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Obesity and diabetes have been shown to interfere with energy metabolism and cause
peripheral insulin resistance in skeletal muscle. However, recent studies have focused on
the effect metabolic insult has on the loss of muscle size, strength, and physical function.
Contractile dysfunction has been linked to impaired intracellular Ca?* concentration ([Ca?*])
regulation. In skeletal muscle, [Ca?; homeostasis is highly regulated by Ca?* transport
across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum
(SR), and mitochondria. Particularly, the SR and or mitochondria play an important role
in the fine-tuning of this metabolic process. Recent studies showed that obesity and
insulin resistance are associated with interactions between the SR and mitochondrial
networks (the dynamic tubular reticulum formed by mitochondria), suggesting that
metabolic disorders alter Ca®* handling by these organelles. These interactions are
facilitated by specific membrane proteins, including ion channels. This review considers
the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation
of [Ca?*]; in skeletal muscle. It also discusses the mechanisms by which this occurs,
focusing chiefly on the SR and mitochondria networks. A deeper understanding of the
effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.

Keywords: sarcoplasmic reticulum, mitochondria, calcium, obesity, diabetes, skeletal muscle

INTRODUCTION

Obesity due to overeating and lack of exercise has become one of the major burdens of
modern societies and is associated with many comorbidities, including type 2 diabetes mellitus
(T2DM). Skeletal muscle is important for maintaining healthy body composition, physical
function, and locomotion. Obesity is likely to cause a decrease in muscle mass and to lower
muscle strength, which is associated with decreased mobility (Freedman et al., 2002). Previous
studies have shown decreased muscle strength is observed in obese and T2DM patients (Park
et al., 2006; Maffiuletti et al., 2007). Consistent with these findings, recent studies using animal
models confirmed that obesity and diabetes lead to decreased muscle contractile force normalized
to muscle mass and decrease in muscle performance (Eshima et al., 2017b; Hurst et al., 2019).
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However, an understanding of the mechanism for dysfunction
of muscle contraction in obesity and T2DM has not been
fully elucidated.

Transient elevation of intracellular Ca** concentration ([Ca*'];)
is necessary for the initiation of tension development in skeletal
muscle tissue (Allen et al., 2008). Dysfunction of muscle contraction
in metabolic disease may depend on the impaired capacity for
Ca?* release and reuptake by the sarcoplasmic reticulum (SR;
Westerblad et al., 2010). These features include decreased SR
calcium release and or decreased SR calcium reuptake (Bruton
et al, 2002; Bayley et al., 2016). We recently demonstrated Ca*
regulatory impairments during muscle contraction in metabolic
disease using the db/db mice, a common model of obesity
associated with T2DM (Eshima et al, 2019). Similar findings
were seen in diet-induced obese mice (Eshima et al., 2020). On
the other hand, type 1 diabetes mellitus (T1DM) affects [Ca*];
independent of SR (Eshima et al, 2013, 2015). In this regard,
recent studies suggest that mitochondria play a major role in
the [Ca®]; buffering with evidence for increased mitochondrial
Ca?* concentration ([Ca®],,) during contractions in skeletal
muscle (Shkryl and Shirokova, 2006; Ainbinder et al., 2015;
Eshima et al., 2017a). Previous studies have shown the [Ca®']
increases during electrical stimulation-induced contractions in
skeletal muscle in vitro, suggesting that mitochondria are involved
in the regulation of [Ca®]; (Aydin et al, 2009; Rossi et al.,
2011; Yamada et al., 2012). Consistent with this, mitochondrial
Ca® uptake is a key supporter of excitation-contraction coupling
in skeletal myotubes (Eisner et al., 2014). Indeed, altered [Ca*] o
is a common characteristic of some skeletal muscle myopathies
(Debattisti et al., 2019; Favaro et al, 2019), suggesting that
diabetic myopathy may also display elevated [Ca?*],,;,. This review
considers the impact of obesity and diabetes on calcium handling
by skeletal muscle, focusing on the SR and mitochondria.
We propose that interactions between these organelles in skeletal
muscles of obese and T2DM animals and patients alter calcium
handling by skeletal muscles (see Figure 1).

