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Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary

angioplasty, cardiopulmonary resuscitation, and organ transplantation, which

can lead to cell damage and death. Mitsugumin 53 (MG53), also known as

Trim72, is a conservative member of the TRIM family and is highly expressed in

mouse skeletal and cardiac muscle, with minimal amounts in humans.

MG53 has been proven to be involved in repairing cell membrane damage.

It has a protective effect on I/R injury in multiple oxygen-dependent organs,

such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also

plays a unique role in I/R, sepsis, and other aspects, which is expected to provide

new ideas for related treatment. This article briefly reviews the pathophysiology

of I/R injury and how MG53 mitigates multi-organ I/R injury.
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Introduction

Mitsugumin-53 (MG53), also known as TRIM72, is a muscle-specific triple motif

family protein from our immunoproteomics library (Weisleder et al., 2008). Compared

with other TRIM protein family members, they are very similar in structure which

contains the tripartite motif that includes a Ring finger, one zinc-binding motif called

B-box, and coiled-coil (CC)moieties. As a unique protein in the TRIM family, the

MG53 has a SPRY domain at the carboxy terminus (Reymond et al., 2001; Cai et al.,

2009a; Park et al., 2010) and is mainly expressed in myocardium sarcolemma and skeletal

muscle sarcolemma (Lee et al., 2010). Previous studies have shown that MG53 can be

detected in alveolar epithelial cells and the kidney, which impacts the lungs and kidneys

under physiological or pathological conditions (Table 1) (Jia et al., 2014; Duann et al.,

2015). While many studies support the protective role of MG53 in cardiovascular disease

(Jiang et al., 2021; Zhong et al., 2021), no reports of MG53 on its role in multi-organ

Ischemia/reperfusion (I/R) injury have been published. Here, we are intended to review

the role of MG53 in I/R injury.
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I/R injury

Ischemia is a lack of blood supply to tissue due to obstructed

arterial flow, resulting in a shortage of oxygen and nutrients

required for cell metabolism. Ischemic injury leads to cellular

dysfunction, damage, or death, a process largely dependent on

the degree and duration of blood supply disruption. Different

organs have different susceptibilities to ischemic injury. After a

few minutes of hypoxia in the brain, brain cells begin to suffer

irreversible damage, their function is affected, and the process is

almost irreversible, while muscle tissue can withstand ischemia

for 60–90 min without irreversible damage (Duehrkop and

Rieben, 2014). The ideal goal to prevent tissue death after

local ischemia is hematologic reconstruction and restoration

of blood flow as soon as possible, the benefits of which to

body tissues are not as expected. During long-term ischemia,

anaerobic metabolism and the accumulation of lactic acid deplete

ATP and decrease intracellular pH, leading to dysfunction of

ATP enzyme transport, increased intracellular and

mitochondrial calcium levels (calcium overload), and

eventually cell swelling, rupture, and death (Kalogeris et al.,

2012). Although reperfusion restores oxygen levels, the surge

of reactive oxygen species promotes neutrophil infiltration of

ischemic tissue and exacerbates ischemic injury. (Kalogeris et al.,

2012; Brown and Griendling, 2015). In 1960, Jennings et al.

found that reperfusion after ischemia aggravated myocardial

necrosis in canines for the first time. Even if the normal or

near normal coronary blood flow is restored after reperfusion,

mechanical dysfunction still existed (Jennings et al., 1960). There

are many theories about the molecular mechanism of reperfusion

injury, and some of them are pretty powerful, but they have not

been fully elucidated. Here are some mainstream views: 1.

Overproduction of reactive oxygen species (ROS) 2.

intracellular and mitochondrial Ca2+ overload 3. Opening of

the mitochondrial permeability transition pore 4. pronounced

inflammatory responses 5. endothelial dysfunction (Yellon and

Hausenloy, 2007; Kalogeris et al., 2016).

