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The objective measurement of fatigue is of critical relevance in areas such as

occupational health and safety as fatigue impairs cognitive and motor performance,

thus reducing productivity and increasing the risk of injury. Wearable systems represent

highly promising solutions for fatigue monitoring as they enable continuous, long-term

monitoring of biomedical signals in unattended settings, with the required comfort and

non-intrusiveness. This is a p rerequisite for the development of accurate models for

fatigue monitoring in real-time. However, monitoring fatigue through wearable devices

imposes unique challenges. To provide an overview of the current state-of-the-art in

monitoring variables associated with fatigue via wearables and to detect potential gaps

and pitfalls in current knowledge, a systematic review was performed. The Scopus and

PubMed databases were searched for articles published in English since 2015, having

the terms “fatigue,” “drowsiness,” “vigilance,” or “alertness” in the title, and proposing

wearable device-based systems for non-invasive fatigue quantification. Of the 612

retrieved articles, 60 satisfied the inclusion criteria. Included studies were mainly of short

duration and conducted in laboratory settings. In general, researchers developed fatigue

models based on motion (MOT), electroencephalogram (EEG), photoplethysmogram

(PPG), electrocardiogram (ECG), galvanic skin response (GSR), electromyogram (EMG),

skin temperature (Tsk), eye movement (EYE), and respiratory (RES) data acquired by

wearable devices available in the market. Supervised machine learning models, and

more specifically, binary classification models, are predominant among the proposed

fatigue quantification approaches. These models were considered to perform very well

in detecting fatigue, however, little effort was made to ensure the use of high-quality

data during model development. Together, the findings of this review reveal that

methodological limitations have hindered the generalizability and real-world applicability

of most of the proposed fatigue models. Considerably more work is needed to fully

explore the potential of wearables for fatigue quantification as well as to better understand

the relationship between fatigue and changes in physiological variables.

Keywords: fatigue monitoring, wearable, occupational health and safety, signal quality assessment, validation,
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INTRODUCTION

Fatigue, often defined as a decrement in mental and/or physical
performance caused by cognitive overload, physical exertion,
sleep deprivation, circadian phase/circadian rhythm disruption,
or illness (International Civil Aviation Organization, 2012;
Tanaka et al., 2015; Mohanavelu et al., 2017), has been a topic
of research since the 1860ies. Various definitions of fatigue have
been proposed in different scientific disciplines, however, none of
them is applicable to all of these disciplines (Yung, 2016). Mainly
the multidimensionality, interaction of different variables and in
many cases, the subjective nature of perception of fatigue have
not allowed to provide a unified definition.

Fatigue can develop in response to physiological challenges or
pathophysiological changes. Fatigue has been classified according
to its genesis as central (i.e., caused by impaired function
of the central nervous system) or peripheral (i.e., caused by
impaired function of the peripheral nervous or neuro-muscular
system); but also according to the type of load as physical
(i.e., of physical etiology, resulting from physical effort and
leading to a decrease in physical performance) or mental (i.e.,
of psychological etiology, resulting from sustained cognitive
activity and leading to a reduction in cognitive and behavioral
performance) (Aaronson et al., 1999; Cavuoto and Megahed,
2016; Aryal et al., 2017). The latter classification is most
commonly used, although other categorization methods have
been proposed (Aaronson et al., 1999; Desmond and Hancock,
2001).

Fatigue quantification is of crucial relevance in areas such as
occupational health and safety. Apart from being a physiological
response of the human body possibly preventing it’s overload,
fatigue is a symptom associated with several diseases and health
conditions (Casillas et al., 2006; Harris et al., 2009; Rudroff et al.,
2016; Nassif and Pereira, 2018; O’Higgins et al., 2018; Cortes
Rivera et al., 2019). Fatigue impairs cognitive and/or motor
performance, reducing work efficiency, productivity, and product
quality, as well as increasing risks for injury and fatality (Folkard,
2003; Cavuoto and Megahed, 2016; Yung, 2016). This fact
renders fatigue a subject of utmost importance for work safety
in occupational settings as, for instance, transportation, mining,
aviation, or construction. As reported by police records, globally,
1–4% of the registered road crashes occur due to sleepiness and
fatigue (Li et al., 2018). These estimates are nonetheless deemed
to underrate the impact of fatigue on road safety, partially due
to the inability to assess drivers’ fatigue at the crash scene.
Questionnaires, naturalistic observation studies, and in-depth
investigation indicate that the actual value is around 10–20% of
road crashes (European Commission, 2018). That share rises to
20–50%, when considering only commercial vehicle accidents
(Davidović et al., 2018). Long working hours, and consequent
fatigue and stress, were found to increase the hazard rate among
US workers (Dembe, 2005). Furthermore, fatigue is involved in
4–8% of aviation mishaps (Caldwell, 2005).

These facts show the important role of continuous monitoring
of the level of fatigue in an accurate and unobtrusive manner
for early detection and management of fatigue. Among existing
technologies, wearable sensors may meet these requirements.

Wearables enable continuous, long-term monitoring, paving
the way for the development of accurate models for fatigue
monitoring in real-time. Therefore, their application for fatigue
monitoring is highly promising.

Although several approaches have already been proposed for
fatigue detection and monitoring, no gold standard measure of
fatigue exists. Existing non-invasive methods are mainly based
on five measuring principles: subjective measures, performance-
related methods, biomathematical models, behavioral-based
methods, and physiological signal-based methods of which not
all are useful for online-monitoring during work or leisure.

Subjective Measures
Subjective measures consist of assessing self-reported fatigue
through questionnaires and scales (Shahid et al., 2010; Gawron,
2016). These are not useful in the context of online monitoring,
however, they provide insights into mental and emotional
processes underlying performance in a task. Subjective measures
are therefore helpful as gold-standards to compare with results of
fatigue models.

Performance-Related Methods
Performance-related methods rely on the fact that subjects’
cognitive and consequently motor performance on specific tasks
reflects their level of fatigue. Thesemethods consist of conducting
tests to assess subjects’ task performance, with emphasis on
cognitive skills (e.g., vigilance, hand-eye coordination, sustained
attention, reaction time) using neuro-behavioral tasks (Dawson
et al., 2014; Honn et al., 2015). Despite being easy to standardize,
also performance-related methods cannot be used to detect
development of fatigue in real-time to allow preventive measures
before an incident happens (Balkin et al., 2011; Huang et al., 2018;
Zhang Y. et al., 2018).

Biomathematical Models
Biomathematical models predict subjects’ level of fatigue based
on information regarding sleep-wake times, work-rest pattern
as well as circadian cycle. They are typically used for fatigue
risk assessment in civil and military aviation. These models have
been developed based on data collected during partial and total
sleep deprivation studies. To avoid reliance on self-reports and
to increase the reliability of estimates of sleep/wake times, wrist-
mounted actigraphy has been employed (Hursh et al., 2004).

Although biomathematical models predict fatigue with
moderate success (Chandler et al., 2013), they have several
limitations (Dawson et al., 2011) being based on cohort data,
i.e., they are not able to predict fatigue at the individual level
since individual needs for sleep, circadian rhythms, and responses
to fatigue are different. Also, the type of task performed is
not considered. To overcome this limitation, the inclusion of
information regarding an individual, such as biological and
psychological factors, and the performed task/context has been
proposed (Chandler et al., 2013). Also, more recent models
predict several additional performance- and sleep-relatedmetrics
but reliability of such predictions has not yet been proved
(Bendak and Rashid, 2020).
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Behavioral-Based Methods
Behavioral-based methods follow an observational approach to
detect fatigue and include external signs, such as yawning,
sighing, eyes closure, or head nodding. As a result, technologies
in this category frequently use metrics related to eye movements
(EYE), head motion, and facial expression as input features
(Dababneh et al., 2016; Sampei et al., 2016; Hu and Lodewijks,
2020). For this, computer vision technologies, especially cameras
and eye trackers, have been widely employed for fatigue
monitoring through this measuring principle. These solutions
have been used in the transport and mining industries.

Although behavioral-based methods are not intrusive,
allowing real-time fatigue monitoring almost without requiring
faction from subjects, they detect fatigue only upon the
appearance of its first signs, which may be too late to avoid
exposure to fatigue-related risk (Balkin et al., 2011). Furthermore,
computer vision technologies are sensitive to environmental
factors (e.g., light).

Physiological Signal-Based Methods
Physiological signal-based methods detect the onset of fatigue
based on changes in subjects’ physiological responses such as
brain activity measured by electroencephalogram (EEG), heart
rate (HR), or electromyogram (EMG). Electroencephalogram, for
example, has been considered the gold standard for vigilance
(Zhang et al., 2017; Zhou et al., 2018) and driver drowsiness
detection (Hu et al., 2013; Sikander and Anwar, 2019; Hu and
Lodewijks, 2020).

Taking physiological signals as indicators of fatigue enables
objective, real-time fatigue monitoring at the individual level.
However, changes in physiological variables in response to
stressors and fatigue vary within and between individuals,
which complicates the detection of abnormal conditions.
Despite subjects having little control over their physiological
signals, these are susceptible to several other factors, such
as environmental conditions, emotions, and pathophysiological
issues. For these reasons, the sensitivity and reliability of fatigue
detection/prediction based on physiological signals, especially in
real life settings, is still unclear (Balkin et al., 2011).

This work presents a review on the state-of-the-art in fatigue
monitoring through wearable devices and associated measures
of fatigue in addition to existing reviews on fatigue research
that focus on specific application domains (e.g., Sikander and
Anwar, 2019; Bendak and Rashid, 2020; Hu and Lodewijks,
2020) disregarding the type of technology used for fatigue
quantification. Therefore, it is our purpose to provide an
overview of fatigue monitoring approaches regardless of their
application domain and the casual mechanisms behind fatigue,
giving particular emphasis to the use of wearable technology.
Strengths and weaknesses of current approaches to measure
fatigue based on data acquired by wearable devices as well as
limitations and existing opportunities in this field of research will
be discussed.