OBESITY AND TYPE 2 DIABETES
ALTER CA?* HANDLING IN SKELETAL
MUSCLE

Ca’" is a ubiquitous intracellular messenger that can regulate
different cellular processes in living tissue (Berridge et al.,
2003). In particular, it is well known that elevated [Ca®];

Abbreviations: [Ca®'], Intracellular Ca** concentration; [Ca®*] ., Mitochondrial
Ca™ concentration; CSQ, Calsequestrin; DHPR, Dihydropyridine receptor; HFD,
High-fat diet; IMM, Inner mitochondrial membranes of the mitochondria; IP3R1,
inositol 1,4,5-trisphosphate receptor type 1; MAM, Mitochondria-associated
endoplasmic reticulum membrane; MCU, Mitochondrial Ca*" uniporter; MCURI,
Mitochondrial calcium uniporter regulator 1; Mfn, Mitofusin; MICU1, Mitochondrial
Ca?* uptake 1; MICU2, Mitochondrial Ca?* uptake 2; OMM, Outer mitochondrial
membrane; PE, Phosphatidylethanolamine; PEMT, phosphatidylethanolamine
N-methyltransferase; ROS, Reactive oxygen species; RyR, Ryanodine receptor;
SERCA, SR Ca**-ATPase; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes
mellitus; VDAC, Voltage-dependent anion channel; SLN, Sarcolipin; SR, Sarcoplasmic
reticulum.

and subsequent Ca** signaling directly regulate cellular
metabolism in various tissues. By contrast, obesity has been
shown to impair Ca** homeostasis in adipose, cardiac, B-cell,
and liver (Dong et al, 2006; Park et al, 2010; Tong et al,
2016; Wright et al., 2017). Therefore, certain aspects of Ca**
homeostasis in skeletal muscle may also be compromised in
obesity and T2DM. Previous findings related to alteration in
SR or mitochondrial Ca** handling by obesity and type 2
diabetes are summarized in Table 1. Bruton et al. demonstrated
that ob/ob mice (genetic-induced obesity model) impaired
Ca** handling in skeletal muscle fibers (Bruton et al., 2002).
Recently, we demonstrated electrically stimulated Ca®* peak
levels were reduced by HFD feeding. Indeed, Ca** peak levels
during the ryanodine receptor (RyR) agonist stimulation
decrease in this model (Eshima et al., 2020). Consistent with
this, db/db mice (an obese type 2 diabetes model) displayed
impaired contractile force and reduced SR Ca**-ATPase (SERCA)
pump expression (Bayley et al, 2016). Similarly, our study
demonstrated a substantial degree of impairment in [Ca®'];
homeostasis in skeletal muscle of db/db mice (Eshima et al.,
2019). Muscle contractile force and [Ca®']; levels were both
lower during electrical stimulation in this model, suggesting
that decreased Ca®' release may contribute to skeletal muscle
contractile dysfunction in obese type 2 diabetic rodent models.
In addition, Ca*" release induced by the caffeine was decreased
in db/db mice. Interestingly, dysfunction of Ca’* release and
contractile force was improved by endurance of exercise
training in db/db mice. This study also found a consistent
reduction in sarcalumenin, which is a Ca®*-binding protein
localized in the SR of the intracellular Ca®* store in the
skeletal muscles of these mice. This protein decreases in aging
animals (O'connell et al., 2008; Andersson et al., 2011).
Collectively, it is expected that exercise intervention may
increase the Ca* store content and improve calcium handling
and contractile dysfunction associated with diabetic myopathy
(Ferreira et al., 2010a).

