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Purpose: The objective of this study was to investigate metabolic energy contributions

during high-intensity hatha yoga (HIHY) and to compare changes in physiological

variables between active and passive recovery methods.

Methods: The study involved 20 women yoga instructors (n = 20) who performed

10min of HIHY (vigorous sun salutation). Upon completion, they were randomly assigned

to either active (walking; n = 10) or passive (savasana; n = 10) recovery groups for a

period of 10min. During HIHY, physiological variables such as heart rate (HRpeak and

HRmean), oxygen uptake (VO2peak and VO2mean), and blood lactate concentrations (peak

La−) were measured. Energetic contributions (phosphagen; WPCR, glycolytic; WGly, and

oxidative; WOxi) in kJ and % were estimated using VO2 and La− data. Furthermore,

the metabolic equivalents (METs) of VO2peak and VO2mean were calculated. To compare

different recovery modes, HRpost, 1HR, VO2post, 1VO2, recovery La−, and recovery

1La− were analyzed.

Results: The results revealed that HRpeak, VO2peak, and peak La− during HIHY showed

no differences between the two groups (p > 0.05). Values of HRpeak, HRmean, METs of

VO2peak and VO2mean, and La− during HIHY were 95.6% of HRmax, 88.7% of HRmax,

10.54 ± 1.18, 8.67 ±.98 METs, and 8.31 ± 2.18 mmol·L−1, respectively. Furthermore,

WOxi was significantly higher compared with WPCR, WGly, and anaerobic contribution

(WPCR + WGly), in kJ and % (p < 0.0001). VO2post and recovery 1La− were significantly

higher in the active recovery group (p < 0.0001, p = 0.0369, respectively). Values of

1VO2 and recovery La− were significantly lower in the active group compared with the

passive group (p = 0.0115, p = 0.0291, respectively).

Conclusions: The study concluded that high-intensity hatha yoga which was performed

for 10min is a suitable option for relatively healthy people in the modern workplace who

may have hatha yoga experience but do not have time to perform a prolonged exercise.

Following active recovery, they can participate in further HIHY sessions during short

breaks. Furthermore, a faster return to work can be supported by physiological recovery.
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INTRODUCTION

The greatest public health problem of the 21st century is
physical inactivity which is usually the consequence of modern
sedentary lifestyles (Booth et al., 2000; Trost et al., 2014). Most
international guidelines for physical activity recommend at least
150min of moderate-intensity physical activity (3–5.9 metabolic
equivalents; METs) or 75min of vigorous-intensity aerobic
physical activity (≥6 METs) per week for adults (Ainsworth
et al., 2011; Hallal et al., 2012; Brinsley et al., 2021). However,
estimates based on self-reported data show that 40–60% of the
general adult population are not sufficiently active (Hallal et al.,
2012). This may lead to non-communicable diseases, including
cardiovascular, coronary heart disease, diabetes, and cancer,
which account for seven of the ten most common worldwide
reasons for premature death (Hallal et al., 2012; Brinsley et al.,
2021).

The modern workplace has recently been recognized as
an alternative setting for physical activity or exercise for
people who may not have time, e.g., during lunch break, to
participate in more formal exercise sessions (Kuoppala et al.,
2008; Dalager et al., 2016). In this regard, hatha yoga (HY)
lends itself to forming part of a general health regimen to
prevent physical inactivity (Larson-Meyer, 2016). Additionally,
HY aims to improve the body, breath, and mind and prepare
self-realization as an alternative form of exercise (Schmalzl et al.,
2015; Papp et al., 2019). Previous review and meta-analytic
findings have shown that HY decreases blood pressure, blood
lipids, glycosylated hemoglobin, low-density lipoprotein, and
increases high-density lipoprotein cholesterol (Hagins et al.,
2013; Cramer et al., 2014).