METHODS

A literature search was performed in Scopus and PubMed
databases covering the period from 1 January 2015 to 7 October

2020. Only articles in English, having the terms “fatigue,”
“drowsiness,” “vigilance,” or “alertness” in their titles and the term
“wearable” in any field were considered.

Inclusion criteria for this review were (a) studies proposing
non-invasive, inter-subject approaches for fatigue quantification,
(b) describing the methodology to develop the fatigue index or
model, and (c) assessing model/index performance. Given the
scope of this review, included studies should not merely propose
wearable systems for fatigue monitoring, but also provide
evidence to support their use for such application. Accordingly,
studies investigating methods for fatigue quantification that did
not use wearable systems to acquire data and those that explore
the suitability of a given parameter or variable as a fatigue
indicator without proposing a fatigue model/index or assessing
its performance were dismissed.

A wearable device was defined as a small electronic device
consisting of one or more sensors and a data logger intended
to be worn on or attached to a single body location when the
connection between sensors and logger is not wireless. The focus
was on inter-subject, i.e., subject-independent, approaches due to
their superior generalization ability compared to intra-individual
approaches (i.e., based on data obtained from individual
study participants).

No review protocol has been established. One reviewer
inspected titles and abstracts of retrieved articles to identify
potentially relevant publications. The full-text of the identified
articles were then assessed for eligibility by two reviewers.
Disagreements between reviewers were resolved by consensus.
The following data were extracted from the selected articles: type
of fatigue investigated and field of application; fatigue-inducing
task; proposed approach to quantify fatigue and its performance
metrics; reference measures of fatigue; wearable device used
for data acquisition, variables monitored, and sensors’ position;
study design (i.e., in laboratory and/or real-world settings); and
number of participants.

To assess the risk of bias of included studies, we have
developed a component approach as recommended by the
PRISMA statement (Liberati et al., 2009). This approach was
founded on methodological aspects influencing models’ or
indices’ performance. The contemplated aspects were identified
based on existing empirical evidence and careful reasoning.
Study characteristics used to support reviewers’ judgment were
selected by discussion and consensus among all review authors.
A detailed description of the developed risk of the basis
assessment tool as well as the rationale behind this is provided
in Supplementary Table 1. In summary, we have considered a
total of seven different components to assess the risk of bias of
included articles:

1. Presence of a task to induce fatigue, named
fatigue inducement.

2. Presence of validated fatigue reference measures, named
validity of reference.

3. Application of strategies to handle imbalanced data
distribution, if existing, named balanced dataset.

4. Application of strategies for cross-validation.
5. Validity of the wearable devices used to acquire the data,

named validity of outcomes data. In the scope of this review,
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a device was considered valid if at least one validation study
has been published in a peer-review journal, not exclusively
authored by the device’s developer or vendor (Byrom et al.,
2018). A list of identified validation studies is provided in
Supplementary Table 2.

6. Application of strategies to identify as well as to remove
noise and artifacts from the acquired data, named signal
quality assessment.

7. Number of participants included in the study. We have set
the minimum acceptable number of participants in a study to
8 subjects.

The risk of bias judgments were made by one reviewer and
checked by another. Studies were classified into three categories,
low, unclear and high risk of bias, based on the components
previously listed. Similarly to the Cochrane Collaboration’s tool
(Higgins et al., 2011), studies with low risk of bias in all
components were deemed to be of low risk of bias, studies with
low or unclear risk of bias for all components were deemed
to be of unclear risk and those with a high risk of bias for
one or more components were deemed to be of high risk
of bias.

For the sake of clarity, selected articles were categorized
according to the type of fatigue they address. Articles were
grouped into four categories: mental fatigue, drowsiness, physical
fatigue, or muscle fatigue (Williamson et al., 2011). The following
definitions were applied:

1. Mental fatigue—decrease in mental performance as a result of
cognitive overload (due to task duration and/or workload),
independent of sleepiness (Borragán et al., 2017; Hu and
Lodewijks, 2020).

2. Drowsiness—fatigue arising from sleep- and circadian
rhythm-related factors (e.g., sleep deprivation, circadian
rhythm disruption), monotony or low task workload
(Hu and Lodewijks, 2020).

3. Physical fatigue—decline in overall physical performance
caused by physical exertion (Zhang et al., 2019a).

4. Muscle fatigue—decrease in an isolated muscle performance
due to reduced contractile activity (Allen et al., 2008; Wan
et al., 2017).

Hereafter, the term fatigue presented in italic refers to fatigue in
general. Articles addressing vigilance detection were considered
as well but did not define an own category. This is because
vigilance has been defined as the ability to sustain attention over
prolonged time periods (Oken et al., 2006), and decrements in
vigilance are strongly associated with fatigue onset but it cannot
be considered as an individual type of fatigue.

RESULTS

A total of 612 articles were retrieved in the literature search. After
removing duplicates 563 remained. Of the identified articles,
465 were discarded during the screening phase due to lack of
part of the inclusion criteria. The full text of the remaining 98
articles was assessed for eligibility. Of these, 38 were excluded
for not developing a fatigue model/index or not assessing its
performance (n = 17), proposing intra-individual approaches (n
= 10), not using a wearable system to acquire data (n = 7), or
lacking detailed information regarding the procedure used for
model/index development (e.g., type of data used to develop the
model, data acquisition system, etc., n = 3). Articles addressing

FIGURE 1 | PRISMA flowchart. Flow of information through the different phases of articles selection process.
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TABLE 1 | List of included studies with the respective number and citation information, starting from studies addressing mental fatigue (#1–#8), followed by studies

addressing vigilance detection (#9–#11), drowsiness (#12–#44), physical fatigue (#45–#56) and, lastly, muscle fatigue (#57–#60).

No. Citation Title of Paper

1 Zeng et al., 2020 Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms

2 Li et al., 2020 Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology

3 Lamti et al., 2019 Mental fatigue level detection based on event related and visual evoked potentials features fusion in virtual indoor environment

4 Zhang Y. et al., 2018 A deep temporal model for mental fatigue detection

5 Lee et al., 2019b Emotion and fatigue monitoring using wearable devices

6 Huang et al., 2018 Detection of mental fatigue state with wearable ECG devices

7 Choi et al., 2018 Wearable device-based system to monitor a driver’s stress, fatigue, and drowsiness

8 Al-Libawy et al., 2016 HRV-based operator fatigue analysis and classification using wearable sensors

9 Samima et al., 2019 Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach

10 Wang et al., 2019 Detecting and measuring construction workers’ vigilance through hybrid kinematic-EEG signals

11 Chen et al., 2018 Developing construction workers’ mental vigilance indicators through wavelet packet decomposition on EEG signals

12 Ko et al., 2020 Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task

13 Sun et al., 2020 Recognition of fatigue driving based on steering operation using wearable smart watch

14 Foong et al., 2019 An iterative cross-subject negative-unlabeled learning algorithm for quantifying passive fatigue

15 Wen et al., 2019 Recognition of fatigue driving based on frequency features of wearable device data

16 Zhang M. et al., 2018 An application of particle swarm algorithms to optimize hidden markov models for driver fatigue identification

17 Zhang et al., 2017 Design of a fatigue detection system for high-speed trains based on driver vigilance using a wireless wearable EEG

18 Fu et al., 2016 Dynamic driver fatigue detection using hidden markov model in real driving condition

19 Boon-Leng et al., 2015 Mobile-based wearable-type of driver fatigue detection by GSR and EMG

20 Ko et al., 2015 Single channel wireless EEG device for real-time fatigue level detection

21 Kundinger and Riener, 2020 The potential of wrist-worn wearables for driver drowsiness detection: a feasibility analysis

22 Kundinger et al., 2020a Assessment of the potential of wrist-worn wearable sensors for driver drowsiness detection

23 Kundinger et al., 2020b Feasibility of smart wearables for driver drowsiness detection and its potential among different age groups

24 Gielen and Aerts, 2019 Feature extraction and evaluation for driver drowsiness detection based on thermoregulation

25 Mehreen et al., 2019 A hybrid scheme for drowsiness detection using wearable sensors

26 Kim and Shin, 2019 Utilizing HRV-derived respiration measures for driver drowsiness detection

27 Kartsch et al., 2019 Ultra low-power drowsiness detection system with BioWolf

28 Lee et al., 2019a Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots

29 Dhole et al., 2019 A novel helmet design and implementation for drowsiness and fall detection of workers on-site using EEG and random-forest classifier

30 Ogino and Mitsukura, 2018 Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram

31 Nakamura et al., 2018 Automatic detection of drowsiness using in-ear EEG

32 Zhou et al., 2018 Vigilance detection method for high-speed rail using wireless wearable EEG collection technology based on low-rank matrix

decomposition

33 Lemkaddem et al., 2018 Multi-modal driver drowsiness detection: a feasibility study

34 Li and Chung, 2018 Combined EEG-gyroscope-tDCS brain machine interface system for early management of driver drowsiness

35 Li et al., 2015 Smartwatch-based wearable EEG system for driver drowsiness detection

36 Li and Chung, 2015 A context-aware EEG headset system for early detection of driver drowsiness

37 Lee et al., 2016 Standalone wearable driver drowsiness detection system in a smartwatch

38 Leng et al., 2015 Wearable driver drowsiness detection system based on biomedical and motion sensors

39 Zhang S. et al., 2018 Low-power listen based driver drowsiness detection system using smartwatch

40 Cheon and Kang, 2017 Sensor-based driver condition recognition using support vector machine for the detection of driver drowsiness