Overview of biological activities of
MG53

The role of MG53 in repairing cell
membrane damage

The importance of the cell membrane to the organism is self-

evident. It is a barrier to prevent extracellular substances from

freely entering the cell, to ensure the relative stability of the

intracellular environment, and to make various biochemical

reactions proceed in an orderly manner (Nicolson, 2013). In

GRAPHICAL ABSTRACT

TABLE 1 List of studies on the role of MG53 in multiple organs.

Tissues
expression

Localization Method for detection Mechanisms

Skeletal muscle Specifically expressed in the sarcolemma
lipid rafts (Lee et al., 2010)

Western blotting and
Immunofluorescence

Facilitate cell membrane repair (Cai et al., 2009a)

Heart Specifically expressed in the sarcolemma
lipid rafts (Lee et al., 2010)

Western blotting and
Immunofluorescence

Facilitate cell membrane repair (Wang et al., 2010)

Activate PI3K-Akt-GSK3β pathway (Cao et al., 2010) and RISK
pathway (Zhang et al., 2011)

Brain Not Detected Not applicable Reduce apoptosis, inhibit the release of inflammatory cytokines and
mitochondrial dysfunction (Gharibani et al., 2015; Ma et al., 2020)

Lung Type 1 and 2 alveolar epithelial cells (Jia
et al., 2014)

Western blotting and
Immunohistochemical staining

Facilitate cell membrane repair (Jia et al., 2014)

Liver Not Detected Not applicable Combined action with dysferlin reduces HIRI-induced hepatocyte
membrane damage (Matsuda et al., 2012)

Kidney Proximal tubular epithelium (Duann
et al., 2015)

Quantitative immunoblotting Facilitate cell membrane repair (Duann et al., 2015)
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order to maintain cell homeostasis, eukaryotic cells protect the

integrity of their plasma membranes in some ways, such as active

recycling and repair, to deal with various sources of damage

(McNeil et al., 2003). Repairing plasma membrane damage is an

essential aspect of normal cell physiology, and the disruption of

this process can lead to many different pathophysiologies

(Cooper and McNeil, 2015). Previous studies showed that

MG53 is responsible for plasma membrane repair (Cai et al.,

2009a). Acute destruction of the plasma membrane will cause the

inside of the cell to be exposed to the external oxidative

environment. The oxidation state of MG53 may signal to

activate the acute membrane repair process and mediate

plasma membrane resealing, in which MG53 interacts with

phosphatidylserine and promotes the transport of vesicles

containing phosphatidylserine to the site of membrane

damage (Figure 1) (Cai et al., 2009a). Many factors regulate

the membrane repair process mediated byMG53. The research of

Wang et al. showed that membrane cholesterol is an

indispensable molecular participant that initiates

MG53 translocation in myocardial membrane repair (Wang

et al., 2010). Zhu et al. found that Polymerase I and

Transcript Release Factor (PTRF) can act as a docking protein

of MG53 in the process of membrane repair by binding exposed

cholesterol at the injury site, and cells lacking endogenous PTRF

show defective transport of MG53 to the injury site (Zhu et al.,

2011). MG53 protein acts as an oxidation sensor to gather cell

vesicles at the site of membrane damage to form a membrane

patch, and the entry of Ca2+promotes the fusion of vesicles and

plasma membrane. Ca2+ is necessary for fusing vesicles and

plasma membranes but not for vesicle transport (Cai et al.,

2009a; Hwang et al., 2011). Cai et al. found that the interaction

of MG53, dysferlin, and caveolin-3 (CaV3) is essential for the

repair of acute membrane damage in striated muscle (Cai et al.,

2009b). They also found that MG53 can regulate the membrane

sprouting and exocytosis of muscle cells and regulate this

process by interacting with Cav3. (Cai et al., 2009c). It is

worth noting that combining Zn2+ with the RING and

B-box motifs of MG53 is essential for assembling the cell

membrane repair mechanism (Cai et al., 2015). Previous

data showed that the formation of disulfide bonds on

Cys242 is critical for MG53 oligomerization and the

initiation of cell membrane repair (Cai et al., 2009a). Based

on this, Hwang et al. found that destroying

MG53 oligomerization by chemically modifying cysteine

residues before membrane damage may disrupt the MG53-

mediated membrane repair process. The leucine zipper motif is

essential for the formation of homodimers of MG53, which

regulates the redox-dependent oligomerization of MG53, and

the CC domain pair also plays an equally important role

(Hwang et al., 2011). There are two conserved leucine zipper

motifs (LZ1 and LZ2) in the CC domain of MG 53, which are

very conservative in different animal species. If LZ1 and LZ2 are

mutated, the oligomerization of MG 53 will decrease, and the

cell membrane repair function of MG53 will be destroyed.