However, the common HY program lasts for approximately
an hour, which is unsuitable for most people in the workplace.
Therefore, a program of high-intensity interval training (HIIT)
is an alternative with preferred physical exercises which are
also ranked in the top 10 fitness trends of the American
College of Sports Medicine (Thompson, 2021). HIIT improves
cardiovascular fitness as measured by maximal oxygen uptake
(VO2max) and includes repeated rounds of exercise that achieve
>90% of maximal heart rate (HRmax), the second ventilatory
threshold (>VT2), over second lactate threshold (>4 mmol·L−1;
zone 3: high-intensity exercise), and >85% of peak and maximal
oxygen uptake (VO2peak and VO2max) (Billat, 2001; Treff et al.,
2019; Jamnick et al., 2020).

Hatha yoga is considered as a low-to-moderate-intensity
physical activity based on MET values and percentages of HRmax

and VO2max (Hagins et al., 2007; Ainsworth et al., 2011; Ray et al.,
2011). Furthermore, HY can be a form of high-intensity exercise
(HIE) (Papp et al., 2019). High-intensity hatha yoga (HIHY)
includes vigorous sun salutation (SS) physical exercises (asanas)
at rapid speed. The most common exercise sequence of HY
programs consists of SS (Pascoe and Bauer, 2015; Larson-Meyer,
2016; Papp et al., 2019).

Typically, meditative relaxation (savasana) such as passive
recovery is conducted after HY and HIHY (Sharma et al.,
2007; Papp et al., 2019). However, this recovery method is not
suitable after HIHY in the workplace. In light of this, active

recovery helps regenerate metabolic pathways which provide
greater oxygen uptake (VO2) and O2 transfer into muscle cells,
both of which are necessary for the resynthesis of adenosine
triphosphate (ATP) (Menzies et al., 2010; Cupeiro et al., 2016;
Yang et al., 2020). The lactate shuttle mechanism plays a
crucial role in lactate clearance (Brooks, 2018). Lactate links
glycolytic and oxidative energy systems. During active recovery,
the accumulated lactate is predominantly re-metabolized
by the cell-cell lactate shuttle, and by the Cori cycle and
gluconeogenesis. These mechanisms are supported by increased
hepatic blood flow during the active recovery phase (Nielsen
et al., 1999; Yang et al., 2020). Furthermore, active recovery
(low-intensity) activates key enzymes and hormonal regulators
of gluconeogenesis such as phosphofructokinase, pyruvate
carboxylase, phosphoenolpyruvate carboxykinase, glucagon,
cortisol, and other related regulators (Yang et al., 2020).

At present, it is unclear how different energy systems
contribute during HIHY. In general, yoga studies have focused
on the psychological aspects and benefits, and during HIHY
only physiological parameters such as VO2peak, peak lactate
concentration (peak La−), and peak heart rate (HRpeak) have
been analyzed. Following HIHY, the traditional passive recovery
process of savasana has commonly been utilized although
an active recovery causes faster physiological regeneration.
Therefore, this study aimed to define the different energetic
contributions during HIHY and to compare the magnitude of
changes in physiological parameters between passive and active
recovery after HIHY.

MATERIALS AND METHODS

Ethical Approval
This study was approved by the Institutional Ethics Committee of
CHA University (No. 1044308-202007-HR-026-02). The applied
protocols align with the Declaration of Helsinki. All participants
signed an informed consent form.

Participants
In this study, 20 female yoga instructors (n = 20) participated.
They were recruited from Korea Yoga Alliance (KYA) in the
Seoul region and had completed the yoga teacher 300-h program
(RYT 300) before study participation. All participants practiced
yoga for at least more than 5 years. They practiced yoga
independently for 10–12 h per week, without performing any
other exercise. The anthropometric parameters of all participants
were as follows (M ± SD): age: 31.0 ± 4.2 years, height: 163.7 ±
4.2 cm, bodyweight: 54.6 ± 5.3 kg, body fat: 24.1 ± 5.4%, BMI:
20.4 ± 1.9 kg·m−2 (active recovery group (n = 10); age: 28.7
± 4.4 years, height: 162.4 ± 3.5 cm, bodyweight: 53.9 ± 4.1 kg,
body fat: 26 ± 4.6%, BMI: 20.4 ± 1.2 kg·m−2, passive recovery
group (n = 10); age: 33.3 ± 2.7 years, height: 165 ± 4.5 cm,
bodyweight: 55.4 ± 6.5 kg, body fat: 22.6 ± 5.8%, BMI: 20.3 ±
2.5 kg·m−2) (Table 1). After lunchtime, participants rested for
2 h and conducted the HIHY experiment. The participants did
not take anymedication during the test procedures and abstained
from alcohol and nicotine for at least 24 h before the experiment.
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TABLE 1 | Anthropometric data.