41 Rohit et al., 2017 Real-time drowsiness detection using wearable, lightweight brain sensing headbands

42 Niwa et al., 2016 A wearable device for traffic safety - a study on estimating drowsiness with eyewear, JINS MEME

43 Ha and Yoo, 2016 A multimodal drowsiness monitoring ear-module system with closed-loop real-time alarm

44 Lee et al., 2015 Smartwatch-based driver alertness monitoring with wearable motion and physiological sensor

45 Sedighi Maman et al., 2020 A data analytic framework for physical fatigue management using wearable sensors

46 Nasirzadeh et al., 2020 Physical fatigue detection using entropy analysis of heart rate signals

47 Torres et al., 2020 Detection of fatigue on gait using accelerometer data and supervised machine learning

48 Khan et al., 2019 A novel method for classification of running fatigue using change-point segmentation

(Continued)
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TABLE 1 | Continued

No. Citation Title of Paper

49 Ameli et al., 2019 Quantitative and non-invasive measurement of exercise-induced fatigue

50 Zhang et al., 2019b Automated monitoring of physical fatigue using jerk

51 Tsao et al., 2019 Using non-invasive wearable sensors to estimate perceived fatigue level in manual material handling task

52 Wang et al., 2018 A heterogeneous ensemble learning voting method for fatigue detection in daily activities

53 Sedighi Maman et al., 2017 A data-driven approach to modeling physical fatigue in the workplace using wearable sensors

54 Aryal et al., 2017 Monitoring fatigue in construction workers using physiological measurements

55 Li et al., 2017 A neuro-fuzzy fatigue-tracking and classification system for wheelchair users

56 Buckley et al., 2017 Binary classification of running fatigue using a single inertial measurement unit

57 Karvekar et al., 2019 A data-driven model to identify fatigue level based on the motion data from a smartphone

58 Papakostas et al., 2019 Physical fatigue detection through EMG wearables and subjective user reports - a machine learning approach toward adaptive

rehabilitation

59 Nourhan et al., 2017 Detection of muscle fatigue using wearable (MYO) surface electromyography based control device

60 Mokaya et al., 2016 Burnout: a wearable system for unobtrusive skeletal muscle fatigue estimation

TABLE 2 | Application domain of wearable systems proposed in the included studies according to the concept they investigate.

Type of fatigue/

Application field

General-

purpose

Healthcare Sport and

exercise

Transportation Other

occupations

Other

applications

Total # studies

Mental fatigue #5 #4 #7 #1, #2, #6, #8 #3 8

Vigilance detection #9 #10, #11 3

Drowsiness #25, #30, #31 #7, #12–#24,

#26, #28,

#32–#44

#27, #29 34

Physical fatigue #47 #52, #55 #48, #49, #56 #45, #46, #50,

#51, #53, #54

11*

Muscle fatigue #58 #60 #57, #59 4

Total # studies 6 4 4 29* 15* 1 59*

*Article #7 addresses both drowsiness and mental fatigue; articles #46 and #53 use data from the same study.

disease-associated fatigue (Motta et al., 2016) were deemed to be
outside the scope of this review and were therefore excluded (n=
1). Thus, 60 articles were included in this review: 26 conference
proceedings and 34 journal articles. The articles selection process
is summarized in Figure 1.

For maximum clarity, each article has been assigned a
unique number by which it will be referred to throughout this
work. Table 1 provides the list of included articles. Among
them, eight address mental fatigue (#1–#8), three vigilance
detection (#9–#11), 34 drowsiness (#7, #12–#44), 12 physical
fatigue (#45–#56), and four muscle fatigue (#57–#60). A total
of 59 different studies are included in the present review as
article #46 acknowledged the use of previously collected data
(from #53).

Studies have examined the use of wearable technologies
for fatigue quantification in occupational settings as well as
for healthcare, sports, and exercise applications. Among these,
fatigue in occupational settings, and in particular fatigue in
transportation, has been the most extensively researched topic.
In 44 of the 59 selected studies, authors propose systems for
fatigue monitoring in occupational settings (Table 2). From the
44 studies targeting occupational settings, 29 introduce methods
for fatigue detection in transportation, of which 27 address driver

drowsiness monitoring (#7, #12–#16, #18–#24, #26, #28, #33–
#44). High-speed train driver’s drowsiness (#17, #32) has also
been investigated.

The application of wearable systems to monitor fatigue has
been also foreseen in heavy industries such as construction
(#2, #10, #11, #50, #54) and manufacturing (#45, #53) as
well as in other occupations involving manual material
handling tasks (#51). The prevention of work-related
musculoskeletal disorders (#57, #59) along with overwork-
related disorders (#6), and the monitoring of workers in mentally
demanding occupations (#1) such as pilots and surgeons,
are also among occupation-related applications for this type
of technology.

The remaining fatigue monitoring studies were allocated
to the other application domains such as sport and exercise
(#48, #49, #56, #60), brain-computer interfaces (#3) as well
as healthcare (#4). Fatigue monitoring in rehabilitation (#58),
prevention of fatigue-induced falls and injuries (#52), and
monitoring of manual wheelchair users’ fatigue (#55) are some
examples of healthcare-related applications. Figure 2 gives an
overview of the proportion of research in wearable technologies
for fatigue monitoring according to the type of fatigue and
systems’ application domains.
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FIGURE 2 | Type of fatigue and technology application domain.

The current literature emphasizes the use of wearable systems
to acquire subjects’ physical and physiological data, which lays
the foundation for fatigue quantification through behavioral-
and physiological signal-based methods. Thus, the various
approaches proposed for fatigue monitoring using wearable
devices over the last five years fall within one of these
two methods for fatigue quantification. A summary of study
characteristics is given separately for each category of fatigue in
Tables 3–7.

Study Design
The vast majority of the studies were conducted in laboratory
environments (n = 54). Studies involved 3–50 subjects, with an
average of 14 participants. They focus particularly on short-term
monitoring, however, three studies explored long-term fatigue
monitoring in real-world settings (six weeks of monitoring in #4,
30 days in #8, and one week in #30). Although the use of selected
tasks to induce fatigue was found to be prevalent (in 54 studies),
none of the long-term studies reported the type of fatigue-
inducing tasks subjects performed over the monitoring period.

Fatigue-Inducing Tasks
Fatigue-inducing tasks varied greatly among studies, not only due
to the type of fatigue investigated, but also in view of the system’s
final application (see Tables 3–7, columns “Fatiguing task” and
“Task duration”). Among them, simulated tasks were found to
be predominant, especially in studies exploring driver drowsiness
(Table 5). Resemblance to real-world settings and avoidance of
the risk associated with drowsy driving are the main reasons for
this preference.

References Measures of fatigue
The included articles used several reference measures of fatigue.
Like fatigue-inducing tasks, gold-standard measures differed
between studies, even among those investigating the same type
of fatigue (see Tables 3–7, column “Reference measure”). Few
studies did not use any reference measure for fatigue based on the
assumption that subjects would be in a non-fatigued state before
performing the fatigue-inducing task, and in a fatigued state right
after the task. However, the use of reference measures of fatigue
provides a means to confirm the success in inducing fatigue.

Reference measures used in the studies comprised of validated
questionnaires and scales as well as other subjective assessments;

behavioral-based measures, either based on direct observation
by investigators or a physician, or based on video recordings;
performance measures, including task performance and reaction
time; and physiological-basedmeasures derived fromHR andHR
variability (HRV), EEG, EMG as well as blood lactate levels.

Each of these fatigue measurement methods has its own
limitations. In particular, subjective scales and questionnaires can
give different outcomes for similar physiological changes between
subjects. To cope with this limitation, Karvekar et al. (#57) used
a short perception of the exertion calibration process to improve
consistency among subjects.

Fatigue Quantification Approaches
In most of the articles, the authors have proposed several fatigue
models and compared their performance. Only the models
considered to perform the best are presented in this review. From
the included articles, 53 have proposed learning algorithms to
model fatigue (see Tables 3–7, column “Modeling approach”).
Within those learning algorithms, supervised machine learning
approaches are prevalent, in particular support vector machines.
Supervised learning consists of using input-output paired
samples to infer the function that maps the input data (i.e.,
physiological and motion data) to the output (i.e., fatigue level).
It relies on the availability of labeled data, and thus requires the
use of a gold-standard measure of fatigue.

The labeling of datasets is usually done manually. However,
Li et al. (#2) have proposed an automatic data labeling
method based on Toeplitz Inverse Covariance-based Clustering
(TICC). This clustering method identifies repeated patterns in
multivariable time series and clusters time series subsequences
accordingly, enabling automatic data labeling. In their work, 3
levels of mental fatigue were inferred based on TICC, namely
low level, transition phase, and high level. Foong et al. (#14)
have approached the problem of fatigue detection from a different
perspective. They labeled a small amount of data acquired while
subjects were in an alert state (positive class) and used features
from these data to iteratively extract, from an unlabelled dataset,
drowsy data (negative class). When using this algorithm, referred
to as iterative negative-unlabelled learning algorithm, gold-
standard values of subjects’ fatigue level are no longer necessary.
Foong argued that labeling alert data is easier and more precise
than labeling fatigue states.
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TABLE 3 | Summary of characteristic of studies that investigated mental fatigue quantification using wearable devices.

