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The balance of ion concentrations inside and outside the cell is an essential

homeostatic mechanism in neurons and serves as the basis for a variety of

physiological activities. In the central nervous system, NKCC1 and KCC2,

members of the SLC12 cation-chloride co-transporter (CCC) family,

participate in physiological and pathophysiological processes by regulating

intracellular and extracellular chloride ion concentrations, which can further

regulate the GABAergic system. Over recent years, studies have shown that

NKCC1 and KCC2 are essential for themaintenance of Cl− homeostasis in neural

cells. NKCC1 transports Cl− into cells while KCC2 transports Cl− out of cells,

thereby regulating chloride balance and neuronal excitability. An imbalance of

NKCC1 and KCC2 after spinal cord injury will disrupt CI− homeostasis, resulting

in the transformation of GABA neurons from an inhibitory state into an

excitatory state, which subsequently alters the spinal cord neural network

and leads to conditions such as spasticity and neuropathic pain, among

others. Meanwhile, studies have shown that KCC2 is also an essential target

for motor function reconstruction after spinal cord injury. This review mainly

introduces the physiological structure and function of NKCC1 and KCC2 and

discusses their pathophysiological roles after spinal cord injury.
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Introduction

Spinal cord injury (SCI) is a commonly occurring disabling disease that can lead to

different degrees of impairment of motor, sensory, and autonomic functions in the

segment below the site of injury (McDonald and Sadowsky, 2002). Nearly onemillion new

spinal cord injuries occur annually worldwide, imposing a heavy burden on the families of
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patients and society as a whole (Cieza et al., 2021; GBD 2016

Neurology Collaborators, 2019a, GBD 2016 Traumatic Brain

Injury and Spinal Cord Injury, 2019b). After SCI, in addition to

damage to the motor and sensory pathways, injury to other

pathways and the adaptive changes in the damaged lower

segment result in profound changes in the microenvironment

of the spinal cord (O’Shea et al., 2017). Complications such as

spasticity and neuropathy can also seriously affect the mood,

sleep, quality of life, cognitive function, recreational activities,

and even the employment of patients, and can also dramatically

affect the recovery process (O’Shea et al., 2017; Finnerup, 2017).

Currently, the treatment of direct dysfunction and complications

caused by SCI is relatively limited, and the individual differences

are significant (Ahuja et al., 2017). A lack of a detailed

understanding of the physiological mechanism of spinal cord

regulation and the pathophysiological process occurring after

SCI injury greatly contributes to the scarcity of available

treatment options (McDonald and Sadowsky, 2002; Ahuja

et al., 2017).

Over recent years, potassium-chloride co-transporter 2

(KCC2) and sodium-potassium-chloride co-transporter 1

(NKCC1) have been increasingly recognized as playing

important roles after SCI (Kaila et al., 2014; Tang, 2020).

These two co-transporters proteins are known to exert critical

regulatory effects in the recovery from spasticity and neuropathic

pain as well as the restoration of motor function after SCI (Kaila

et al., 2014; Chen et al., 2018; Côme et al., 2020). This review

mainly introduces the physiological functions of KCC2 and

NKCC1 and the research progress on their roles in spasticity,

neuropathic pain, and motor function recovery following injury

to the spinal cord.

Overview of KCC2/NKCC1

Cation-chloride co-transporters (CCC) mediate the coupled

movement of Cl−, K+, and/or Na+ across the plasma membrane,

which underlies the regulation of intracellular Cl− concentrations

and plays an important role in neuronal excitability,

transepithelial salt and water movement, and the regulation of

cell volume (Xie et al., 2020; Zhang et al., 2021). There are two

main subfamilies of CCCs, namely, Na+ (K+)-coupled

transporters [NKCC1, NKCC2 and NCC (SLC12A1–3)] and

K+-coupled transporters [KCC1–4 (SLC12A4–7)] (Russell,

2000; Arroyo et al., 2013).