Parameters Active recovery

(n = 10)

Passive recovery

(n = 10)

All participants

(n = 20)

(Mean ± SD) (Mean ± SD) (Mean ± SD)

Age (years) 28.70 ± 4.45 33.30 ± 2.71 31.00 ± 4.29

Height (cm) 162.41 ± 3.56 165.09 ± 4.58 163.75 ± 4.22

Body weight (kg) 53.94 ± 4.18 55.40 ± 6.51 54.67 ± 5.37

Body fat (%) 26.08 ± 4.68 22.63 ± 5.80 24.18 ± 5.43

BMI (kg·m−2 ) 20.44 ± 1.26 20.35 ± 2.53 20.40 ± 1.95

Experimental Design
All participants conducted HIHY (n = 20) and were randomly
separated into active (walking; n = 10) and passive (savasana;
n = 10) recovery groups (Figure 1). HIHY consisted of 19 SS
physical exercises (asanas) of the Surya Namaskar B sequence
(Figure 2A). The HIHY duration of each movement lasted 1.5 s
using a metronome and the entire HIHY was conducted for
10min, which was modified from a previous study (Potiaumpai
et al., 2017). Active recovery was performed by walking while
maintaining 40–45% of the estimated maximal heart rate (Gellish
et al., 2007; Guru et al., 2013) while the passive recovery was
conducted in the lying position for 10min (Figure 2B) (Sharma
et al., 2007).

Anthropometry, Blood Sampling, and
Processing
Anthropometric parameters were assessed andmeasured using 8-
electrode segmental multi-frequency (20–100 kHz) bioelectrical
impedance analysis (BIA) (InBody 270; InBody Co. Ltd., Seoul,
Korea) which enables segmental impedance measurement of
arms and legs. The maximal heart rate was estimated using an
equation described in the previous study (Gellish et al., 2007).
In addition, METs of VO2peak and VO2mean during HIHY were
calculated (Ainsworth et al., 2011). During 5min rest, 10min
HIHY, and 10min recovery phase, monitoring of heart rate using
a Polar H10 (Polar Electro, Kempele, Finland) (HRpeak, HRmean,
HRpost, and 1HR), oxygen uptake (VO2peak, VO2mean, VO2post,
and1VO2), and blood lactate concentration (peak La

−, recovery
La−, and recovery 1La−) was performed. Capillary blood (20
µL) was sampled from the earlobe before and after HIHY as
well as from the 1st to the 10th minute after different recovery
to measure blood lactate concentration. La− was analyzed by an
enzymatic-amperometric sensor chip system (Biosen C-line, EKF
diagnostics sales, GmbH, Barleben, Germany). Oxygen uptake
was measured breath-by-breath using a mobile gas analyzer
MetaMax 3B (Cortex Biophysik, Leipzig, Germany). The gas
analyzer was calibrated using calibration gas (15% O2, 5% CO2;
Cortex Biophysik, Leipzig, Germany), and the turbine volume
transducer was calibrated with a 3 L syringe (Hans Rudolph,
Kansas City, MO, USA).