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

1 Lab 3 Mental arithmetic

operations, reading

professional

literature

60min ECG, GSR, RES Subjective self-report

questionnaires, reaction time

test

Decision Trees 3 levels ACC >84%

2 Lab 6 Excavation

operating simulation

60min Eye movement SSS, NASA-TLX, task

performance

SVM 3 levels ACC = 85%

precision = 86.6%

recall = 85.9%

F1 score = 85.1%

3 Lab 10 Virtual navigation 90min EEG NASA-TLX Dempster–Shafer fusion

technique

4 Levels F-score = 60–80%

4 Field 6 Not stated Not stated PPG, GSR, TSk CFQ Deep convolutional

autoencoding memory

network

Binary ACC = 82.9%

5 Lab 10 Not stated Not stated GSR, PPG Likert scale Multilayer neural networks 4 levels ACC = 71.2%

6 Lab 29 Quiz with 55

questions

54 ± 8min ECG CFQ K-nearest neighbors Binary ACC = 75.5%

AUC = 0.74

7 Lab 28 Simulated driving 150min GSR, PPG, TSk,

motion

Not stated SVM 4 states (normal,

stressed, fatigued

and/or drowsy)

ACC = 68.31% (4 states)/

ACC = 84.46% (3 states)

8 Field 6 Not stated Not stated ECG, TSk HRV metric SVM Binary ACC = 94.3%*

ECG, electroencephalogram; EEG, electroencephalogram; GSR, galvanic skin response; PPG, photoplethysmogram; RES, respiration; TSk , skin temperature; CFQ, the Chalder fatigue scale; HRV, heart rate variability; NASA-TLX, NASA

task load index; SSS, Stanford sleepiness scale; SVM, support vector machine; ACC, accuracy; AUC, area under the receiver operating characteristic curve.

*Calculated average of classes (97.2% for alert, and 91.3% for fatigued state).
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Most research has addressed fatigue quantification as a
binary classification problem, meaning that proposed solutions
determine the presence or absence of fatigue at a given point
in time (see Tables 3–7, column “Output”). On the other hand,
some researchers have addressed it as a multilevel problem (n =

13), considering three to five discrete levels of fatigue. Studies
exploring both approaches (#21, #33, #34, #57) have found
that the binary approach tends to result in better performance,
even though reported improvement in accuracy ranges from <1
to 30%.

To differentiate fatigue in discrete levels, researchers have
often set decision rules based on reference measure thresholding.
It is of interest to note that studies using the same reference
measure of fatigue still diverge on the measurement frequency
and applied thresholds. As shown in Table 8, this was the case for
the Karolinska Sleepiness Scale (KSS), the most used scale among
studies investigating drowsiness (Table 5). Karolinska Sleepiness
Scale was recorded at intervals of 1–10min and subjects were
deemed drowsy if their ratings were equal or higher than 5/9,
7/9, or 9/9, depending on the study. This divergence can also be
observed in studies using Borg’s RPE, a scale commonly used in
studies exploring physical fatigue (Table 6).

In #8, Al-Libawy et al. used individualized thresholds. Besides,
Kim and Shin (#26) considered a subject to be fatigued from the
first moment a drowsy event was detected until the end of the
experiment. They assumed that subjects’ drowsiness states will
maintain if no action is taken against it.

Two studies (#30 and #53) have investigated the influence
of the reference measure thresholds on the performance of
supervised learning algorithms. Both studies have found that
algorithms’ performance alters according to the thresholds
considered, and in #30 authors concluded that model
performance improved when using the thresholds that maximize
the distance between alert and drowsy states. Besides, #53 has
shown that those thresholds can also alter the subset of predictors
deemed relevant for fatigue level prediction.

As an alternative to classification, some studies have proposed
solutions to monitor fatigue in a continuous manner, which does
not require setting thresholds. This can be achieved through the
prediction of fatigue indicators, e.g., reaction times or fatigue
scale ratings, using regression models (see #20, #48, and #60). A
Hidden Markov model (HMM, #16) and a vigilance index (#11)
have also been proposed for the same purpose.

A few studies combined the continuous with the binary
(#53) or multilevel (#10) approaches, instead of approaching
the fatigue quantification problem from a single perspective.
Two other studies proposed models to detect not only fatigue,
but also other states strongly linked to safety and performance,
for instance, stress and fall detection (#7, #29). Apart from
learning algorithms, indices calculated based on the monitored
parameters (#10, #11, #49) have also been developed for fatigue
monitoring purposes. Furthermore, different statistical modeling
techniques, namely Hidden Markov modeling, Dempster-Shafer
Fusion technique, and Fuzzy logic, have been explored as
described below.

The HMM describe the probability of transition between
discrete, unobservable (hidden) states, based on observable
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TABLE 5 | Summary of characteristic of studies that investigated drowsiness quantification using wearable devices.

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

7 Lab 28 Simulated

monotonous driving

120min GSR, PPG, TSk,

motion

Video-based reference SVM 4 states (normal,

stressed, fatigued

and/or drowsy)

ACC = 68.31% (4 states)/

ACC = 84.46% (3 states)

12 Lab 15 Simulated night-time

highway driving

(lane-departure

paradigm)

60min EEG (brain activity

and eye blinking)

Reaction time Multiple Linear regression Binary Se = 58%

Sp = 73%

ACC = 68%

13 Lab 10 Simulated highway

driving

Not stated Motion Video-based reference, KSS SVM Binary ACC = 83.3%

14 Lab 29 Target hitting game

(alertness activity)

and simulated

driving

7min + 60min EEG KSS Iterative negative-unlabelled

learning algorithm

Subject’s most

fatigued block

ACC = 93.8%

15 Lab 10 Simulated driving 90min Motion Video-based reference SVM Binary ACC = 82.6%

16 Lab 20 Simulated driving 120min Eye movement Real fatigue probability

calculated based on heart rate

test and subjective evaluation

HMM Binary ACC = 80%

17 Lab 10 Simulated train

driving while sleep

deprived

Not stated EEG Investigator’s observation SVM Binary ACC = 90.7%

Se = 86.8%

FP = 5.4%

18 Field 12 Real highway driving 210min EEG, EMG, RES,

context

Not stated First order HMM Probabilities of

fatigue

AUC = 0.84*

19 Lab 6 Not stated Not stated EMG, GSR KSS, physician observation SVM Binary Precision rate = 92%

20 Lab 15 Simulated driving 60min EEG Reaction time Linear regression model Reaction time ACC = 93.9%

RMSE = 219.98 ms

21 Lab 28 Level-2 automated

ride

45min PPG KSS KNN Binary/3 levels ACC = 99.4%

F-score = 0.99/

ACC = 98.5%

F-score = 0.99

22 Lab 27 Simulated

automated ride

45min PPG Weinbeer scale, micro-sleep

events (based on eye closure

duration)

Decision Stump Binary ACC = 73.4%

F-score = 0.74**

23 Lab 10 (study

A)/30 (study

B)

Simulated

monotonous driving

under sleep

deprivation/simulated

monotonous driving

60 min/45min PPG KSS and video-based

reference/KSS

Subspace KNN Binary ACC = 99.9%

Se = 100%

Sp = 100%

precision = 100%

NPV = 100%

(Continued)
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TABLE 5 | Continued

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

24 Lab 19 Simulated

monotonous driving

under different

lightning conditions

and levels of

communication

between subjects

and researcher

90–150min TSk SSS Decision Trees Binary Se = 77.8%

Sp = 100%

ACC = 88.9%

25 Lab 50 Watching a 3D

rotating screen saver

while sitting on a

comfortable seat

and sleep deprived

20min EEG (brain activity

and eye blinking),

motion

KSS SVM with linear kernel Binary ACC = 86.5% (LOOCV)/

ACC = 92%

Se = 88%

Sp = 96%

precision = 95.6% (Hold-out

validation)

26 Lab 6 Simulated driving 60min ECG Video-based reference SVM regression Binary AUC = 0.95

27 Lab 3 Simulating drowsy

state in the late night

5 times per state

(approx. 4min in

total)

EEG (brain activity

and eye blinking),

motion

Parameters threshold

determined by authors

Nearest Centroid Classifier

based on K-means clustering

5 levels ACC = 83%

28 Lab 6 Simulated driving 60–120min ECG/PPG Video-based reference Convolutional neural network Binary ACC = 70%/64%

precision = 71%/71%

recall = 85%/78%

F-score = 77%/71%

29 Lab 4 Hand-eye-

coordination game

in a sleep deprived

condition

approx. 8min

(500 s)

EEG Not stated Random forest 3 states (normal,

sleepy, fallen)

ACC = 98%

30 Field 29 Not stated Not stated EEG KSS SVM with radial basis function

kernel

Binary precision = 73.5%

Se = 88.7%

Sp = 45.2%

ACC = 72.7%

F-score = 80.4%

31 Lab 23 4 naps while sleep

deprived

20min each nap EEG Clinician scoring (based on

EEG data)

SVM with radial basis function

kernel

Binary ACC = 80%

Kappa coefficient = 0.53

32 Lab 10 Simulated

high-speed train

driving while sleep

deprived

Not stated EEG Not stated Robust principal component

analysis algorithm

Binary ACC = 99.4%

33 Lab 15 Simulated driving 60min PPG KSS, reaction time, total

overrun area

KNN Binary/3 levels ACC = 93%/75%

34 Lab 17 Simulated

monotonous driving

60min EEG, motion Wierwille scale linear SVM Binary/5 levels ACC = 96.2%/93.7%

(Continued)
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TABLE 5 | Continued

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

35 Lab 20 Simulated

monotonous driving

60min EEG PERCLOS, number of

adjustments on steering wheel

SVM-based posterior

probabilistic model

3 levels (alert, early

warning, full

warning)

ACC = 89%***

36 Lab 6 Simulated

monotonous driving

60min EEG, motion Wierwille scale SVM with linear kernel Binary ACC = 96.2%

Se = 96.5%

Sp = 95.6%

37 Lab 20 Simulated driving 60min Motion KSS (rated by observer and

confirmed by participant)

