, were then repeated and flattened and densed in order to 
obtain a 1D feature map from the 3D input. Finally, the output 
of this was put through another dense layer with the size of 
the action space and a linear activation function. A mean square 
error loss function and an ADAM optimiser were used.

ɛ-greedy action selection policy was used to choose an 
action. This action selection policy employs a global parameter 
ɛ, which defines the probability that the action with the highest 

predicted Q-value is chosen. In the case, it is not chosen, the 
selected action will be  uniformly sampled from the other 
available actions. During training, ɛ is decayed, which serves 
the purpose of defining a balance between an exploration vs. 
exploitation regime. Once the action has been chosen, the 
agent alters the environment by ablating the underlying tissue. 
Subsequently, the next state is observed and the cycle repeats.

Based on the reward structure and the Q-values, the agent 
learns to better predict the value of actions, which allows it 
to move in the best possible direction, avoiding negative rewards. 
This could be  compared to losing points in a game. This 
network is able to distinguish different features in the 
environment, for example, where the wave currently is and 
how it is moving, as well as the areas of fibrosis, making the 
agent’s movements more informed.

RESULTS

Q-Learning Algorithm Training
The agent was trained for 900 episodes, exploring the environment 
of 2D atrial tissues with AF and learning the ablation strategies 
that provided the highest reward. During training, the success 
rate was stored every 50 episodes for which the minimum, 
maximum, and final success rate per 50 episodes can be  seen 
in Figure  4A. The agent rapidly improved in the first few 
episodes, then fluctuated and settled around episode 500 at 
approximately 78% success.

The success rate in this case signifies the percentage of 
successfully terminated rotors per 50 episodes. The highest 
success rate per 50 episodes the agent was able to achieve 
after training for 900 episodes was 84%. The model which 
achieved the highest success rate was then used for testing. 
Figure  5 shows the agent successfully being able to ablate the 
tissue using an equivalent of the rotor technique – trying to 
follow the tip of the rotor in order to terminate it during 
training. The ablator was rewarded for trying to minimise 
proximity to the rotor tip.

Q-Learning Algorithm Testing
During testing, the process was similar to training, except the 
known ablation strategies and, the rotor tip positions were 
not included in the state passed to the agent, and the most 
successful network determined in training was used. In this 
case, for the 10-ms ablation interval, the model with 84% 
success was used. After testing the model on 100 unseen 2D 
tissues for 100 episodes, the testing success rate was at 72%. 
The slight decrease of success rate in testing was expected, 
since in training the ablating agent was rewarded for moving 
close to the successful ablation lesions known from earlier 
simulations – whereas during testing the agent had no information 
on the location of such lesions, and hence was operating in 
a more difficult environment. Note also that overfitting in this 
case is highly unlikely, given the huge number of possible AF 
scenarios (i.e., movements of one or more re-entrant waves 
over greatly variable trajectories in a large number of LA tissue 
models with different spatial characteristics). Figure  6 shows 

TABLE 1 | Summary of the reward structure, how many points the agent 
receives as a reward and whether it is a terminal state.

Reward structure

Action Points rewarded Terminal state

Successful CA – the voltage 
at every point is lower than 
0.2

420 Yes

40% of healthy tissue is 
ablated

−50 Yes

80 steps have been taken by 
the agent

−50 Yes

At each step taken −1 No
Ablating already ablated 
tissue

−5 No

Moving in the same direction 0.01*exp(N), where N is 
number of movements in 

the same direction

No

Moving closer to the rotor tip 15 No
Moving further away from 
rotor tip

−15 No

Moving closer to pre-
determined successful CA 
lesion

15 No

Moving further away from 
pre-determined CA lesions

−15 No
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the agent successfully terminating the rotor during a test. 
During testing, all the ablation points for each 2D tissue model 
were saved to be used later in the respective AF recurrence check.

Figure  4B quantifies the tissue damage during ablation. As 
expected, the average number of ablated points in cases when 
AF was terminated successfully was lower than in the overall 
number of cases. The number of ablated points was about the 
same in training and testing.