The structure and expression of KCC2

KCC2 is the major potassium concentration gradient-driven

K+-Cl− efflux co-transporter, functioning to reduce the

intracellular Cl− concentration, which is encoded by the solute

carrier family 12 member 5 (SLC12A5) gene and consists of

12 transmembrane domains (TMDs) and intracellular N and C

termini (Payne et al., 1996). In addition, KCC2 contains an

extracellular domain (ECD), formed by a large loop between

transmembrane helix 5 (TM5) and TM6, and a C-terminal

domain (CTD) immediately following TM12 (Payne, 2012;

Xie et al., 2020). The CTD regulates the expression, transport,

and activity of KCC2 via phosphorylation and

dephosphorylation (Lee et al., 2010). KCC2 has two

isoforms—KCC2a and KCC2b—that differ in their N termini

and are regulated by different promoters (Agez et al., 2017). Of

the two isoforms, the expression of KCC2a is relatively low,

KCC2b plays the major role in the mature cerebral cortex,

hippocampus, and cerebellum (Markkanen et al., 2014).

KCC2b expression is significantly up-regulated in the cerebral

cortex and cerebellum of rats within 1 week of birth, and can

account for 90% of the total KCC2 protein content in the cortex

in adulthood (Uvarov et al., 2009). However, in the spinal cord,

the two isoforms are expressed at similar levels, and have similar

but not completely overlapping distribution patterns in the

anterior and posterior spinal cords (Uvarov et al., 2009;

Markkanen et al., 2014). When KCC2 was knocked out, mice

developed generalized epilepsy and died shortly after birth from

severe motor and respiratory deficits (Hübner et al., 2001).

However, when the KCC2b isoform was selectively knocked

out, the mice survived for 3 weeks after birth (Woo et al.,

2002). The overexpression of KCC2a resulted in a significant

negative shift in γ-aminobutyric acid (GABA) reversal potential,

like that seen with KCC2b overexpression (Markkanen et al.,

2017). This suggested that the physiological function of the

KCC2a subtype is similar to that of KCC2b and can

compensate for its physiological function, at least to some extent.

The structure and expression of NKCC1

NKCCs belong to the CCC family and mediate the transport

of Na+, K+, and Cl− ions into cells. NKCC1 and NKCC2 are the

only two currently known NKCC family members (Haas and

Forbush, 2000). In humans, NKCC1 is encoded by the SLC12A2

gene located on chromosome 5q23 (Markadieu and Delpire,

2014). Like KCC2, NKCC1 also has 12 α-helical transmembrane

domains that are flanked by long non-hydrophobic domains at

the N and C termini. NKCC1 contains a total of 1,212 amino acid

residues and a relative molecular mass of 131.4 kDa (Gamba

et al., 1994; Markadieu andDelpire, 2014). The NKCC1 protein is

widely expressed in central and peripheral neurons, especially in

the cerebral cortex, striatum, hippocampal pyramidal cells, glial

cells, and spinal dorsal root ganglia (Pond et al., 2006; Pitcher

et al., 2007; Krystal et al., 2012). In general, NKCC1 expression is

much higher in glial cells than in neurons (Virtanen et al., 2020).

In addition, NKCC1 is widely distributed in cells of the

cardiovascular system, the outer plexiform layer of the distal

retina, and the skeletal muscle system (Jaggi et al., 2015).
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NKCC2 isoforms are only found in renal medullary regions,

loops, and periglomerular organs (Payne and Forbush, 1995). In

the early stages of mammalian development, the expression of

NKCC1 in the central nervous system is higher than that of

KCC2 (Medina et al., 2014). As development progresses, the

expression of NKCC1 gradually decreases, whereas that of

KCC2 gradually increases, resulting in a change in GABA

activity from depolarizing to hyperpolarizing (Ben-Ari, 2002;

Di Cristo et al., 2018).