SVM 5 levels ACC = 98.2%

38 Lab 20 Simulated driving 60min PPG, GSR, motion KSS (rated by observer and

confirmed by participant)

SVM 5 levels ACC = 98.3%

39 Lab 4 Simulated driving Not stated PPG, motion Video-based reference,

driver’s physical state

SVM with radial basis function

kernel

Binary ACC = 94.4%

precision-recall score =

96.4%

40 Lab 10 Watching the

photographed

actual road video

before and after

doing a PVT

50min PPG Not stated SVM Binary ACC = 96.3%

recall = 94.7%

precision = 97.8%

41 Lab 23 Simulated driving

while sleep deprived

60min EEG Not stated SVM with temporal

aggregation

Binary ACC = 87%

42 Lab 45 Sit on a chair and

watch a movie of

night driving while

holding a steering

wheel

80min EOG Video-based reference Random forest Binary ACC = 80%

43 Lab Unclear Sleep deprivation

(4 h of sleep)

20min EEG, NIRS Oxford Sleep Resistance Test 3rd order polynomial SVM 3 levels (1, 2, or 3

consecutive missed

stimulus)

ACC = 77.3%****

44 Lab 12 Simulated driving 480min PPG, motion Observation, KSS (rated by

observer)

Mobile-based SVM Binary ACC = 95.8%

ECG,electroencephalogram; EEG,electroencephalogram; EMG,electromyogram; EOG,electrooculogram; GSR,galvanic skin response; NIRS,near-infra-red spectroscopy; PPG,photoplethysmogram; RES,respiration; TSk ,skin

temperature; PVT,psychomotor vigilance test; KSS,Karolinska Sleepiness Scale; PERCLOS,percentage of eye closure; SSS,Stanford Sleepiness Scale; KNN,k-nearest neighbors; HMM,hidden Markov model; SVM,Support Vector

Machine; ACC,accuracy; AUC,area under the receiver operating characteristic curve; FP,false positive; LOOCV,leave-one-out cross-validation; NPV,negative predictive value; RMSE,root mean square error; Se,sensitivity; Sp,specificity.

*Calculated average among all subjects (AUC between 0.734 and 0.960).

**Calculated average of classes (0.82 for non-drowsy and 0.65 drowsy class).

***Average of the 3 states (91.25% for alert, 83.8% for early-warning group, and 91.9% for full warning group).

****Calculated average of classes (88.1 for 1, 77.9 for 2, and 65.9 for 3 missed stimulus).

F
ro
n
tie
rs

in
P
h
ysio

lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
2

D
e
c
e
m
b
e
r
2
0
2
1
|
V
o
lu
m
e
1
2
|A

rtic
le
7
9
0
2
9
2

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


A
d
ã
o
M
a
rtin

s
e
t
a
l.

F
a
tig

u
e
M
o
n
ito

rin
g
T
h
ro
u
g
h
W
e
a
ra
b
le
s

TABLE 6 | Summary of characteristic of studies that investigated physical fatigue quantification using wearable devices.

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

45 Lab 15/13 Simulated manual

material handling

task/Supply pick-up

and insertion task

180min Motion, age/ECG Borg’s RPE Random forest Binary Se = 84.7/82.0%

Sp = 86.4/88.9%

ACC = 85.5/85.4%

G-mean = 0.85/0.85

Consistency = 0.15/0.10

46 Lab 8 Part assembly task,

supply pick-up, and

insertion task,

manual material

handling task

180min ECG Borg’s RPE Random Forest Binary ACC = 69.4–90.4%

Se = 66.2–82.3%

Sp = 71.7–96.2%

AUC = 0.86–0.88

47 Lab 9 25m shuttle sprint Until sprint time

decrement of

5% for two

consecutive

tests

Motion Not stated SVM Binary ACC = 90%

Cohen’s kappa = 0.75

48 Lab 12 Incremental treadmill

running test

Time to

exhaustion

EMG Blood lactate samples Random Forest 3 states (aerobic,

anaerobic and

recovery phase)

AUC = 0.86

49 Lab 20 Treadmill running

program, L-drill and

step test, crunch

and jumps, sit to

stand up, and

push-up

7.5min Motion Rate of perceived exertion a

day after the protocol

Fatigue score Binary r = 0.95 (male)

r = 0.70 (female)

50 Lab 6 Wall building/two

bricklaying activities

Approx. 30

min/50min

Motion Not stated SVM with quadratic

kernel/SVM with medium

gaussian kernel

Binary ACC = 79.2%/

ACC = 65.9%

51 Lab 6 Lifting/lowering and

turning task in 2

different paces

(quick/slow)

5min each task RES, GSR, PPG Borg’s RPE Linear regression model 3 levels of fatigue Correct rate = 66.7%

Absolute difference = 1.9

R2 = 0.39

52 Lab 15 Jumping rope

consecutively

5min (repeated

until exhaustion)

Motion, age, height,

weight

Maximum rope number Heterogeneous ensemble

learning voting method

Binary ACC = 92%

Precision = recall =

= F1-score = 0.73

53 Lab 8 Simulated

manufacturing tasks

180min ECG, motion Borg’s RPE Least absolute shrinkage and

selection operator model

Binary/RPE

prediction

Se = 1, Sp = 0.79/

MAE = 2.16

54 Lab 12 Simulated

construction activity

200 trials

(approx.

150min)

TSk, ECG, personal

information

Borg’s RPE Boosted trees 4 levels ACC = 82.6%

(Continued)
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TABLE 6 | Continued

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

55 Lab 8 Propel a wheelchair

at a constant speed

of 1.6 m/s

Until being

unable to meet

the required

speed

ECG, EMG, motion Self-reported fatigue Neuro-fuzzy classifier 3 levels ACC = 80%

56 Field 21 The Beep test or

Pacer test until

exhaustion

Time to

exhaustion or

Borg’s RPE ≥18

Motion Borg’s RPE Random Forest Binary ACC = 75%

Se = 73%

Sp = 77%

F1-score = 75%

ECG,electroencephalogram; EMG,electromyogram; GSR,galvanic skin response; PPG,photoplethysmogram; RES,respiration; TSk ,skin temperature; RPE,ratings of perceived exertion; SVM,Support Vector Machine; ACC,accuracy;

AUC,area under the receiver operating characteristic curve; MAE,mean absolute error; r,correlation coefficient; R2, R-squared; Se, sensitivity; Sp, specificity.

TABLE 7 | Summary of characteristic of studies that investigated muscle fatigue quantification using wearable devices.

No. Type of

study

# of

participants

Fatiguing task Task duration Input data Reference measure Modeling approach Output Model performance

57 Lab 24 2-min squatting at 8

squats/min

Time until Borg’s

RPE ≥17

Motion Borg’s RPE Support vector machine Binary/4 levels ACC = 91/61%

58 Lab 10 Shoulder flexion,

shoulder abduction,

elbow extension

performed using a

Barrett WAM arm

Time until

self-reported

fatigue + 10 s (3

repetitions per

exercise)

EMG Self-report Gradient Boosting Binary F1-score = 70.4–76.6%

Success rate = 73–74%

59 Lab 3 Muscle fatiguing

exercise

Time until

self-reported

fatigue

EMG Not stated Backpropagation neural

networks

Binary ACC = 100%

60 Field 5 Isotonic/isometric

bicep curl,

Isotonic/isometric

leg extension

Time until failure

(1–2min)

Motion Gradient of the Dimitrov

spectral index (based on

EMG)

Regression tree model Gradient of the

relative change in

the Dimitrov spectral

fatigue index

Error <15%

EMG,electromyogram; RPE,ratings of perceived exertion; ACC,accuracy.
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TABLE 8 | Subjective scales used in the different studies: measurement frequency

and fatigue thresholds.

Reference

measure

No. Measure

frequency

Measure threshold

Karolinska

sleepiness

scale

14 10min Not stated

19 3min Not stated

25 1min Not stated

13 10min Alert: ≤3; Fatigue: ≥7

21 5min Alert: ≤4; Fatigue: ≥5

23 5 or 10min Alert: ≤4; Fatigue: ≥7

30 3

times/day

Alert: <3; Fatigue: >7

33 5min Alert: ≤8; Fatigue: = 9

18 Not stated Alert: <3; Transition: 3–5; Fatigue: 5–7

22 5min Alert: ≤4; Transition: 5–6; Fatigue: ≥7

33 5min Alert: ≤7; Transition: = 8; Fatigue: = 9

37 Unclear Level 1: 1–2; Level 2: 3–4; Level 3: 5–6;

Level 4: 7–8; Level 5: 9

38 Unclear Level 1: 1–2; Level 2: 3–4; Level 3: 5–6;

Level 4: 7–8; Level 5: 9

Borg’s rating

of perceived

exertion

45 10min 13

46 1 h 15

53 10min 15

56 Unclear 18

58 After each

fatiguing

task set

No fatigue: <7; Fatigue: ≥15

51 1min Low: ≤9.5; Medium: 9.5–13.5; High: 13.5

54 Unclear Low: 6–11; Medium: 12–14; High: 15–16;

Very high ≥17

58 After each

fatiguing

task set

No: <7; Low: ≥7; Medium: ≥11; High:

≥15

parameters generated by those states (Wallisch et al., 2009). Such
models have been widely applied for predicting sequences and
time series due to their capability of modeling dynamic processes.
This is the reason why #16 and #18 have developed HMM for
fatiguemonitoring.

Lamti el al. (#3) have proposed a Dempster-Shafer Fusion
technique to determine subjects’ fatigue levels. This technique
allowed the fusion of features from data acquired by different
sensors in a way that data uncertainties and heterogeneity
were considered, thus providing a more robust estimation of
fatigue levels.