3Notably, LZ one will weaken the oligomerization of MG53,

while LZ2 will not (Hwang et al., 2011).

FIGURE 1
When the plasmamembranewas damaged, MG53 sensed the oxidized extracellular environment, and by combining with phosphatidylserine, it
adhered to the plasma membrane and intracellular vesicles, and finally gathered at the injury site to seal the damaged membrane.
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Effect of MG53 on cardiac I/R injury

According to the latest report fromWHO, the world’s biggest

killer is ischemic heart disease which is responsible for 16% of the

world’s total deaths. Since 2000, the most significant increase in

fatalities has been for this disease, rising by more than 2 million

to 8.9 million deaths in 2019 (Organization, 2020). Although

cardiovascular health has improved in recent years, the global

health burden of cardiovascular diseases is still high. Therefore, it

is urgent to study the possible mechanisms of cardiovascular

disease. Murry et al. first reported Ischemic preconditioning

(IPC) in 1986. They found that multiple brief episodes of

ischemic might delay cell death after coronary artery

occlusion, thereby protecting the myocardium from

subsequent ischemic damage (Murry et al., 1986). IPC also

plays a vital role in other organs, such as the brain, liver, and

kidney (Zager et al., 1985; Chen and Simon, 1997; Koti et al.,

2003).

It has been confirmed that IPC and ischemic

postconditioning (IPostC) can reduce myocardial injury

caused by I/R (Murry et al., 1986; Zhao et al., 2002). IPC

mainly involves two essential pathways: the reperfusion injury

salvage kinase (RISK)pathway and the survivor activating factor

enhancement (SAFE) pathway. The RISK pathway consists of

PI3K-Akt-GSK3βand ERK1/2 signaling events, whereas the

SAFE pathway involves activation of tumor necrosis factor-α
and the JAK-STAT3 axis (Crisostomo et al., 2006; Lacerda et al.,

2009; Lecour, 2009). In 2003, Zhao et al. first proposed IPostC,

which is another form of cardioprotection. IPostC is achieved by

shortly interrupting the perfusion cycle in the early stages of

perfusion, which has been observed to save coronary artery

endothelium and cardiomyocytes (Zhao et al., 2002).

With the deepening of the research, more and more proofs

show that MG53 plays a vital role in IPC and IPostC (Cao et al.,

2010; Zhang et al., 2011). As shown in the study of Cao et al.,

MG53 deficiency completely abolished IPC-mediated

cardioprotection. In MG53 knockout mice, IPC failed to

reduce the area of IR-induced myocardial infarction compared

with wild-type mice (Cao et al., 2010). Cao et al. found that the

lack of MG53 completely eliminated IPC-induced PI3K

activation, indicating that MG53 is necessary for IPC-induced

PI3K activation, which is a crucial component of the pro-survival

RISK pathway. In contrast, MG53 does not participate in the

SAFE pathway because IPC-induced STAT-3 phosphorylation

remains intact in MG53-deficient hearts (Cao et al., 2010). The

research by Shan et al. showed that during cardiac ischemic

preconditioning, the reactive oxygen species level of myocardial

cells was increased, which activated protein kinase C-δ(PKC-δ)
and induced the secretion of MG53 protein (Shan et al., 2020).