The physiological function of KCC2 and
NKCC1

KCC2 is the primary Cl− export mechanism in mature

mammalian neurons, driving intracellular Cl− concentrations

below their electrochemical equilibrium potential, thereby

enhancing GABAA hyperpolarization and postsynaptic

inhibition levels (Coull et al., 2003; Kahle et al., 2014). In

contrast, NKCC1, expressed in afferent neurons, drives the

intracellular concentration of Cl− above its equilibrium

potential, thereby promoting primary afferent depolarization

and presynaptic inhibition, which is critical for gating sensory

information from the peripheral to the central nervous system

(Kahle et al., 2014; Kaila et al., 2014). The neurotransmitter

GABA mainly regulates neuronal excitability through GABA

type A receptors (GABAARs), which are ligand-gated Cl−

channels (Kahle et al., 2008). The effect of GABAARs on cell

function depends on the relative concentration of intracellular

Cl−, and the membrane potential is determined by intracellular

and extracellular Cl− concentrations and remains relatively

constant, when GABAAR channels open, the membrane

potential is pulled toward the Cl− equilibrium potential

(Chamma et al., 2012). In settings of low KCC2 and high

NKCC1 activity, such as in early development or in specific

neuropathic pain states, the Cl− influx mechanism overrides the

KCC2-mediated Cl− efflux, resulting in high intracellular Cl−

concentrations, and GABAAR activation results in depolarization

(Kahle et al., 2014; Tillman and Zhang, 2019). When

KCC2 activity is high and NKCC1 activity is low, such as in

healthy, mature neurons, KCC2-mediated efflux maintains a low

intracellular Cl− concentration, enabling GABAAR activation and

leading to neuronal hyperpolarization (Tillman and Zhang,

2019).

GABA is the primary inhibitory neurotransmitter in the

central nervous system of mature mammals, and its primary

role is the reduction of the excitability of neurons, and also

involved in regulating muscle tone through the modulation of

nerve impulses (Watanabe et al., 2002). These physiological roles

of GABA are exerted in an intracellular chloride concentration-

depend manner (Kaila et al., 2014; Chamma et al., 2012).

Meanwhile, it has been reported that GABAAR activity can

also affect the function of KCC2 (Heubl et al., 2017).

GABAAR activation can reduce the diffusion coefficient of

KCC2, thereby increasing its membrane concentration and

stability, while GABAAR blockers can increase the fluidity of

KCC2 as well as reduce its density, stability, and activity on the

surface of the cell membrane (Heubl et al., 2017). Moreover,

GABAAR blockers can also induce the phosphorylation of

NKCC1 through the STE20/SPS1-related proline/alanine-rich

kinase (SPAK) and oxidative stress-responsive kinase 1

(OSR1) pathway (Heubl et al., 2017). KCC2, NKCC1, and the

GABA system affect the activity of the nervous system under a

variety of physiological conditions, with intracellular Cl−

concentrations serving as the intermediate link.

In addition to their function as ion transporters, KCC2 and

NKCC1 also have cell-autonomous regulatory functions in the

central nervous system, including the regulation of GABAAR and

glycine receptor-mediated reversal potentials and anion currents

(Blaesse et al., 2009), as well as physiological functions such as the

regulation of cell volume, ion homeostasis, and growth (Olde

Engberink et al., 2018; Demian et al., 2019). Studies have shown

that the effects of NKCC1 and KCC2 on the regulation of cell

osmotic pressure and cell volume are mediated through their ion

transport functions (Chew et al., 2019). Meanwhile, KCC2 and

NKCC1 also act as synchronization factors during the

development of glutamatergic and GABAergic synapses in

cortical neurons and their networks (Di Cristo et al., 2018). In

addition, the importance of these two co-transporters in

GABAergic signaling renders them valuable targets for

nervous system drugs, such as those aimed at treating

neuropathic pain, spasm, epilepsy, and motor dysfunction,

among other conditions.

KCC2/NKCC1 and neurodevelopment

NKCC1 and KCC2 jointly regulate Cl− homeostasis in

neurons and thus affect the function of the GABAergic system

(Côme et al., 2020). In the early stages of development, because

the expression level of KCC2 is relatively low and that of

NKCC1 relatively high, intracellular Cl− concentrations

remain at a relatively high level (Medina et al., 2014). Under

this condition, the GABAAR can play an excitatory role by

extruding Cl− from the cell (Medina et al., 2014). As the

nervous system develops and matures, the concomitant

increase in the expression of KCC2 results in a gradual

reduction in the intracellular Cl− concentration, and the

function of the GABAAR changes accordingly, which

promotes Cl− influx, thereby exerting an inhibitory role

(Côme et al., 2019). It has been demonstrated that if the

spinal cord is transected during development, the expression

of KCC2 is not up-regulated, and the transition of GABA

function does not occur (Jean-Xavier et al., 2006). This

suggests that the transition of GABA function from

depolarizing to hyperpolarizing is related to the maturation of
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relevant spinal cord pathways. Notably, although it is generally