Lastly, Samima et al. (#9) has proposed a fuzzy logic-based
system for vigilance level monitoring. Fuzzy logic enables the
numeric quantification of the different transitional levels between
two opposite states, in this case, non-vigilance and vigilance.
Samima’s algorithm represents another approach to address
fatigue as a continuous variable. Although the numerical values
were grouped into four (no, more, moderate, or high) vigilance
levels for the sake of model validation, the proposed model was
found to be effective. A similar approach has been proposed by
Li et al. (#35), who developed a support vector machine-based

posterior probabilistic model which estimates driver drowsiness
probability in values ranging from 0 to 1.

Performance of Proposed Measures
The proposed approaches were found to perform very well
in detecting fatigue, as seen in Tables 3–7, column “Model
performance.” Reported accuracies range from approximately
70% to up to 100%. Despite such promising results, the
performance of the proposed models on independent datasets
has been assessed quantitatively in only one study. Kundinger
et al. (#23) trained their models using different datasets which
included data of young and/or old people. They evaluated
models’ performance in datasets other than the one used
for model development and noticed that it results in lower
accuracies, even when both datasets included data from people of
the same age group. From the proposed approaches, four (#12,
#27, #34, #35) were tested for real-time monitoring, revealing
high accuracies for all approaches.

Fatigue Monitoring Systems
Several wearable devices have been used to obtain data regarding
subjects’ fatigue level. Researchers have either employed wearable
sensors available on the market or devised their own systems
(n = 22, see Supplementary Table 4, column “Data acquisition
system”). Figure 3 presents some of the devised wearable devices.

Motion (MOT) as measured by inertial measurement units
(IMUs) and other motion sensors, EEG, photoplethysmography
(PPG), electrocardiogram (ECG), galvanic skin response (GSR),
and EMG are among the most investigated signals for
fatigue level estimation. While less extensively studied, skin
temperature (Tsk), respiration (RES), EYE, including oculometry
and pupillometry, electrooculogram (EOG), as well as near infra-
red spectroscopy (NIRS) were also found to be relevant for
fatigue detection.

Signals as well as respective measurement locations varied
with the type of fatigue investigated but were rather consistent
among different studies. Figure 4 shows the physiological and
motion signals used to monitor the different types of fatigue,
their measurement location, and the number of studies that have
explored those signals.

Electroencephalogram is the most prominent signal for
drowsiness monitoring (see Figure 4C; Table 5, column “Input
data”). Furthermore, all the three studies investigating vigilance
monitoring developed models and indices based on EEG data
(see Figure 4B; Table 4, column “Input data”). Spectral power
changes in the different frequency bands (#10–#12, #14, #17, #18,
#20, #25, #27, #30, #32, #34 to #36, #41, #43) and event-related
potentials (#3, #9) of EEG signals collected by wearable EEG
systems contain valuable information on subjects’ drowsiness,
vigilance, and mental fatigue levels.

Almost all studies acquired EEG data from headbands
(Supplementary Table 4, column “Data acquisition system”).
Electroencephalogramelectrodes were placed on several brain
regions, particularly on frontal (#12, #14, #29, #30) and occipital
lobes (#18, #34, #35, #36). Researchers designed headbands
with mainly two to three dry (#20, #27, #34, #35, #36) or wet
(#29) electrodes, although systems with more channels were also
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FIGURE 3 | Wearables devised for fatigue monitoring. ECG, electrocardiogram; EEG, electroencephalogram; EOG, electrooculogram; GSR, galvanic skin response;

IMU, inertial motion unit; NIRS, near-infra-red spectroscopy; PPG, photoplethysmography; RES, respiration; TSk, skin temperature. 1Reprinted from Zhang et al.

(2017). 2© (2015) IEEE. Reprinted, with permission, from Ko et al. (2015). 3Reprinted from Dhole et al., (2019). © (2019) with permission from Elsevier. 4© (2015) IEEE.

Reprinted, with permission, from Li et al. (2015). 5Reprinted from Li and Chung (2015). 6Reprinted from Aryal et al. (2017). © (2017) with permission from Elsevier.
7Reprinted (adapted) with permission from Zeng et al. (2020). © (2020) American Chemical Society. 8Reprinted from Huang et al. (2018). © (2018), with permission

from Elsevier. 9© (2018) IEEE. Reprinted, with permission, from Choi et al. (2018). 10© (2016) IEEE. Reprinted, with permission, from Ha and Yoo, (2016). 11© (2018)

IEEE. Reprinted, with permission, from Nakamura et al. (2018). 12Republished with permission of SAE International, from Niwa et al. (2016); permission conveyed

through Copyright Clearance Center, Inc. 13Reprinted with permission of Fuji Technology Press Ltd., from (Wang et al., 2018). 14© (2016) IEEE. Reprinted, with

permission, from Mokaya et al. (2016).

proposed. Two studies presented an eight-channel EEG system
with stainless steel (#17) and Ag–AgCl (#32) dry electrodes
embedded in a train driver’s cap (Figure 3). Besides, Dhole
et al. (#29) integrated their EEG monitoring system into a
safety helmet (Figure 3) which houses an IMU and a wireless
transmission setup. Motion sensors were likewise included in the
systems proposed by three other studies (IMU in #27, three-axis
gyroscope in #34 and #36).

Nakamura et al. (#31) and Ha and Yoo (#43) devised
wearable systems for in-ear EEGmonitoring (Figure 3). The first
system consists of a wearable in-ear sensor made of viscoelastic
foam with two flexible cloth EEG electrodes constructed out
of conductive fabric. Nakamura and coworkers showed that a
drowsiness classification model trained on their system’s data
performs almost as well as a model developed based on a scalp
EEG headset (average difference in accuracy of approximately
6%). The second system, in turn, monitors EEG and NIRS

simultaneously. It is composed of an earpiece with two fabric
electrodes for EEG monitoring and NIRS driver, and an ear
hook for NIRS monitoring. Ha and Yoo’s work revealed that
oxyhemoglobin concentration in the brain, measured by in-ear
NIRS, also provides information on human drowsiness. Their
findings also indicate that the use of in-ear EEG in combination
with in-ear NIRS improves drowsiness detection accuracy.

Several studies found that pulse intervals, HR, and HRV
derived from PPG signals collected by wearables are relevant
predictors of drowsiness (Figure 4C) and mental fatigue
(Figure 4A). In those studies, PPG data was acquired from
subjects’ wrists or fingers using mainly commercial devices,
although some employed self-made systems (#5, #7, #38, #44).
Choi et al. (#7) designed a multi-sensor wrist band with PPG
and Tsk sensors, GSR electrodes, as well as motion sensors
(acceleration and rate of rotation) to monitor driving stress,
fatigue, and drowsiness (Figure 3).
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FIGURE 4 | Physiological and motion signals for (A) mental fatigue, (B) vigilance, (C) drowsiness, (D) muscle fatigue, (E) physical fatigue monitoring and respective

measurement locations. The fraction number in the boxes represents the number of studies on a specific signal based on the total literature reviewed on that type of

fatigue. ECG, electroencephalogram; EEG, electroencephalogram; EMG, electromyogram; EOG, electrooculogram; EYE, eye movement; GSR, galvanic skin

response; MOT, motion; NIRS, near-infra-red spectroscopy; PPG, photoplethysmogram; RES, respiration; TSk, skin temperature.

Studies also showed that wearable ECG sensors can be
applied for fatigue detection. ECG signals were acquired by
chest strap HR monitors, except in studies #1 and #6. Zeng
et al. (#1) designed epidermal electronic sensors. They fabricated
filamentary serpentine mesh electrodes made of copper and a
graphite-based strain sensor for simultaneous ECG, GSR, and
RES monitoring (Figure 3). These sensors are applied on the
skin in the form of temporary tattoos. Huang et al. (#6) used a
single-channel ECG patch to acquire the data (Figure 3).

Physical and mental fatigue were found to significantly affect
subjects’ HR, HRV, RR intervals as well as respective spectral
power and dynamics. Lee et al. (#28) investigated the use of
different types of recurrence plots to detect drowsiness. Those
plots were constructed using pulse intervals from PPG or RR
intervals. Their results suggest that recurrence patterns, known
for capturing non-linear dynamics of HRV, are reliable predictors
of drowsiness.

Wearable systems with GSR electrodes located at the wrist (#4,
#7), hand palms (#1), fingers (#5, #19, #38), neck, and shoulders
(#51) were exploited to monitor drowsiness, mental, and physical
fatigue. GSR attributes such as its average, standard deviation,
number of peaks, their magnitude, and duration, as well as
information regarding signal frequency spectrum were used as
predictors of fatigue. Skin conductance variations also served as
indicators of drivers’ stress (#7, #38).

The few studies exploring EMG signals showed that wearable
EMG sensors could successfully monitor physical and muscle
fatigue based on a single variable. Electromyogram signals

combined with other variables (e.g., EEG, RES, GSR) also
detects drowsiness. Data were acquired from arm (#19, #55, #58,
#59), leg (#48), and neck (#18) muscles. While some studies
collected EMG signals using conventional electrodes, wireless,
dry electrodes (#48, #58, #59) were also applied.

Average Tsk, its standard deviation (#4, #7, #8), slope (#24),
and power spectral density (#8), have been shown to provide
information on mental fatigue and drowsiness levels. All these
studies measured Tsk using wrist-worn sensors. Aryal et al. (#54)
took a different approach by estimating perceived physical fatigue
from thermoregulatory changes monitored by temperature
sensors on the face. Tsk data were acquired from subjects’ temple,
forehead, cheek, and ear using non-contact infra-red temperature
sensors fitted into a construction safety helmet (Figure 3). Their
results suggest that Tsk, especially measured at the temple, can be
more useful to model physical fatigue than heart rate data.