Recurrence Testing
The ablation strategies developed by the Q-learning algorithm 
were also tested for success in preventing AF recurrence, specifically 
to check whether the existing ablation lesions would prevent the 
rotors from restarting. This was done by attempting to initiate 
four different rotors in 2D atrial tissue models after ablation 
(with the non-conductive CA lesions present) and to check 
whether the lesions saved in testing would stop the rotors, and 
thus prevent the recurrence. Note that this test did not involve 
any Q-learning process, but only LA model simulations.

In Figure  7, successful ablation lesions created by the agent 
during the testing can be  seen preventing the newly initiated 
rotor from propagating (Scenario 1), meaning that this AF 
scenario was not sustained. To check this result was independent 
of the initial rotor location, another scenario for the rotor 

initiation was tested: again, the rotor also was not sustained 
(Scenario 2). Simulations were also repeated for two more 
rotor locations (Scenarios 3 and 4, not shown). In all four 
scenarios, the rotors failed to sustain AF in most 2D LA tissues. 
Specifically, the success rate of recurrence testing was 98% for 
a single scenario and 89% for all four scenarios. This means 
that rotors were terminated by ablation patterns determined 
by the Q-learning agent during testing in 89% of the cases.

DISCUSSION

This study shows that Reinforcement Q-Learning algorithms 
supported by CNNs can predict patient-specific ablation strategies 
that are effective in both terminating AF and preventing its 
recurrence in LGE-MRI-based 2D LA tissue models. This was 
achieved by simulating AF scenarios in 2D atrial models and 
using them as the environment for a Q-learning algorithm. 
The algorithm was further tested on an unseen set of 2D LA 
tissue models by using the most successful version of the 
Q-learning network, as well as by using ablation lesions produced 
during the testing to check for the likelihood of AF recurrence 
in these models. The ablation success rate was 84% in training 
and 72% in testing (at 10-ms ablation interval), showing that 

A B

FIGURE 4 | Performance characteristics of the ablating agent. (A) The minimum, maximum and final ablation success rate achieved during training for 10 ms (blue) 
and 50 ms (orange) ablation intervals. (B) Average number of ablated points (9 × 9  pixel lesions) in cases when AF was terminated successfully and the overall 
number of cases during training (blue) and testing (orange).

FIGURE 5 | Training sequence at 10 ms ablation interval with the ablator (green) successfully ablating the rotor by following its tip. Same colour code is used for the 
voltage maps as in Figure 2. Ablated tissue is shown by 9 × 9 pixel yellow rectangles.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Muizniece et al. Reinforcement Learning for AF Ablation

Frontiers in Physiology | www.frontiersin.org 7 November 2021 | Volume 12 | Article 733139

the agent explored the environment and learned to ablate 
successfully, and that Q-learning can be  a viable method to 
improve CA strategies for patient-specific AF cases. Furthermore, 
the overall recurrence prevention success over 89% (i.e., 11% 
recurrence), surpassing that of existing CA methods, which 
resulted in about 55–80% recurrence rates (Dretzke et al., 2020).

When a longer 50-ms ablation interval is used, the ablation 
patterns were similar to those of the 10-ms ablation interval 
for the same tissues. As seen in Figure  8, the 50-ms interval 
ablation points can be  found in the same positions for the 
10-ms interval ablations but less tissue was ablated. The main 
difference between the two cases was the total ablation time, 
and since the 10-ms ablation interval ablates more frequently, 

it has additional ablation points added, before AF is terminated. 
This suggests that the Q-learning algorithm prioritised the 
atrial tissue structure (such as location of fibrosis) and function 
(location of the wave at the time of ablation) over the ablation 
interval. This implies that simulations do not necessarily have 
to be run for long periods of time in order to find the optimal 
patient-specific ablation pattern. In effect, shorter simulations 
could be  run, and computational expense could be  reduced.

Note also that the action space of the ablating agent in 
this study was discrete: the agent could only choose a set of 
discrete actions to perform. This may be  more limited than 
using a continuous action space, in which the agent can perform 
a continuous set of actions – in our study, a continuous range 

FIGURE 6 | Testing sequence, where the ablator (green) uses the pre-existing model and Q-values from training to successfully terminate the rotor. Same colour 
code is used as in Figure 5. Voltage distributions in consecutive moments of time are shown in (I)–(VIII).