The phosphorylation levels of several key pro-survival kinases

were significantly increased due to overexpression of MG53,

including Akt, GSK3β, and ERK1/2, over their respective

control (Fujio et al., 2000; Tong et al., 2002; Shiraishi et al.,

2004). The study by Wang et al. found that when I/R injured the

heart, MG53 could sense and promote plasma membrane

translocation (Wang et al., 2010). Meanwhile, immunostaining

of myocardial sections showed that MG53 accumulated in the

myocardium, which indicated that the I/R activated the repair

mechanism mediated by MG53. MG53 ablation aggravated

myocardial damage caused by I/R, manifested by

mitochondrial dysfunction and cardiomyocyte loss (Wang

et al., 2010). In a recent study, Gumpper-Fedus et al. found

that during ischemia-reperfusion-induced oxidative stress,

MG53 binds to cardiolipin, a mitochondria-specific

phospholipid, preventing damage to mitochondria, and

maintains their integrity (Gumpper-Fedus et al., 2022). Wang

et al. found that I/R-induced heart damage can lead to necrosis,

whileMG53 has a regulatory effect on RIPK1-dependent necrosis

during I/R injury, which inhibits I/R damage cardiac necrosis by

downregulating ubiquitination-dependent RIPK1 expression

(Wang et al., 2022).

Although Lemckert et al. demonstrated that MG53 was an

effective biomarker for mice heart myocardial injury and

dysfunction, the expression of MG53 was extremely low or

undetectable in samples of pediatric patients undergoing

surgery to correct congenital structural heart defects. This

research indicates that MG53 cannot be used as a clinical

biomarker of human myocardial damage, nor can it be used

as an endogenous cardioprotective agent for ischemic

preconditioning or postprocessing (Lemckert et al., 2016).

However, Guo et al. reported the expression of MG53 in the

human atrium for the first time, which was verified by

immunohistochemical staining, quantitative PCR, and western

blotting in patients undergoing cardiac surgery (Guo et al., 2018).

These differences between studies may be due to different

experimental methods or different antibodies used, and

further studies are needed to prove whether MG53 is

expressed in the human heart. In 2020, Xie et al. used

enzyme-linked immunosorbent assay (ELISA) to determine

the concentration of MG53 in the serum of 639 patients

undergoing coronary angiography. Logistic and linear

regression was used to analyze the relationship between

MG53 and coronary heart disease. They found that patients

with stable cardiovascular disease and acute myocardial

infarction had elevated serum MG53 levels (Xie et al., 2020a),

and subsequent studies have shown that MG53 is a valuable

prognostic indicator for patients with acute myocardial

infarction (AMI) (Xie et al., 2020b), which can provide new

ideas for clinical practice.

Effects of MG53 on cerebral I/R injury

Stroke is an acute cerebrovascular disease, which is the

leading cause of death and long-term disability. The majority

of strokes are ischemic brain damage caused by occlusion of
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cerebral arteries (Virani et al., 2020). An ischemic stroke usually

leads to lower blood oxygen levels and hypoperfusion, which in

turn leads to neurotoxic events. Cerebral ischemic injury can lead

to the formation of cerebral edema and increased intracranial

pressure (ICP), which compresses the cerebral vessels and

weakens cerebral perfusion in the ischemic area (Simard et al.,

2007). Timely restoration of blood flow is necessary to prevent

ischemic tissue infarction, but oxygenated blood reperfusion can

lead to aggravation of brain damage, also known as I/R injury.

Oxidative stress, inflammation, and apoptosis are the primary

cellular responses of brain tissue after I/R injury (Fang et al.,

2015; Palencia et al., 2015). Brain I/R injury increases the

phosphorylation of extracellular signal-regulated kinase 1/2

(ERK1/2), induces the expression of membrane G protein-

coupled receptor kinase 2 (GRK2), and reduces the expression

of cortical microvascular matrix metalloproteinase-9 (MMP-9)

and cytoplasmic GRK2 (Zheng et al., 2007; Sarshoori et al., 2014).

Due to the blood-brain barrier (BBB), many neuroprotective

agents confirmed within in vitro studies have lost their effect

within in vivo experiments. In mouse tissues, MG53 is

predominantly expressed in skeletal and cardiac muscles and

cannot be detected in neurons (Cai et al., 2009a; Yao et al., 2016).