assumed that NKCC1 is downregulated and KCC2 up-regulated

during neuronal development, some existing data do not support

this generalization (Blaesse et al., 2009). For instance, it cannot be

excluded that a relatively small pool of NKCC1 protein in the

plasma membrane of immature neurons may be sufficient to

exert a dominant effect on the GABA system (Löscher et al.,

2013). Additionally, the marked upregulation of KCC2 during

development may be accompanied by a substantial increase in

ionic conductivity and neuronal growth, which can mask the

effect of NKCC1, even if the expression of the latter remains

unchanged (Loscher et al., 2013). The transition of GABA

function is related to the phosphorylation of serine 940 (Ser-

940, S940), an important site for KCC2 activation (Leonzino

et al., 2016). In parallel to the up-regulating signaling pathways,

there are two threonine residues, Thr-906 and Thr-1007, on the

intracellular C-terminal domain of KCC2 that strongly decrease

KCC2 activity when phosphorylated (Schulte et al., 2018).

Specifically blocking the function of KCC2 can induce a

polarity change in GABAergic responses from inhibitory to

excitatory. During development, With-No-Lysine kinase 1

(WNK1) -dependent regulation of KCC2 and

NKCC1 phosphorylation levels is also an essential basis for

the functional transformation of GABA (Gagnon and Delpire,

2010; Lee et al., 2011). WNK is mainly affected by intracellular

Cl− concentration and may play a regulatory role on KCC2 and

NKCC1 through the oxidative stress-responsive gene 1/Ste20-

related proline-alanine-rich kinase (OSR1/SPAK) pathway

(Friedel et al., 2015). Combined, these findings suggest that

the KCC2 and NKCC1 functions may play a critical role in

the change of GABA function during development (Olde

Engberink et al., 2018).

NMDA receptor (N-methyl-D-aspartic acid receptor) is a

subtype of ionic glutamate receptor; its role in neuroplasticity

and excitotoxicity has received increasing attention (Vyklicky

et al., 2014). In vitro and in vivo studies revealed that NMDA

receptor activity-mediated protein phosphatase 1 (PP1) can

inhibit the function of NKCC1 and upstream factors by

regulating their dephosphorylation (Gagnon and Delpire,

2010), and the dynamic balance between PP1-dependent

dephosphorylation of SER940 at the key site of KCC2 and

regulation of protein kinase C (PKC) is an important basis for

KCC2 to ensure physiological functions (Lee et al., 2011).

Growth factors play an indispensable role in the construction

of neural networks during neural development and regeneration.

For instance, brain-derived neurotrophic factor (BDNF) is a key

FIGURE 1
Schematic diagram of NKCC1, KCC2, GABAARs, and chloride ion homeostasis in spinal cord neurons under normal conditions and after spinal
cord injury. In the mature, healthy spinal cord, the expression of NKCC1 and KCC2 is relatively balanced (top panel). Under this condition, the
intracellular chloride ion level is low. GABAARs can play an inhibitory role by transporting chloride ions into cells. When spinal cord injury occurs
(bottom panel), the expression of NKCC1 and KCC2 in the segment below the injury is dysregulated under the action of various factors, leading
to high intracellular chloride ion levels. In this case, the GABAARs can play an inhibitory role by excluding chloride ions from cells.
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regulator of axon growth, synapse formation, intersynaptic signal

transmission, and synaptic plasticity (Wardle and Poo, 2003;

Garraway and Huie, 2016; Lee-Hotta et al., 2019). The activation

of BDNF affects the levels of intracellular Cl−, which, in turn,

affects the function of GABA receptors in various physiological

processes in the central nervous system (Zhou et al., 2021). The

downstream signaling of Tyrosine Kinase receptor B (TrkB), a

major receptor for BDNF, mainly involves 1) Mitogen-activated

protein kinases/extracellular regulated kinase (MAPK/ERK)

(Uvarov et al., 2006; Revest et al., 2014); 2) Extracellular

regulated kinase/Early Growth Response 4 (ERK/Egr4)

(Ludwig et al., 2011a; Ludwig et al., 2011b); and 3)