FIGURE 7 | Prevention of AF recurrence is shown using the successful ablation strategy identified by the agent during testing. This happens when rotor is re-
initiated with both Scenario 1 (top row) and Scenario 2 (bottom row). Green crosses show the four locations of rotor initiation; the locations were chosen to produce 
most stable rotors pre-ablation. Voltage distributions in consecutive moments of time are shown in (I)–(IV).
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of movements in the LA tissue. However, when comparing 
continuous vs. discrete deep reinforcement learning algorithms, 
it has been shown that with a limited number of trials the 
discretised approach outperforms the continuous one (Smart 
and Laelbling, 2000; Stopforth and Moodley, 2019). Moreover, 
the action space is discretised to enable the use of a deep 
Q-learning network, which requires a discrete action space as 
the size of the output layer of the network corresponds with 
the size of the action space.

One limitation of the approach used in the current study 
is that the Q-learning algorithm appeared to learn less from 
pre-determined successful ablation strategies (such as PVI), 
mostly preferring the “rotor” strategy aimed at ablating the 
tip of the rotor, similar to previous research (Muffoletto et  al., 
2021) during which a classifier was trained to find the best 
ablation strategy and found the “rotor” was the preferred 
strategy. Such information, however, will not be  available for 
real patients. Given more time for training, the algorithm could 
further improve and learn more information from the tissues. 
However, this was hindered by significant computational expense, 
making it impractical to train on a large number of tissues 
if the ablation interval is long. Moreover, the reward structure 
could still be  improved, as the ablator does not always take 
the shortest path, which can be  seen in Figure  6, and often 
tries to ablate previously ablated tissue. Ideally the agent should 
move through the shortest path possible.

To improve this work in future, the computational load 
should be  minimised, as currently the 10-ms ablation interval 
technique takes 30 min to run per episode while a 50-ms 
ablation interval takes about 5 h 30 min per episode. Using a 
similar approach in a clinical setting will require the application 
of GPU to accelerate simulation time. Furthermore, a more 
clinically relevant approach will require patient-specific 3D 
atrial models instead of 2D models as input into the Q-learning 
algorithm to produce more accurate results.

Data augmentation techniques could also be  applied to 
enhance the patient datasets. In the previous study (Muffoletto 
et  al., 2021), 122 real patient-specific LA images have been 
used to create additional synthetic images by taking random 
weighted averages of all the real data set to introduce new 
fibrotic patterns, and also varying size of the PVs. In the 

current study, 50 such synthetic images were used for additional 
testing, with the success rate remaining at 72%.

Machine learning has been applied in this field before, thus 
Lozoya et  al. (2019) have achieved 97.2% accuracy in finding 
ablation targets using biophysical cardiac electrophysiology 
models to augment ventricular image features. However, their 
feature augmentation algorithm used supervised learning, whereas 
Q-learning is neither supervised nor unsupervised. A study 
by Liu et  al. (2020) used computed tomography images of the 
atria to train a CNN and create a prediction model of the 
non-PV triggers for AF, reaching an accuracy of 82%. However, 
instead of predicting ablation techniques, their method simply 
identified patients with a high risk of non-PV triggers.

Building upon the recent advancements in applications of 
deep learning in cardiac imaging and modelling, our study 
provides a unique approach to tackle the problem of AF ablation 
leading to recurrence. The developed approach could be translated 
to the clinic, with routine LGE MRI scans used to create patient-
specific LA models and the trained Q-learning algorithm then 
applied to predict a suitable ablation strategy for the patient. 
The predicted pattern can then integrated into the ablation image-
guidance system to provide additional information for cardiologists 
performing the ablation procedure. Thus, after further clinical 
validation, our proof-of-concept Q-learning technique can 
be  applied both to improve understanding of patient-specific 
ablation therapy and to enhance current clinical treatment methods.
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FIGURE 8 | The same patient-specific 2D LA tissue models ablation 
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ablation patterns are similar but not identical.
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