IMPACT OF OBESITY AND TYPE 2
DIABETES ON SARCOPLASMIC
RETICULUM AND MITOCHONDRIAL
RETICULUM

Sarcoplasmic Reticulum

Ryanodine Receptor

In skeletal muscle, the increases in [Ca*']; are initiated by
sarcolemmal and transverse tubule depolarization, triggering
Ca** release from the SR via the RyR. Previous studies
demonstrated that TIDM impaired Ca*" release from the SR
and decreased RyR protein contents (Eshima et al, 2013,
2015). Similar to T1IDM, RyR protein content was decreased
in db/db mice (Eshima et al., 2019). By contrast, no differences
in the RyR protein content between HFD-induced obese mice
and mice fed a normal diet (Eshima et al, 2017b; Gamu
et al., 2019). On the other hand, oxidation of RyR has been
implicated in Ca®* leakage from the SR that causes muscle
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weakness in aged mice (Andersson et al., 2011). Consistent
with this finding, Holloway and colleagues demonstrated that
the nitrosylated tyrosine residues on RyRs was increased in
HFD-induced obese rats, suggesting that Ca** leakage from
RyR is regulated by reactive oxygen species (ROS; Jain et al,
2014). Ceramides, a family of lipid molecules composed of
sphingosine and fatty acid, have been implicated in the
induction of oxidative stress in skeletal muscle (Nikolova-
Karakashian and Reid, 2011). In murine C2C12 myotubes,
direct exposure to ceramide increased ROS and exogenous
ceramide depressed diaphragm force production in mice. This
weakness was prevented by antioxidant N-acetylcysteine
treatment (Ferreira et al, 2010b). Interestingly, sphingosine
blocks Ca®* release from RyR and reduces the activity of
channels reconstituted into planar lipid bilayers (Sabbadini
et al, 1999; Sharma et al., 2000). This suggests that lipid
mediators may play important roles in calcium kinetics. Indeed,
exogenous sphingolipids and accumulation of ceramide in
muscle depresses Ca** sensitivity of the contractile apparatus
(Ferreira et al., 2012). HFD feeding increased muscle ceramides
and induced glucose intolerance in mice (Frangioudakis et al.,
2010). This provides evidence to support the hypothesis that
obesity alters lipid species composition, particularly
sphingolipids, and causes impairments in Ca’* release capacity
via RyR dysfunction.

SR Ca?*-ATPase

Following muscle contraction, elevated [Ca?']; rapidly decreases
due to Ca* taken up by the SR and other intracellular organelles
and returns almost immediately to basal resting levels via the
activity of SR Ca’*-ATPase (SERCA). Most of the studies
addressing calcium signaling have been focused on this protein
which has a significant influence on skeletal muscle metabolism.
A previous study demonstrates reduced SERCA content in db/
db mouse (Bayley et al, 2016). In contrast, previous studies
have shown genetic obese rodent models displayed no changes
in SERCA protein expression levels independent of diabetes
(Jain et al., 2014; Eshima et al., 2019). Indeed, many studies
have shown that HFD-induced obese rodents displayed no
changes in SERCA activity and protein content (Bal et al,
2012; Fajardo et al, 2017; Eshima et al, 2017b; Gamu et al,,
2019). Phospholipid composition plays a major role in
determining membrane fluidity, and HFD feeding is known
to alter phospholipid species abundance in mice (Montgomery
et al, 2017). A reduction in phosphatidylethanolamine (PE)
has been associated with decreased SERCA activity (Funai
et al, 2016). A recent study demonstrates the absence of
phosphatidylethanolamine ~ N-methyltransferase =~ (PEMT)
promotes an increase in metabolic rate and protects from diet-
induced obesity, potentially due to decreasing SERCA efficiency
in skeletal muscle. However, this lack of PE methyltransferase
also causes muscle weakness (Verkerke et al., 2019). In humans,
recent studies utilizing muscle biopsies obtained from obese
and T2DM patients demonstrate SERCA expression levels were
increased compared to muscle from healthy participants (Chae
et al., 2018; Gancheva et al., 2019). These data suggest certain

aspects of the Ca** uptake into the SR are upregulated in
skeletal muscle of patients with obesity and T2DM patients.
Therefore, fundamental questions regarding muscle Ca** buffering
associated with obesity remain to be more fully addressed. It
may also be insightful to consider relevant organelles other
than the SR in order to resolve the mechanistic basis for Ca**
buffering alterations in obese skeletal muscle.

Mitochondrial Networks

Mitochondria are the organelles responsible for ATP production
by oxidative phosphorylation. Mitochondria are in a dynamic
state of fusion and division with respect to other mitochondria
forming dynamic tubular structures called mitochondrial
networks. Mitochondrial fragmentation may be associated with
metabolic disorders (Fealy et al., 2021). A previous study showed
that mitochondria-associated endoplasmic reticulum membrane
(MAM) integrity, VDACI-inositol 1,4,5-trisphosphate receptor
typel (IP3R1) interactions are decreased in obese and T2DM
patients, suggesting that metabolic disorders alter Ca** handling
by these organelles (Tubbs et al., 2018). Indeed, recent evidence
suggests that MAMs contribute to obesity and insulin resistance
(Townsend et al, 2020). The mitochondrial networks are
regulated by molecular structures in the mitochondrial
membranes as indicated below.