Phospholipase C gamma (PLCγ)/FRS-2 (Rivera et al., 2004)

(as shown in Figure 2). Among these three downstream

signaling pathways, Egr4 is a transcription factor on the

promoter of KCC2, which may lead to the upregulation of

KCC2 mRNA after its translation and expression (Ludwig

et al., 2011a; Ludwig et al., 2011b). Activation of PLCγ seems

to be the key to the regulation of KCC2 by the BDNF-TrkB

pathway. When PLCγ increases, BDNF inhibits

KCC2 expression, while the opposite effect occurs when PLCγ
activation is depressed. After SCI, the PLCγ cascade of the

BDNF-TrkB pathway is enhanced, thereby repressing

KCC2 mRNA transcription (Rivera et al., 2004; Tashiro et al.,

2015).

BDNF is a crucial regulator of KCC2.In mature neurons, the

effect of BDNF on KCC2 is inhibited. However, after SCI, the

effect of BDNF on KCC2 turns into upregulated. It is may be

caused due to a reversal way that BDNF affects KCC2

(Boulenguez et al., 2010). Previous studies have shown that

exercise therapy such as treadmill training may endogenously

increase the activation of the BDNF-TrkB pathway on injured

neurons. Then, activating downstream signaling pathways and

regulating KCC2/NKCC1 expression, and effectively improve the

FIGURE 2
Summary of NKCC1 and KCC2 regulatory pathways in the spinal cord and related pathways. (A) The molecular formulae of commonly used
KCC2 activators and inhibitors. (B) Exercise training. (C) Molecular formula of the NKCC1 inhibitor bumetanide. (D) Brain origin of 5-HT and
GABAergic systems. (E) Schematic diagram of the relationship between KCC2/NKCC1 and upstream factors, channels, and pathways in spinal cord.
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spasticity and pain after SCI (Tashiro et al., 2015). And this effect

can be inhibited by the BDNF blocker TrkB-IgG, suggesting that

activation of BDNF is critical to relief from spasticity and pain

symptom after SCI (Bilchak et al., 2021).

Thus, BDNF may play opposing roles in the intact, mature

nervous system and the injured, immature nervous system

(Huang et al., 2017). There is currently no strong evidence

indicating that BDNF directly affects NKCC1 expression. How

to further explore this dual role of BDNF and apply it to

rehabilitation after SCI requires further investigation.

In conclusion, as shown in Figures 1, 2, the regulatory effect

of BDNF on the KCC2 and GABAergic systems differs according

to the developmental stage and physiological condition (Tashiro

et al., 2015; Heubl et al., 2017; Ma et al., 2021). In the mature

nervous system, the expression level of KCC2 is high, and GABA

can reduce the excitability of the system (Heubl et al., 2017).

Under this condition, exogenous BDNF application will

downregulate the expression of KCC2 (Huang et al., 2017).

However, when the nervous system is immature or SCI

occurs, the expression level of KCC2 is low, and GABA plays

an excitatory role. Here, BDNF application will increase the

expression level of KCC2 and restore the inhibitory effect

of GABA.

KCC2/NKCC1 and spinal cord injury

After SCI, the segment below the site of injury presents a state

similar to that seen in the early stages of development (Huang

et al., 2017). KCC2 and NKCC1 are reportedly involved in the

pathophysiology of SCI, including the appearance of spasticity

and neuropathic pain, through a variety of pathways (Boulenguez

et al., 2010; Hasbargen et al., 2010). Damage to the descending

serotonin (5-HT) fibers after SCI is closely related to the

transformation of GABAergic interneuron function and

KCC2/NKCC1 may be the common link between the two

regulatory imbalances after SCI (Huang and Grau, 2018;

Sánchez-Brualla et al., 2018; Tang, 2020). BDNF can also

directly participate in this process upstream of KCC2/NKCC1

(Garraway and Huie, 2016; Ma et al., 2021). The treatment of SCI

by directly or indirectly regulating KCC2/NKCC1 activity

represents a potential strategy for the treatment of SCI, as

summarized in Table1 and Figure 2.