In addition to the physiological signals already mentioned,
RES, EYE, and EOG have been investigated. Breathing rate (#1,
#51), peak voltage (#51), and mean frequency power (#18) of
RES signals were derived from wearable sensors placed on chest
and/or abdomen area. These features can be combined with
other physiological signals to estimate individuals’ drowsiness
and mental and physical fatigue levels.

Eye movement-related features extracted from eye-tracking
headsets (#2, #16) were applied for mental fatigue and drowsiness
detection. Niwa et al. (#42) extracted such information from
a glasses-like wearable EOG device (see Figure 3). Moreover,
studies #9, #12, #25, and #27, used blink-induced artifacts that
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contaminate EEG recordings to derive information regarding
blink rate, amplitude, and duration. This approach was found
to improve vigilance and drowsiness level prediction without
requiring additional equipment.

Motion tracking has a preponderant role in physical and
muscle fatigue as well as drowsiness detection. While whole-
body motion was recorded for physical and muscle fatigue
(Figures 4D,E), head and wrist movements seem to be the
focus for drowsiness detection (Figure 4C). Information relating
to body motion, posture, gait patterns, and drivers’ steering
behaviors (#13, #44) have been estimated from wearable inertial
sensors. Kinetic energy, a measure of the energy required to
conduct motions (#49); jerk, which is the time derivate of
acceleration signals (#50, #53); joint angles (#49); Euler angles
(#56) are some of the researched features.

Among the systems used to acquire motion data are mobile
phones (#47, # 57), smart watches (#13, #15, #37, #38, #39,
#44), head (#25, #27, #34, #36), and ankle bands (#52, Figure 3).
Mokaya et al. (#60) developed Burnout, a wearable sensor
network comprised of 10 lightweight sensor nodes embedded
in fitted clothing (see Figure 3). Each sensor node contained a
3-axis accelerometer able to sense muscle vibration and detect
body movement.

To cope with the inter-subject variability in fatigue
development and its impact on individuals’ motion and
physiological signals, some studies (#2, #7, #52) normalized the
acquired data prior to model construction. In Choi’s work (#7),
four methods of normalization were used. The normalization
method was determined for each feature as the one that
maximizes the separability between classes.

The use of demographic attributes, such as age, height, weight
(#45, #52); contextual information, for instance, sleep quality,
circadian rhythm, and work condition (#18); as well as the
duration of work and years of working experience (#54), in
combination with physiological andmotion parameters, has been
shown to enhance fatiguemodels performance. Aryal et al. (#54)
found that the use of personal information improved their model
accuracy by 15%.

Maman’s study (#45) has shown that the relevance of different
fatigue predictors varies with the task being performed. In their
work, the same methodology was applied to data acquired while
subjects were performing different manufacturing tasks. Maman
et al. found that the features remaining after the selection process
was different for the two tasks investigated.

Risk of Bias Assessment
The risk of bias of included studies is depicted in Figure 5. Only
few studies fell within the low (#9, #10, #14) or unclear risk of bias
(#3, #11, #22, #23, #45, #53) categories. All the remaining studies
were assigned to the high risk of bias category according to the
criteria described in the Methods section.

Signal quality assessment was found to be the most neglected
of the methodological aspects contemplated in the risk of bias
assessment. Noise and artifacts arising from several sources have
an influence on data quality and wearable systems are particularly
susceptible tomotion artifacts (Mihajlovic et al., 2015; Boudreaux
et al., 2018; Choksatchawathi et al., 2020). While these facts

are well known, only few studies (n = 8) identified low-quality
signal segments with the purpose of excluding those segments
from further analysis or reconstructing them. Some researchers
assessed the data visually and manually removed artifacts (#45,
#53, #60), while others used automatic approaches.

The automatic approaches consisted of feasibility rules applied
through thresholding or combination of decision rules. Those
rules were either based on changes in signal amplitude and
shape (#14, #31) or on the physiological feasibility of parameters
derived from the signal as compared to reference values in
healthy subjects (#26, #28). Choi et al. (#7) applied a sequence
of four decision rules to identify valid data segments from the
acquired PPG signal. Their algorithm detected irregularities in
the measured pulse intervals due to false peaks, evaluated the
similarity between consecutive pulses, and assessed the amount
of device motion during data acquisition. Choi reported in
their article an average improvement of more than 7% in pulse
detection after applying the algorithm. In their work, low-
quality signal segments were removed without replacement.
Conversely, one study used cubic interpolation (#26) and another
the neighbors mean (#28) to reconstruct the signal after the
exclusion of noisy data points.

Instead of assessing the quality of the acquired data, some
studies applied more sophisticated noise removal algorithms and
signal reconstruction techniques to ensure high data quality.
Independent component analysis (#9) was to decompose EEG
signals and reconstruct signals without artifacts by removing
the artifactual components. Wavelet decomposition was also
investigated for the same purpose (#17, #30). In studies #10 and
#11, principal component analysis was used to select the most
effective EEG channels, which were 14 in total. Signals from the
selected channels were then averaged to remove artifacts.

In fatigue studies, the amount of data acquired while subjects
are in a non-fatigued state tends to exceed the amount of data
acquired while in a fatigued state. Since fatigue is the concept
of interest, this imbalance needs to be addressed and was for
that reason included in the risk of bias assessment. To avoid
the creation of imbalanced datasets in the first place, some
researchers have acquired data while subjects were rested and
fatigued, following a similar methodology. However, imbalances
can be corrected through resampling the data.

Maman (#53) explored the use of random under-sampling
(removes cases from the majority class) and synthetic minority
over-sampling (generates synthetic examples of the minority
class by interpolation; Kotsiantis et al., 2006) to equalize
the amount of data acquired in a non-fatigued and fatigued
states. In their work, the use of random under-sampling
resulted in better performance. Synthetic minority over-
sampling was also used by Kundinger et al. (#21, #22), while
Wang (#52) explored oversampling (duplicates cases from the
minority class).

It is also possible to address the dataset imbalance problem at
the algorithm level. Zhang (#4) constructed a one-class classifier,
named Deep Convolutional Autoencoding Memory network,
whose data training process is only based on non-fatigue data.
This model learns patterns in time series of non-fatigue data
and classifies outliers as data recorded under fatigue state. More
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FIGURE 5 | Risk of bias assessment. Studies with low risk of bias in all components were deemed to be of low risk of bias, studies with low or unclear risk of bias for

all components were deemed to be of unclear risk and those with high risk of bias for one or more components were deemed to be of high risk of bias.

detailed information on the risk of bias assessment of the
included studies can be found in Supplementary Materials.

DISCUSSION

This review aimed at presenting the state-of-the-art of fatigue
monitoring through wearable devices. A considerable amount
of the current literature on the selected topic pays particular
attention to drowsiness monitoring for occupational purposes,
especially within the transportation industry (Figure 2). Other
potential application domains foreseen for such kind of
technology stretch across healthcare and sport industries
(Table 2).

Overall, fatigue studies have been mainly short-term studies,

conducted in laboratory settings. The tasks used to induce fatigue,

selected reference measures and other methodological aspects

differed considerably between studies. Researchers have used
wearables available in the market or devised their own systems
to acquire physiological and motion data and, based on these,
detect fatigue. Supervised machine learning models, and more
specifically, binary classificationmodels, are predominant among
the proposed fatigue quantification approaches.

Considering that wearables enable continuous, unobtrusive
long-term monitoring, it is surprising that most of the
articles only reported short-term laboratory studies. A possible
explanation for this finding is shown by themain limitation of the
three studies exploring long-term monitoring of fatigue in free-
living environments (#4, #8, #30). It is the lack of information
regarding the tasks performed by the participants over the
monitoring period. As shown in Maman’s study (#45), fatigue
development is task-dependent (Richter et al., 2005; Yung and
Wells, 2017), therefore, information regarding fatigue-inducing
tasks plays a pivotal role in determining the validity domain of
developed models.

Additionally, in real-world settings the acquisition of
reference values of fatigue is further aggravated, particularly when
using scales and questionnaires. Obtaining reference values in
intervals of 2 h or three times a day, as applied in studies #4 and
#30, might be inappropriate when aiming at developing a fatigue
monitoring system for safety-related applications, for instance.
At the same time, there is a lack of valid reference measures
which can provide a continuous estimate of an individual’s fatigue
level non-intrusively. Hence, considerations regarding fatigue-
inducing tasks and reference measures to be used are a major
challenge in fatigue research.
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Most of the included studies used fatigue-inducing tasks.
Those tasks varied markedly from study to study, depending on
the type of fatigue investigated and technology final application.
Simulated tasks have been commonly used, particularly in studies
investigating driver drowsiness. Despite resembling real settings,
simulation environments cannot reproduce its complexity and
dynamism (Techera et al., 2018). Additionally, subjects’ effort
and perception of risk are reduced in simulated environments
(Sahayadhas et al., 2012). The effectiveness of the tasks used to
induce fatigue is key for fatigue research in laboratory settings
and depends to some extent on participants’ engagement in those
tasks. For this reason, Huang et al. (#6) offered monetary rewards
to better motivate the participants. In general, the selection of
fatigue-inducing tasks and their duration lacked scientific basis.
Thus, questions can be raised regarding the feasibility of certain
tasks which have been used.