However, Yao et al. provided evidence that I/R injury caused an

abundant accumulation of MG53 in the brain tissue. (Yao et al.,

2016). Moreover, their research showed that recombinant human

MG53 (rhMG53) could cross the BBB to the I/R damaged brain.

Intravenous administration before or after ischemia can

effectively reduce brain injury, inhibit apoptosis, and activate

the pro-survival RISK signaling (Yao et al., 2016). Brain I/R

injury leads to the decrease of Akt phosphorylation and the

inhibition of GSK3β activation, which can be restored by

rhMG53 treatment (Yao et al., 2016). Some studies have

shown that I/R-induced brain injury leads to the activation of

caspase3, which is the core protein of the apoptotic cascade

reaction pathway (Porter and Janicke, 1999; Galluzzi et al., 2012).

Caspase3 activation is an essential condition for cell apoptosis,

and rhMG53 treatment could effectively suppress

caspase3 activation (Chen et al., 2015; Gharibani et al., 2015).

MG53 could significantly inhibit the expressions of TNF-α,
TLR4, NLRP3, Caspase1, and IL-1β, reduce the

neuroinflammatory response, promote the proliferation and

migration of human umbilical cord mesenchymal stem cells

(hUC-MSCs), inhibit the release of inflammatory cytokines,

and resist LPS-induced apoptosis and mitochondrial

dysfunction (Guan et al., 2019; Ma et al., 2020). The

combination of MG53 and hUC-MSCs promoted

neurogenesis by reducing apoptosis and improving PI3K/Akt-

GSK3β signaling pathway. MG53 protects hUC-MSCs from

inflammatory injury by inhibiting the NLRP3/Caspase-1/IL-1β
axis and synergistically enhances its efficacy on the brain

damaged by neuroinflammation. RhMG53 protein has a

protective effect on H2O2-induced oxidative damage of hUC-

MSCs, and promotes the proliferation and migration of hUC-

MSCs, reducing cerebral edema and neurological deficits (Guan

et al., 2019; Ma et al., 2020).

Effects of MG53 on lung I/R injury

Since the 1980s, with the success of lung transplantation, it

has become the main treatment for most end-stage lung

diseases. Although lung surgical techniques and perioperative

care have improved, lung injury caused by I/R is still a

significant cause of early morbidity and mortality after lung

transplantation (King et al., 2000). I/R-induced lung injury can

occur in acute pulmonary embolism, heart organ

transplantation, and cardiopulmonary bypass surgery

(Ambrosio and Tritto, 1999; de Perrot et al., 2003; Ng et al.,

2006; Yellon and Hausenloy, 2007). The pathogenesis of these

lung diseases may be related to lung epithelial cell damage

(Matthay et al., 2012; Sweeney et al., 2013). Under normal

circumstances, I/R can be understood as hypoxia-

reoxygenation in tissues. However, this situation needs to be

treated differently in the lungs because the alveoli contain a

certain amount of oxygen, which can prevent early hypoxia

caused by ischemia andmaintain aerobic metabolism (de Perrot

et al., 2003). Although the mechanism of lung injury induced by

I/R is not completely clear, excessive production of ROS,

pulmonary mitochondrial dysfunction, polymorphonuclear

leukocyte infiltration, and macrophage isolation may be

related to lung injury (Sommer et al., 2011; Campos et al.,

2012). MG53 has been detected to be expressed in type I and

type II alveolar epithelial cells, and the latter has a higher level

of expression. But MG53 is shown to be not expressed in

endothelial cells (Jia et al., 2014; Kim et al., 2014). In order

to test whether the lack of MG53 can change the lung response

after I/R-induced injury, JIA et al. conducted experiments on

wild-type and MG53−/− mice which induced complete left lung

ischemia and hypoxia by clamping the left pulmonary artery

and hilum on the procedure of 1 h ischemia/1 h reperfusion.