KCC2/NKCC1 and neuropathic pain after
spinal cord injury

Neuropathic pain is a common complication after SCI and

occurs in approximately 60%–80% of affected patients (Finnerup

et al., 2001). Neuropathic pain has a severe social and

psychological impact on patients with SCI, and is closely

related to their poor overall health, poor quality of life, and

high levels of depression (Anderson, 2004; Widerström-Noga,

2017). Pain after SCI is challenging to manage. Approximately

2/3 of the patients do not have a suitable treatment plan,

especially for severe neuropathic pain. The latter is a strong

predictor of a decline in quality of life after SCI, imposing a heavy

burden on both families and society (Burke et al., 2017). Owing to

the heterogeneity of etiology, differences in genetic susceptibility,

and differences in environmental factors, it is difficult to predict

which patients will have neuropathic pain and how patients will

respond to specific therapeutic drugs (Kahle et al., 2014). The

incomplete understanding of the molecular mechanism

underlying neuropathic pain hinders the development of

targeted interventions, which underscores the need to identify

and develop novel therapeutic strategies for the treatment of this

condition, particularly at the molecular level (Shiao and Lee-

Kubli, 2018). The KCC2-/NKCC1- mediated regulation of

chloride homeostasis has potential as a molecular target for

the treatment of neuropathic pain after SCI (Cramer et al., 2008).

Changes in the levels of KCC2 and NKCC1, key factors in the

maintenance of Cl− homeostasis, have been implicated in the

process of neuropathic pain after SCI (as shown in Figure 1)

(Hasbargen et al., 2010; Fakhri et al., 2021). The expression of

KCC2 was reported to be downregulated at the site of injury,

accompanied by a transient and significant upregulation of

NKCC1 expression, and this altered expression trend was

consistent with the occurrence of post-neuropathic pain

(Cramer et al., 2008). In addition, studies have found that the

shift in NKCC1 and KCC2 expression in the spinal cord is also an

important intermediate link in the development of neuropathic

pain resulting from peripheral nerve injury (Coull et al., 2003;

Mòdol et al., 2014; López-Álvarez et al., 2015).

GABAARs are involved in the regulation of the tonic-

inhibitory effect in the dorsal horn of the spinal cord,

maintaining the relative balance of inhibitory and excitatory

systems in the central nervous network (Sivilotti and Woolf,

1994). After SCI, the function of GABAARs also changes to some

extent, and their activation can produce depolarizing (excitatory)

effects as well as promote the emergence of nociceptive

sensitization (Huang and Grau, 2018). Pain sensitivity is

reduced in rats with SCI when they are pretreated with

GABAAR antagonists before the induction of SCI (Cramer

et al., 2008). Similar treatments increase the sensitivity to

nociceptive responses in healthy rats (Sorkin et al., 1998).

Applying the GABAAR agonist muscimol to the spinal cord

prevents thermal hyperalgesia after peripheral nerve injury

(Miletic et al., 2003). Transplantation of GABAergic neuron

precursors into the dorsal horn also reduces neuropathic pain

(Bráz et al., 2012). However, existing GABAAR modulators, such

as benzodiazepines or GABAAR agonists, are rarely used to treat

neuropathic pain because of their narrow therapeutic window

and associated adverse effects, such as sedation and hearing

impairment (Kahle et al., 2014). Therefore, correcting the

abnormal Cl− concentration gradient in the dorsal horn of the
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TABLE 1 Summary of animal experiments related to the regulation of KCC2 and NKCC1 after spinal cord injury.

Ref Experimental
animals

Experimental models Treatment Main outcome

Boulenguez et al.
(2010)

• Adult Wistar rats,
female

• adult heterozygous
mice (Slc12a5+/−,
males)

• Spinal thoracic
transection and contusion
injury at T9

• DIOA • i.t. 20 µg • The expression of KCC2 in
lumbar motoneurons is reduced
after SCI

• BDNF • i.t. 10 µg • Blocking KCC2 decreases the
excitability of the network

Bilchak et al.
(2021)