Voltage-Dependent Anion Channel

Voltage-dependent anion channel (VDAC) is expressed on the
outer mitochondrial membrane (OMM) and regulates
mitochondrial oxidative phosphorylation. A previous study has
shown decreased VDAC proteins and other mitochondrial
related proteins in T2DM patients (Moller et al., 2017). VDAC
overexpression affects the interaction between SR and
mitochondria and enhances [Ca*],;, in vitro (Rapizzi et al,
2002). These data suggest mitochondrial dysfunction might
contribute to the impaired [Ca*']; regulation in obesity and T2DM.

Mitofusin

Mitofusin (Mfn) participates in the fusion of the mitochondrial
outer membranes of two adjacent mitochondria and may
contribute to Ca®* uptake into the mitochondria (Santel and
Fuller, 2001). A previous study demonstrated Mfn2 knockdown
decreased in [Ca*'],,;, after muscle contraction in mouse skeletal
muscle (Ainbinder et al,, 2015). Many studies have shown that
Mfn is implicated in obesity and T2DM [see reviews (Zorzano
et al., 2009; Fealy et al, 2018)]. Multiple studies have shown
that obese rodent models display decreased Mfn2 in skeletal
muscle, but there is no direct evidence of Mfn2 involvement
in [Ca®], regulation (Bach et al., 2003; Kong et al., 2013;
Liu et al,, 2014; Li et al., 2018). In addition, SR-mitochondria
interactions are reduced in obesity and T2DM in vivo and in
vitro. This suggests the metabolic disease may influence the
interactions between these organelles (Tubbs et al, 2018).
SR-mitochondria interaction is also required for insulin action
as seen by decreases in insulin signaling with dysfunction in
organelle interaction. Indeed, silencing Mfn2 attenuates increased
mitochondrial Ca®* uptake induced by insulin action in skeletal
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TABLE 1 | Intracellular calcium handling alterations in obese and type 2 diabetic skeletal muscle.

Model Methods Assessment Change References
Human
T2DM * Proteomes data analysis + SERCAs, RyR1 1 Chae et al., 2018
« Transcriptome analysis * MCURT1, VDACs 1 Gancheva et al., 2019
» Several Ca®* related gene 1
Obesity and * Proteomes data analysis * SERCAs - Hwang et al., 2010
T2DM + WB * VDAC l Moller et al., 2017
* RT-cPCR * Mfn2 1 Bach et al., 2003
* In situ proximity ligation * MAM integrity l Tubbs et al., 2018
assay
Severe Obesity * RNA sequencing and WB * SERCAs, RyR1, SLN 1 Paran et al., 2015
* WB * SERCA2 - Kugler et al., 2020
* RT-cPCR * Mfns — Bach et al., 2005
* Mfn2 l
Rodent
Obese Zucker rats * Absorption * Intracellular Ca®* content tor— Zemel et al., 1990; Agil et al.,
spectrophotometer . SERCA1a R 2015
- WB . Min2 1 Jain et al., 2014
* Northern blotting and WB Bach et al., 2003
HFD rats * SR fractions * SERCA activity - Fajardo et al., 2017
« WB * S-nitrosylation of the RyR 1 Jain et al., 2014
- WB * Mfn2 lor— Kong et al., 2013; Leduc-
Gaudet et al., 2018
ob/ob mice * [Ca?] flux * [Ca*] transient 1 Bruton et al., 2002
* Chemical quench technique  * Calcium uptake rate - Fraser and Trayhurn, 1983
- WB * Mfns - Jheng et al., 2012
* In situ proximity ligation * MAM integrity | Tubbs et al., 2018
assay
db/db mice + Ca* steady-state rate * SERCA activity | Bayley et al., 2016
* WB * RyR 1 Eshima et al., 2020
« SERCAs, DHPR, CSQ -
HFD mice * [Ca*] flux * [Ca?] transient 1 Eshima et al., 2020
« WB * SERCAs and SLN - Jague-Fernandez et al., 2020
- WB * SERCAs and SLN - Bal et al., 2012
« WB * SERCAs and CSQ 1 Ciapaite et al., 2015
* WB * RyR and DHPR - Eshima et al., 2017a
* SR fractions * Phospholamban, SLN - Gamu et al., 2019
« WB * SERCA activity — Funai et al., 2016
* |solated mitochondria * Mfns | Jheng et al., 2012; Liu et al.,
* In situ proximity ligation « Calcium retention capacity 1 2014; Lietal., 2018
assay « MAM integrity 1 Taddeo et al., 2014
1 Tubbs et al., 2018
1