Calculations of Metabolic Energy
Contribution
Calculations of energetic contribution were based on
measurement of VO2 during HIHY and peak La−, and

VO2 after HIHY, respectively (Campos et al., 2012). The
phosphagen system contribution (WPCR) was calculated by
considering the fast component of excess VO2 after HIHY
(EPOCFAST; 6min Off VO2 kinetics). The value of WPCR

was estimated by subtracting rest VO2 (VO2rest) from the
fast component VO2post. The VO2post data were fitted to a
mono-exponential model because the slow component of the
bi-exponential model was negligible (de Campos Mello et al.,
2009; Campos et al., 2012). The contribution of the glycolytic
system (WGly) was calculated as La− after HIHY, assuming

that the accumulation of 1 mmol·L−1 is equivalent to 3mL
O2 kg−1 of body mass (di Prampero and Ferretti, 1999).
The difference in La− (1La−) was calculated as the lactate
concentration after HIHY, minus the lactate concentration at
rest. The oxidative energy (WOxi) was estimated by subtracting
VO2rest from VO2 during HIHY by the trapezoidal method in
which areas under the curve were divided into sections and
then the sum of each trapezoid was used to estimate the integral
(Campos et al., 2012; Yang et al., 2018; Park et al., 2021). The
value of VO2rest was determined in the standing position from
the average of the last 30 s of a 5min period (Campos et al.,
2012). The caloric quotient of 20.92 kJ was utilized in all three
energy systems (Gastin, 2001). The total energy demand was
estimated as the sum of the three energy systems (WPCR +WGly

+ WOxi) (di Prampero and Ferretti, 1999; de Campos Mello
et al., 2009; Campos et al., 2012; Yang et al., 2018; Park et al.,
2021).

Statistical Analyses
All data were statistically analyzed using GraphPad Prism
9.1.2 (GraphPad Prism Software, La Jolla, CA, USA). The
data are presented as M ± SD and normal distribution was
performed using the Shapiro-Wilk test. Energetic contribution
variables (kJ and %) were compared using a repeated-measures
ANOVA with Bonferroni post-hoc testing. Other physiological
variables were analyzed by independent t-test and Mann-
Whitney-U rank test. The effect sizes (Cohen’s d and Z/

√
N)

were calculated and thresholds for small, moderate, and large
effects were 0.2, 0.5, and 0.8 (parametric), and 0.1, 0.3,
and 0.5 (non-parametric), respectively (Fritz et al., 2012).
Statistical difference was considered significant at p < 0.05
and p < 0.01.

RESULTS

Physiological Parameters and Energetic
Contribution During HIHY
Physiological parameters showed no significant differences
between active and passive groups during HIHY (Tables 2, 3).
Values of HRpeak, HRmean, METs of VO2peak and VO2mean, and
La− during HIHY were 95.6% of HRmax, 88.7% of HRmax,
10.54 ± 1.18, 8.67 ± 0.98 METs, and 8.31 ± 2.18 mmol·L−1,
respectively (Table 2).

The absolute value (kJ) of WOxi was significantly higher
compared with WPCR, WGly, and anaerobic energy contribution
(WPCR + WGly) during HIHY [p < 0.0001; ES (d): 7.04, ES
(d): −1.30, ES (d): 7.41, respectively]. Furthermore, the absolute
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FIGURE 1 | Study procedure. All subjects conducted high-intensity hatha yoga (n = 20) and were randomly separated into active (walking; n = 10) and passive

(savasana; n = 10) recovery groups.

FIGURE 2 | (A) Sequence of high-intensity hatha yoga: Ashtanga Vinyasa Yoga, Surya Namaskar B (10-min duration). (B) Savasana; passive recovery, Walking; active

recovery (40–45% of estimated maximal heart rate, 10-min duration).

WPCR value was higher compared with WGly [p= 0.0232; ES (d):
0.93] (Figure 3A; Table 2). As well, the relative values (%) for
energetic contributions showed the same significant differences

as the absolute values [p < 0.0001; ES (d): 15.64, ES (d): −17.35,
ES (d): 12.01, p = 0.0437; ES (d): 0.79, respectively] (Figure 3B;
Table 2).
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TABLE 2 | Energetic contribution and physiological parameters during

high-intensity hatha yoga.