Reference measures of fatigue also differed among studies.
Some researchers neglected the use of ground truth measures
of fatigue relying on the assumption that participants would be
rested before performing the fatigue-inducing task and fatigued
after that. Foong et al. (#14) questioned this assumption with
regard to drowsiness. In their work, participants performed a
hitting game prior to the fatigue-inducing task to ensure subjects
were in an alert state at the start of the experiment. As noted by
Ko et al. (#12), drowsiness does not evolve linearly in time, and
the same can be stated with regard to fatigue in general. Indeed,
there is a time-on-task effect on fatigue (Richter et al., 2005). Yet,
for reasons unrelated to the study protocol, subjects may either be
fatigued before performing the fatigue-inducing task or they may
not become fatigued in case of high-performing individuals or if
the selected task is not effective in inducing fatigue. For instance,
Aryal et al. (#54) recognized, based on reference measures, that
the selected fatiguing task failed to induce mental fatigue and
consequently limited the scope of their investigation to physical
fatigue. Therefore, the premise that subjects are rested/fatigued
prior to/after the fatigue-inducing task might be a flawed one
and does not justify neglecting the use of reference measures
of fatigue.

Much of the literature has addressed fatigue monitoring as
a binary classification problem. Considering that the major
application foreseen for such a technology is fatigue risk
management in occupational settings, detecting the occurrence
of fatigue is not as relevant as detecting the transition to such a
state (Li et al., 2020). That transition phase is crucial to prevent
fatigue-related accidents since it is when corrective actions
must be taken. Therefore, although applying reference measure
thresholds which maximize the separability between rested and
fatigued states might result in better model performance, it limits
models’ ability to detect the early onset of fatigue. In this sense,
multilevel or continuous approaches might better address fatigue
monitoring. However, the number of studies proposing such
approaches is relatively low (n= 23).

Regardless the approach followed to address fatigue
monitoring, the selection of the ground truth measure of fatigue
and respective thresholds is crucial. It dictates the standard by
which proposed models will be developed and assessed. The
observed divergence between the reference measure thresholds

applied in the included studies, even among those investigating
the same type of fatigue for the same application (e.g., papers
addressing driver drowsiness monitoring which used the KSS,
see Table 8), reflects a lack of consensus regarding the adequate
threshold to consider a given fatigue level as risky or unsafe. This
divergence may be due to the lack of evidence on the association
between a given fatigue level, task performance, and the related
safety outcomes (Williamson et al., 2011).

Models considering fatigue accumulation and recovery are
lacking. Only few studies considered the temporal variation of
fatigue predictors. Fatigue development is a dynamic process,
and individuals’ fatigue level at a given point in time is not
independent from their state at previous time points. Therefore,
as noted by Fu (#18), the assumption of independent and
identically distributed data, commonly applied in learning
algorithms, is a poor one in the case of fatigue.

Despite their constraints, the performance of the proposed
models was very high. Binary classification models performed
particularly well. Yet, this promising set of results should be
interpreted with caution as most of the models have not been
tested in independent datasets.

Furthermore, previous studies have given little attention to
the data imbalance problem. Although some studies report the
number of data samples used to train the models, half of the
studies using learning algorithms either omitted that information
or acknowledged the use of imbalanced datasets (Figure 5). Just a
few researchers reported strategies to cope with class imbalance.
Thus, there is the risk that models were developed using
imbalanced datasets, which implies that reported accuracies
may overestimate models’ performance, especially classification
models performance (Luque et al., 2019).

In some works, data have been acquired prior to and right
after subjects performed the fatiguing task. While being a
useful method to ensure the creation of balanced datasets,
the acquired data does not contain information regarding
fatigue mechanisms. Consequently, models developed using
those datasets can be relevant to analyze which and how
the monitored variables change due to fatigue but have
limited applicability in domains where continuous, long-term
monitoring is necessary.

A third aspect weakening the reliability of some of the
proposed models is the very little effort made to ensure
the acquisition of high-fidelity signals. Only 21 studies used
exclusively validated data acquisition systems, and even fewer
removed artifacts or noisy signal segments (Figure 5). The
exclusion of low-quality data is of particular importance because
it is well known that wearable devices are susceptible to noise
and artifacts arising from several factors, especially sensors’
movement (Shirmohammadi et al., 2016). Thus, most of the
proposed fatigue models and indices were constructed based on
data of limited reliability.

We found that a wide variety of physiological and motion
signals have been recorded for the purpose of fatigue
quantification. Signals’ measurement location did not differ
considerably, but their relevance and pre-eminence for fatigue
monitoring depended on the type of fatigue explored (Figure 4).
Even though several signals have been monitored, there has been
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little attempt to understand how those signals change with fatigue
onset and which data features better represent it. We believe
this explains the great variability of features derived from the
monitored signals. The task dependency of fatigue development
and its impact on subjects’ physiological and motion signals
further contributes to that variability.

Together, the findings of this review reveal as much
about the complexity involved in fatigue monitoring using
wearable sensors as about the lack of standardization in
this field of research. To ensure generalization to real-world
settings, proposed approaches must be developed based on
data acquired under realistic conditions. At the same time,
models construction demands more controlled conditions.
In addition, fatigue development is a dynamic process
and its impact on subjects’ performance depends on the
task being performed. Such requirements demand research
conducted in close collaboration with industry, the end user of
developed technologies.

Researchers should be aware of current issues highlighted in
the literature. Accordingly, future studies aiming at developing
reliable wearable fatiguemonitoring systems should consider the
following methodological aspects:

1. When designing a study, care should be exercised when
selecting the fatiguing tasks as well as their duration and
workload. They should resemble the target application context
and be well-founded on existing evidence.

2. The validity and reliability of the data acquisition systems
should be assessed prior to recording the data for model
construction. Acquired data should be pre-processed to
correct recoverable disturbances and, afterwards, analyzed
using a signal quality assessment algorithm to detect
remaining low-quality signal segments and outliers (Naseri
and Homaeinezhad, 2015). This approach allows the
evaluation of the effectiveness of techniques applied to
reconstruct acquired signals.

3. It is important to use validated reference measures of fatigue.
In their review, Hu et al. (Hu and Lodewijks, 2020) advise
the use of more than one reference measure of fatigue to
cope with the multidimensionality of this concept. Another
advantage of using several reference measures is that it allows
the evaluation of the agreement between the type of fatigue
induced by selected fatiguing tasks and the one of interest.

4. Techniques to handle data imbalances and cross-validation
need to be implemented, if applicable. It allows the unbiased
estimation of models’ performance. Besides, the amount
of data samples used for model development should be
clearly reported.

5. The etiology of fatigue is multifactorial, and physiological
and motion responses reflect the integration of various
factors. Therefore, the impact of confounding factors (e.g.,
emotional state, health condition, or even other types of
fatigue apart from the one of interest, etc.) should be
considered and assessed.

The potential of wearables for fatiguemonitoring has not yet been
explored fully. Long-term studies, in which fatigue is monitored

continuously in real-world environments are lacking. However,
for such applications, preceding studies about the development
of reliable models in laboratory settings and the subsequent
implementation in free-living environments are needed. This
enables model validation and, at the same time, provides new
insights into the impact of fatigue on individuals’ performance
and related outcomes.

Long-term studies would also allow the investigation of fatigue
dynamics. Given the intra- and inter-subject variability in fatigue
responses, large amounts of data are needed to better understand
the relationship between fatigue and non-invasive measures.
By enabling remote, continuous monitoring, wearables play an
important role in harnessing these data (Park and Jayaraman,
2017, 2021).

LIMITATIONS

To facilitate the identification of studies whose primary
aim was to monitor fatigue, a limited number of search
terms was selected. We are fully aware, that a more
open search strategy and the inclusion of MeSH terms
could have increased the number of retrieved articles.
Nevertheless, we are convinced that the most relevant
articles dealing with monitoring of fatigue have been detected.
Moreover, included studies are of limited comparability,
hindering in-depth comparison between proposed fatigue
monitoring approaches.

Several criteria were defined in the scope of this review due
to the lack of well-defined criteria in the existing literature.
For instance, datasets were deemed imbalanced when having
a samples’ proportion more extreme than 60/40. Although
arbitrary, those criteria were based on common sense and
empirical evidence. Besides, the criterion set to characterized
devices as validated or not does not consider aspects regarding
devices’ reliability and responsiveness. Although they are crucial
for device validation, the assessment of device’s validity is usually
the first step of the validation process. Thus, we are aware that
criteria could be further refined.

The present work provides an overview on wearable-based
approaches to monitor fatigue. While summarizing proposed
approaches and major findings, aspects relating to sensors
location biases and physiological responses to fatigue could not
be covered in this review. For instance, although wrist worn
GSR sensors for fatigue monitoring, there is evidence suggesting
that GSR measurements from the wrist are biased indicators of
arousal (Tsiamyrtzis et al., 2016). Included studies seldom justify
the placement of sensors in the body. In the same way, other
factors not covered in this review may have a biasing effect on
the reported findings.

CONCLUSION

This review has found that the generalizability of much-
published research on fatigue monitoring through
wearables is problematic. The lack of standardization in
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methods to induce, measure and model fatigue limits
comparability between studies. A joint effort must be
done to find consensus and set adequate standards in this
research field.

Research in fatigue monitoring through wearables has
been focused on the performance of developed measures,
while ignoring the underlying mechanisms. Considerably
more work will need to be done to design appropriate
fatigue-inducing tasks, as well as to study the effect of
fatigue on parameters derived from physiological/motion signals
measured non-invasively.

Ensuring the acquisition of high-fidelity data, by using
validated data acquisition systems and implementing signal
quality assessment strategies, should be a priority. Ultimately,
no accurate and interpretable fatigue measure can be developed
based on data not representing the concept aimed at. More
research is also required to construct measures considering the
temporal dynamics of fatigue.

Lastly, long-term studies are lacking, which indicates
that wearables have not been used to their full potential in
fatigue research area. Wearables enable continuous, long-term
monitoring in an unobtrusive manner. The development
of reliable wearable fatigue monitoring systems and their
implementation in real-world settings creates a unique
opportunity to better understand fatigue and its impact on
subjects’ performance.
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