Compared with the wild-type control, The MG53−/− mouse has

a lower survival rate after I/R injury. The ablation of

MG53 leads to increased susceptibility of mice to

I/R-induced lung injury (Jia et al., 2014), and the

overexpression of MG53 has a protective effect on the repair

of alveolar epithelial cells. The repair function of MG53 in the

lung is related to caveolin 1(Cav1) (Kim et al., 2014). Cav1 is a

protein rich in lung endothelial cells and alveolar epithelial type

I cell (ATI), which promotes the repair of cell membrane

rupture through endocytosis (Dahlin et al., 2004; Corrotte

et al., 2013). In another animal experiment, intravenous

injection of rhMG53 can have a protective effect on

I/R-mediated acute lung injury (ALI) without significant

toxicity. It effectively protects against lung epithelial cell

damage and restores lung function after ALI (Weisleder

et al., 2012; Jia et al., 2014).
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Effects of MG53 on renal I/R injury

Kidney disease is a global public health problem.With the aging of

the population and the increasing incidence of diabetes and

hypertension, kidney failure is also growing. Acute kidney injury

(AKI) is one of the most common acute and critical illnesses in

various clinical departments, with high morbidity and mortality

(Doyle and Forni, 2016). Although a large number of clinical trials

have been conducted with multiple interventions, a reliable method to

prevent AKI has still not been found (Landoni et al., 2013). More and

more scholars have realized that acute kidney injury (AKI) and chronic

kidney disease (CKD) are closely related and may promote each other

(Hsu andHsu, 2016).Akidney is very sensitive to I/R,which is themost

common cause of AKI. (Kanagasundaram, 2015). After renal tissue

ischemia, its metabolism changes from aerobic to anaerobic, and

intracellular ATP is consumed, leading to acidosis. Inactivation of

Na+/K+ ATPase results in intracellular sodium and water retention,

causing cell edema (Pefanis et al., 2019). Reperfusion restores aerobic

metabolism in the kidney but produces reactive oxygen species (ROS),

which destroy functional cells and induce the death of tubular epithelial

cells (Bonventre andYang, 2011). I/R triggers a series of harmful cellular

reactions in the affected organs, ultimately leading to cell necrosis or

apoptosis (Bonventre and Yang, 2011). A sign of renal I/R injury is the

appearance of necrotic tubule cells (Brady and Singer, 1995).

Although MG53 is expressed at a low concentration in the

kidney, it is significantly expressed in the proximal tubule

epithelium (PTE). Under normal physiological conditions, the

apical surface of the PTE cells has obvious endocytosis and

exocytosis (Saito et al., 2010; Christensen et al., 2012). MG53-

mediated membrane repair plays a vital role in renal protection.

Membrane repair defects caused by MG53 deletion can increase

sensitivity to I/R-induced AKI, aggravate I/R-induced AKI, and

develop pathological renal phenotypes of interstitial cell damage

(Duann et al., 2015). Intravenous injection of rhMG53 before I/R

can effectively prevent the occurrence of AKI in the mouse model.

At the same time, rhMG53 was also shown to reduce cisplatin-

induced AKI without reducing its oncological efficacy. (Duann

et al., 2015). Previous studies have shown that the association of

rhMG53 with membrane destruction sites requires recognition of

lipid signals. MG53 can bind to phosphatidylserine (PS), usually

inside the plasma membrane, and may be exposed outside the

plasma membrane after injury (Weisleder et al., 2012). AKI caused

by I/R can lead to the exposure of phosphatidylserine on PTE cells,

which may be the anchoring mechanism of the rhMG53 repair

process (Duann et al., 2015). Therefore, targetingMG53 provides a

new therapeutic approach to preventing I/R-related AKI.

Effects of MG53 on hepatic I/R injury

Hepatic ischemia-reperfusion injury (HIRI) refers to the

pathophysiological process in which liver ischemia is further

aggravated when the blood flow is reperfused for a while. In

recent years, HIRI has attracted the attention of many researchers

because it often occurs in clinical settings, such as liver

transplantation, liver resection, hemorrhagic shock, and

trauma (Saidi and Kenari, 2014). With the development of

various liver operations, HIRI has become an essential factor

affecting the morbidity and mortality of the operation

(Serracino-Inglott et al., 2001). As a unique and crucial

immune organ of the human body, the liver contains various

kinds of cells, such as Kupffer cells (KCs), natural killer cells

(NK), natural killer cells (NKT), and dendritic cells (DC), which

not only play an immune role but also play a pivotal role in I/R

injury (Dong et al., 2007). Unlike I/R injury in other organs, there

are two types of HIRI, warm IRI and cold IRI (Ikeda et al., 1992;

Zhai et al., 2011). Warm IRI usually occurs when the normal

blood perfusion of liver tissue is blocked, such as prolonged

occlusion of blood flow during hepatectomy, shock, and trauma.