Parameters Participants

(n = 20)

Significance Effect size (ES)

(Mean ± SD) (p) (d)

WPCR (kJ) 33.95 ± 11.32 0.0232* vs. WGly (kJ) d = 0.93

WGly (kJ) 24.90 ± 7.63 <0.0001**** vs.

WOxi (kJ)

d = −1.30

Anaerobic (kJ)

(WPCR + WGly)

58.84 ± 14.25 <0.0001**** vs.

WOxi (kJ)

d = 7.41

WOxi (kJ) 279.33 ± 47.93 <0.0001**** vs.

WPCR (kJ)

d = 7.04

WTotal (kJ) 333.68 ± 47.47

WPCR (%) 10.34 ± 3.69 0.0437* vs. WGly (%) d = 0.79

WGly (%) 7.70 ± 2.88 <0.0001**** vs.

WOxi (kJ)

d = −17.35

Anaerobic (%)

(WPCR + WGly)

18.04 ± 5.32 <0.0001**** vs.

WOxi (kJ)

d = 12.01

WOxi (%) 81.96 ± 5.32 <0.0001**** vs.

WPCR (kJ)

d = 15.64

Estimated HRmax

(beats·min−1 )

185.30 ± 3.00

HRpeak

(beats·min−1 )

177.21 ± 11.77

HRmean

(beats·min−1 )

164.47 ± 12.14

VO2peak

(mL·kg−1 ·min−1 )

36.90 ± 4.14

METs (VO2peak ) 10.54 ± 1.18

VO2mean

(mL·kg−1 ·min−1 )

30.35 ± 3.44

METs (VO2mean ) 8.67 ± 0.98

Peak La−

(mmol·L−1 )

8.31 ± 2.18

WPCR, WGly , WOxi , absolute (kJ) and relative (%) energetic contribution from phosphagen,

glycolytic, and oxidative system; HRmax , estimated maximal heart rate; HRpeak , highest

heart rate; HRmean, mean heart rate; peak La−, highest level of blood lactate; METs,

metabolic equivalents; VO2peak , highest oxygen uptake; VO2mean, mean oxygen uptake;

anaerobic, phosphagen + glycolytic energy contributions.
*p < 0.05, ****p < 0.0001.

Physiological Parameters During Active
and Passive Recovery
After different recovery phases, VO2post was significantly
higher in the active recovery group compared with the
passive group [p < 0.0001; ES (r): −0.84]. The value of
1VO2 between VO2peak and VO2post was significantly lower
in the active group compared with the passive group [p =
0.0115; ES (r): −0.45] (Table 3). Furthermore, recovery La−

was significantly lower in the active group compared with
the passive group [p = 0.0291; ES (d): −0.90] (Figure 4A;
Table 3). Accordingly, recovery 1La− was significantly higher
in the active group compared with the passive group [p =
0.0369; ES (d): 1] (Figure 4C; Table 3). Other physiological
variables such as HRpeak, HRpost, 1HR, VO2peak, and
peak La− showed no significant differences between groups
(Figure 4B; Table 3).

TABLE 3 | Physiological parameters during high-intensity hatha yoga and 10min

recovery between different groups.

Parameters Active

recovery

(n = 10)

Passive

recovery

(n = 10)

Significance Effect size

(ES)

(Mean ± SD) (Mean ± SD) (p) (d and r)

HRpeak

(beats·min−1 )

175.77 ± 9.34 178.65 ±
13.09

ns

HRpost

(beats·min−1 )

116.87 ± 9.88 107.97 ±
11.66

ns

1HR

(beats·min−1 )

58.91 ± 12.41 70.68 ± 15.85 ns

VO2peak

(mL·kg−1 ·min−1)

38.21 ± 3.60 35.59 ± 4.40 ns

VO2post

(mL·kg−1 ·min−1)

12.80 ± 1.40 5.77 ± 1.65 <0.0001**** r = −0.84

1VO2

(mL·kg−1 ·min−1)