CSQ, Calsequestrin; DHPR, Dihydropyridine Receptor; HFD, High-Fat Diet; RyR, Ryanodine receptor; SR, Sarcoplasmic reticulum; SERCA, SR Ca2+-ATPase; T2DM, Type 2
diabetes mellitus; SLN, Sarcolipin; MAM, Mitochondria-Associated Endoplasmic Reticulum Membrane; MCU, Mitochondrial Calcium uniporter; Mfn, Mito Fusin; VDAC, Voltage

Gated-Dependent Anion Channel; WB, Western blotting;, RT-cPCR, Reverse Transcription and Competitive Polymerase Chain Reaction.

muscle cells (Del Campo et al., 2014). While direct evidence ~ Mitochondrial Ca?* Uniporters

to support such claims is still lacking, these observations support  The inner mitochondrial membranes of the mitochondria (IMM)
the hypothesis that obesity and T2DM may contribute to  contain mitochondrial Ca®" uptake-related proteins, called the
dysfunction of [Ca*],, regulation. mitochondrial Ca** uniporters (MCU; Baughman et al., 2011).
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FIGURE 1 | Schematic diagram of intracellular mechanisms for Ca2* regulation by sarcoplasmic reticulum and mitochondria in obese and type 2 diabetic skeletal
muscle. Obesity and type 2 diabetes mellitus may cause impairments in Ca?* release capacity via a decrease in content or oxidation of RyR. On the other hand,
there is no effect on SERCA activity. Note that the mitochondria also have an important sequestration role during the recovery process through a uniporter in OMM
or IMM. IMM, The Inner Mitochondrial Membrane; MCUs, Mitochondrial Calcium Uniporter(s); Mfns, Mito Fusion 1 and/or 2; OMM, The Outer Mitochondrial
Membrane; ROS, Reactive Oxygen Species; RyR, Ryanodine Receptor; SERCA, Sarcoplasmic reticulum Ca?*-ATPase; VDAC, Voltage Gated-Dependent Anion

The MCUs are regulated by mitochondrial Ca** uptake 1
(MICU1), MICU?2, and mitochondrial calcium uniporter regulator
1 (MCURI), which binds Ca®* with high affinity and promotes
uptake by mitochondria (Mammucari et al., 2016). Overexpressing
MCU increases the mitochondrial size and causes muscle
hypertrophy (Barclay et al., 2007; Mammucari et al., 2015).
In contrast, other studies have shown the opposite alteration
patterns in mitochondrial calcium uniporter related proteins
in T2DM and upregulation of other proteins related to Ca’
transporter/homeostasis (Hwang et al., 2010; Chae et al., 2018).
In heart muscle from individuals with T1DM, impaired
mitochondrial Ca®* uptake is significantly improved by MCU
restoration (Suarez et al., 2018). A previous study demonstrated
that the mitochondrial calcium retention capacity is reduced
in diet-induced obese mice, suggesting that dysregulation of
MCU components is associated with insulin resistance (Taddeo
et al., 2014). Collectively, this evidence suggests the possibility
of a heretofore unappreciated role for [Ca*],, regulation in
the function of obese and diabetic muscle.

CONCLUSION

The present review addressed how obesity and T2DM influence
Ca*" handling in skeletal muscle. Recent findings from studies
in rodents demonstrated that genetic- and diet-induced obesity
has detrimental effects on Ca** handling. As shown in Figure 1,
this observation may be associated with impaired SR Ca*
release and mitochondrial Ca** uptake. These dysfunctions
may be explained at least in part by a decrease in RyR content
(or oxidation), a decrease in VDAC, mitofusin, and MCU
in diabetic and obese skeletal muscle. These mechanisms are
likely to be responsible for the muscle weakness that occurs
as a result of obesity and T2DM and may prove useful for
defining the optimal therapeutic strategies. Previous studies
showed that patients with malignant hyperthermia have altered
SR Ca’" release and impaired glucose tolerance (Altamirano
et al, 2019; Bojko et al., 2021), suggesting that calcium
handling is associated with glucose metabolism. Although
mitochondrial calcium uniporter influences on systemic
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metabolism (Gherardi et al., 2019), the effect of mitochondrial
Ca*" uptake on metabolic disorders has not been fully clarified.
Future studies will allow us to determine potential physiological
mechanisms involving the SR and mitochondrial networks
that are responsible for the impairment of Ca** homeostasis
in skeletal muscle under conditions of metabolic disease.
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