Warm IRI can be divided into two distinct phases. The early stage

typically occurs minutes to 6 hours after hepatic ischemia. It is

characterized by the rapid activation of Kupffer cells to generate

ROS, which induces oxidative stress and develops parenchymal

vascular damage. The initial stage of liver injury is relatively low

in extent, but it triggers a series of subsequent events. In the later

stages of warm IRI, neutrophils accumulate in the liver after

ischemia and directly damage hepatocytes through the

production of ROS and proteases, which finally leads to cell

death (Konishi and Lentsch, 2017). Cold IRI often occurs in liver

transplantation because the donated liver is preserved in a

hypothermic environment (Zhai et al., 2013). Two types of

HIRI trigger three types of cell death: necrosis, apoptosis, and

autophagy (Hu et al., 2021).

PTRF is indispensable in MG53-mediated membrane repair

(Zhu et al., 2011). Although PTRF is expressed in most organs, it

is not expressed in the liver (Zhou et al., 2015). Studies have

shown that dysferlin is closely related to MG53 in the liver, and

the C2A domain of dysferlin plays a key role (Matsuda et al.,

2012). The research of Yao et al. showed that MG53 could reduce

the damage of hepatocyte membrane induced by HIRI by

combining with dysferlin, which could reduce the oxidative

stress in HIRI and the death of hepatocytes. But the

experiment failed to prove whether other specific proteins

were interacting with MG53 in the liver (Yao et al., 2017).

Severe liver damage caused by HIRI manifest as increased

ALT and AST release. Administration of exogenous

rhMG53 reduces ALT and AST in the model (Yao et al.,

2017), which may be necessary for future clinical treatment of

HIRI. Whether MG53 participates in the inflammatory

mechanism of HIRI still needs more experiments to confirm.

Controversy over MG53

Metabolic syndrome is not a single disease but a combination

of cardiovascular disease risk factors, such as abdominal obesity,
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insulin resistance, hyperlipidemia, and hypertension, which

increase the risk of cardiovascular atherosclerotic disease and

type 2 diabetes (Kassi et al., 2011). Metabolic syndrome has

become a global problem and poses a significant health risk

(Saklayen, 2018). Research by Song and Wu et al. indicated that

MG53 might be a pathogenic factor of diabetes (Song et al., 2013;

Yi et al., 2013; Wang and Hill, 2015; Wu et al., 2019). The study

by Song et al. showed that the expression of MG53 in the insulin

resistance model was significantly increased, and the over-

expression of MG53 triggered insulin resistance and metabolic

syndrome. In contrast, ablating the MG53 did not produce the

symptoms described above (Song et al., 2013). In mechanism,

MG53, as an E3 ligase, performs ubiquitin-dependent

degradation of insulin receptor (IR) and insulin receptor

substrate (IRS1), leading to insulin resistance and metabolic

disorders. (Song et al., 2013). Wu et al. demonstrated that

high glucose or high insulin induced MG53 secretion in

isolated rodent hearts and skeletal muscles. In humans and

rodents with diabetes, increased glucose was accompanied by

increased circulating MG53 (Wu et al., 2019). Mechanistically,

MG53 binds to the extracellular structural domain of the insulin

receptor and inhibits insulin signaling (Wu et al., 2019). Liu et al.

proposed different mechanisms of MG53-mediated diabetes.

They found that overexpression of MG53 was sufficient to

induce systemic insulin resistance and impaired glucose

uptake by constructing MG53-overexpressed mice using an α
-myosin heavy chain (α-MHC) promoter (Liu et al., 2015a).