25.41 ± 3.89 29.82 ± 2.91 0.0115* r = −0.45

Peak La−

(mmol·L−1 )

7.77 ± 1.88 8.85 ± 2.41 ns

Recovery La−

(mmol·L−1 )

5.70 ± 1.67 7.44 ± 2.15 0.0291* d = −0.90

Recovery 1La−

(mmol·L−1 )

2.07 ± 0.75 1.42 ± 0.53 0.0369* d = 1.00

HRpeak , highest heart rate; HRpost, heart rate after recovery; 1HR, delta heart rate

between HRpeak and HRpost; VO2peak , highest oxygen uptake; VO2post, oxygen uptake

after recovery; 1VO2, delta oxygen uptake between VO2peak and VO2post; peak La
−, the

highest level of blood lactate; recovery La−, blood lactate concentration after recovery;

recovery 1La−, delta blood lactate concentration between peak La− and recovery La−.
* p < 0.05, **** p < 0.0001.

DISCUSSION

The metabolic energy contributions during HIHY are currently
unclear and it is somewhat controversial which recoverymethods
are physiologically more efficient after HIHY. To the best
of our knowledge, this study is the first to evaluate how
different energy systems contribute during HIHY and how
physiological parameters are influenced by different recovery
methods (active vs. passive) afterward. The major findings
indicated that oxidative energy predominates over anaerobic
energy contributions (WPCR and WGly).

Randomly assigned participants in recovery groups showed
no significant differences in HRpeak, HRmean, VO2peak, VO2mean,
and peak La− during HIHY. These indicated that all participants
conducted the same HIHY workout. Additionally, values of
HRpeak (95.6% of HRmax), HRmean (88.7% of HRmax), METs (10.5

and 8.5), and peak La− (8.3 mmol·L−1) exhibited parameters
consistent with HIE (>90%, ≥6 METs; vigorous/heavy, >4
mmol·L−1; zone 3: HIE, respectively) (Jetté et al., 1990; Billat,
2001; Ainsworth et al., 2011; Treff et al., 2019; Jamnick et al.,
2020). Furthermore, VO2peak (36.9 mL·kg−1 · min−1) indicated
a result similar to a previous study in which a VO2max of 37.5
mL·kg−1 · min−1 during HIHY was reported (Table 2) (Papp
et al., 2016). Regarding the energetic contribution, a predominant
utilization of WOxi in kJ and % (81.9%) was found and was
dominant over WPCR, WGly, and the entire anaerobic system
(WPCR + WGly). These results were influenced by the duration
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FIGURE 3 | Energetic contribution. M ± SD. (A) Absolute and (B) relative energetic contribution during high-intensity hatha yoga. *p < 0.05 (phosphagen vs.

glycolytic energy contribution), ****p < 0.0001 (oxidative vs. glycolytic energy contribution), ****p < 0.0001 (oxidative vs. phosphagen energy contribution), ****p <

0.0001 [anaerobic (WPCR + WGly) vs. oxidative energy contribution].

FIGURE 4 | (A) Blood lactate concentration for active recovery group and passive recovery group, before high-intensity hatha yoga (HIHY) (resting La−), after

high-intensity hatha yoga (peak La− ), after 10-min recovery (recovery La−), (B) Change in lactate concentration (1La− ) between resting blood lactate and peak blood

lactate after high-intensity hatha yoga, (C) Change in lactate concentration (1La−) between peak blood lactate after high-intensity hatha yoga and blood lactate after

10-min recovery. Data are minimum to maximum and median values. ns: p > 0.05, *p < 0.05.

of HIHY (10min) and decreased the contribution provided by
the glycolytic energy system (Heck et al., 2003; Yang et al., 2020;
Park et al., 2021). To obtain a maximal lactate production rate,
10 s exercise duration was suggested because the contribution
of the glycolytic system (accumulated lactate rate) decreases
with increasing duration of maximal exercise, due to inhibition
of phosphofructokinase activity (Heck et al., 2003). Consistent
with this, previous studies have shown that the contribution
of the oxidative energy system was increased as a consequence
of increased VO2 uptake during taekwondo (62–70%) and
2,000m rowing (83–85%), activities which lasted∼6 and 8.5min,

respectively, while the glycolytic system was reduced (de Campos
Mello et al., 2009; Campos et al., 2012).