Mechanistically, in addition to MG53-induced dysregulation of

IR and IRS-1, it also blocks insulin signaling by upregulating

peroxisome proliferator-activated receptor-α (PPAR-α) levels,

resulting in cardiac lipid accumulation and, ultimately,

diabetic cardiomyopathy (Finck et al., 2003; Liu et al., 2015a).

However, another study differs from previous results;

compared with wild-type (WT) littermates, the circulating

MG53 in blood samples from diabetic mice was significantly

reduced (Wang et al., 2020). Wang et al. established two db/db

mouse models, one of which removedMG53 from the blood, and

the other continuously increased MG53 in the blood. As a result,

FIGURE 2
MG53 protects multiple organs from ischemia-reperfusion injury through blood circulation.
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the insulin signal and glucose treatment remained unchanged.

Treatment of MG53−/− mice with streptozotocin (STZ) leads to

abnormal glucose therapy, which indicates that MG53 might

have protective ß -cell function (Wang et al., 2020). The evidence

provided by Bian et al. shows that the continuously rising

circulating MG53 did not affect insulin signal and glucose

processing in mice, and it is safe for metabolism and heart

function (Bian et al., 2019). Research by Philouze et al.

showed that MG 53 was not a key regulator of skeletal muscle

insulin signaling pathway, and these findings were consistent

with the results of BIAN et al. (Philouze et al., 2021). Ma et al.

established a mouse model of metabolic syndrome to investigate

the effect on the activity of MG53. They found that the level of

circulating MG53 in mice fed with a high-fat diet decreased

significantly, but the expression of MG 53 in skeletal muscle and

myocardium remained unchanged (Ma et al., 2015). The

differences in these results have led to controversy over

MG53, which will require more studies to resolve.

The therapeutic potential of
recombinant human MG53

To find out whether rhMG53 can play a therapeutic role in heart

IRI, Liu et al. demonstrated by using several animal models that

administration of rhMG53 reduced infarct size after reperfusion (Liu

et al., 2015b). Wang et al. used rhMG53 to treat alkali-induced

corneal wounds and found that topical application of

rhMG53 significantly improved corneal wound healing in

diabetic mice. Compared with WT mice, the cornea of db/db

mice undergoes excessive revascularization after alkaline injury,

and the addition of rhMG53 alleviates the excessive

vascularization (Wang et al., 2020). Sepsis will lead to the down-

regulation of MG53 and PPARα. Supplementation of rhMG53 can

improve the survival rate and cardiac function, reduce oxidative

stress, diminish inflammation and decrease cardiomyocyte

apoptosis related to PPARα up-regulation (Han et al., 2020).

MG53 supplements can likewise protect the heart from

myocardial dysfunction caused by sepsis by up-regulating PPARα
expression (Han et al., 2020). As previously mentioned, multiple

articles support the value of rhMG53 in therapy, but the safety of

rhMG53 needs to be further assessed before its application. Repeated

intravenous administration of rhMG53 in rodents and dogs did not

produce adverse effects or alter rat blood metabolites (Weisleder

et al., 2012; Duann et al., 2015; Wang et al., 2020). These results will

help its potential clinical application.

Conclusion

Since I/R injury is a complex pathophysiological process, it can

affect multiple organs, such as the heart, brain, lung, kidney, and

liver. ATP depletion, ROS production, and elevated intracellular and

mitochondrial calcium (calcium overload) are all related to I/R, and

their clinical manifestations are diverse, which poses a severe

challenge for clinicians. MG53 is mainly expressed in skeletal

muscle and myocardium and also plays a unique role in other

organs (Figure 2), for example, in promoting the repair of the cell

membrane and activating the cardiac RISK pathway to mediate

cardiac IPC and PostC. Currently, almost all studies on the function

of MG53 are conducted in animal models. Further work is to

conduct clinically relevant studies. Although the mechanism

related to I/R injury still needs to be developed, we believe that

MG53 provides new ideas for exploring the treatment of I/R injury.
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