After 10min recovery phases, the active recovery group (40–
45% of HRmax) had faster lactate clearance (resynthesis) than
the passive recovery group (Figures 4A,C). Consequently, higher
VO2post and lower 1VO2 were found in the active recovery
group compared with the passive (Table 3). This is consistent
with a previous study that reported blood lactate concentration
after intense running (VO2max and lactate threshold test) was
reduced more by active rather than passive recovery regimens
with intensities of 25–63% of VO2max and 40–80% of lactate
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threshold (Menzies et al., 2010). For a low-intensity activity
or exercise, such as walking or jogging ATP resynthesis is
affected more by substrate-level and oxidative phosphorylation
reactions than by accumulated lactate concentration (Rodríguez
andMader, 2011; Yang et al., 2020). In particular, this mechanism
is affected by more skeletal muscle activation, including more O2

uptake into skeletal muscle cells (Cupeiro et al., 2016; Brooks,
2018; Yang et al., 2020). It mostly occurs in type 1 muscle
fibers which predominantly express monocarboxylic transport
1 (MCT1) while MCT2 is prominently expressed in the liver.
MCT1 is the most important protein for lactate transport into
or out of red blood cells (Menzies et al., 2010; Brooks, 2018; Yang
et al., 2020). The study of Yang et al. suggested that accumulated
lactate is predominantly eliminated by the Cori cycle during
the low-intensity exercise/recovery phase (Yang et al., 2020). As
evidence of the mechanism in the liver, hepatic blood flow is
increased and muscle lactate output and hepatic lactate uptake
are similar during recovery, while a two-third decrease in hepatic
blood flow is among the most distinct alterations during HIE in
humans (Nielsen et al., 2007). With regard to this aspect, when
exercise intensity is higher than 50% of VO2max, gluconeogenesis
is decreased because of reduced hepatic blood flow (Nielsen
et al., 2007; Yang et al., 2020). After active recovery in this study,
VO2post was 33% of VO2peak during HIHY (Table 3). Therefore,
lactate accumulated during HIHY might be resynthesized in
large part by gluconeogenesis during active recovery in the liver.
According to the findings of this study, active recovery is more
effective at regenerating the metabolic system after 10minHIHY.

This study identified the energetic contribution during
HIHY and physiological differences between active and passive
recovery. However, this study has some limitations. The baseline
VO2max, which can enable the determination of VO2 levels
during HIHY as percentages of VO2max, was not measured in
this study. Furthermore, the pure contribution of the calculated
glycolytic energy system was limited. This was underestimated
because lactate elimination and production rate could not be
analyzed between HIHY. Therefore, further studies are expected
to investigate different durations of exercise, e.g., 2, 4, 6,
8, and 10min, which should be randomly determined and
blinded to the duration. Furthermore, 10min HIHY should
be used and considered in interventional studies of how
cardiovascular/cardiorespiratory fitness such as VO2max and
VO2peak will be changed in different populations, such as the
unskilled general public.

CONCLUSION

Our findings indicated that 10min HIHY is suitable for an HIE
session based on the high levels of physiological parameters and
energetic contributions. Because of the high level of exercise
intensity, this form of exercise is appropriate for relatively healthy
employees in the workplace who may have HY experience,
but do not have time for physical exercise. However, for
safety, HIHY should be preceded by appropriate warm-up
exercises, such as the classical sun salutation, which is performed
slowly. Finally, this study found that active recovery is a more
helpful method compared with traditional passive (savasana)
recovery after 10min HIHY. After active recovery, people can
participate in further HIHY sessions during short breaks such as
lunchtime. Consequently, a quicker return to the workplace can
be supported by metabolic regeneration.
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