• Adult female
Sprague Dawley rats

• Spinal cord transection
at T12

• CLP257 • injecting on the lumbar
enlargement of the spinal
cord

• Increasing KCC2 activity has a
beneficial effect on spasticity
after SCI

• VU0240551 • injecting on the lumbar
enlargement of the spinal
cord

• Enhancing KCC2 can decrease
hyperreflexia after chronic SCI

• bike-trained • Beginning 4–5 days post-
injury, 20 min, 5 days/
week

• CLP257 increases the expression
of KCC2 in lumbar motoneurons

Côté et al. (2014) • Sprague Dawey Rat • spinal cord transection
at T12

• Exercise • Beginning on days
4–5,60 min/day,5 days/
week, until 14/28 days
after SCI

• Exercise restores chloride
homeostasis after SCI

• DIOA • exposed lumbar
enlargement,30 mM

• A decrease in NKCC1 levels and
an increase in KCC2 levels lead to
reflex recovery after SCI

• Bumetanide • i.p. 30 mg/kg • The GABAergic system is
modulated by KCC2 and NKCC1

Bos et al. (2013) Newborn rats • Vitro: sacral segments up
to T8–T9 and
L3–L5 dorsal and ventral
roots

• DOI • 10 μM • Active 5HT2R restores chloride
homeostasis after SCI via Ca2+

dependent PKC

• Ketanserin • 10 μM • Active 5HT2AR reduces
spasticity after SCI

Hb9::eGFP transgenic
mice

• TCB-2 modulates chloride
homeostasis and increases
postsynaptic inhibition

• TCB-2 • 0.1 μM, 10 μM

• VU0240551 • 25 μM • 5HT2AR and 5HT2B/2 C R have
opposing effects on the
KCC2 function

Chen et al. (2018) • Adult female WT
mice at the age of
8 weeks

• T7 and T10 double lateral
hemisection

• T8 full transection

• Quipazine, 8-
OH-DPAT,

• intraperitoneal injection • KCC2 expression in inhibitory
neurons leads to functional
recovery

• Baclofen, • Restoring inhibition in the spinal
cord after SCI leads to functional
recovery• CP101606,

• CLP290, • Reducing the excitability of
spinal cord inhibitory
interneurons enhances the
responsiveness of injured spinal
cords to descending inputs and
promotes functional recovery
after SCI

• L838,417,

• Bumetanide
saline

• Adult female WT
mice at the age of 8
weeks

• Vgat-Cre mice
• Vglut2-Cre mice
• ChAT-Cre mice

• T7 and T10 double lateral
hemisection

• T8 full transection

• AAV2/PHP.B-
Syn-HA-KCC2

• tail vein injection, 200 ul •
Lumbar intraspinal
injection (L2-4), 0.5-
1x1013 copies/ml• AAV2/9-Syn-

HA-KCC2
• A KCC2 agonist restores the

stepping ability paralyzed mice
with SCI

(Continued on following page)
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TABLE 1 (Continued) Summary of animal experiments related to the regulation of KCC2 and NKCC1 after spinal cord injury.

Ref Experimental
animals

Experimental models Treatment Main outcome

• AAV2/9-Syn-
FLEX-HA-
KCC2

• AAV2/9-Syn-
FLEX-hM4Di-
mCherry

• AAV2/9-Syn-
FLEX-hM3Dq-
mCherry

Sánchez-Brualla
et al. (2018)

• Adult female Wistar
rats (230 ± 30 g)

• SCI model: a left
hemisection at the
thoracic T8

• SNI model: on the right
hindlimb

• TCB-2
• DIOA

• teatment1:i.p. injection of
TCB-2 (0.3 mg/kg) on
post-operative day
21 and 14

• TCB-2 actives 5HT2AR by
increasing the membrane
expression of KCC2 in the dorsal
horn, thereby alleviating
neuropathic pain after spinal
cord hemisection• treatment2:intrathecal

DIOA injection 20 min
before TCB-2 treatment

• treatment3:TCB-2
(0.3 mg/kg), i.p. daily for
7 days

Tashiro et al.
(2015)

• Female Sprague-
Dawley rats
(8–9 weeks)

• T10 laminectomy, 200 Kd
contusive injury

• TrkB-IgG • i.t. 3 µg/day for 2 weeks • Treadmill training can alleviate
spasticity and allodynia by
increasing the expression of
BDNF in the lumbar enlargement

• treadmill
training

• Increasing endogenous BDNF
levels by treadmill training
increases the expression of KCC2

• CLP257 • 7 days/week for
2 consecutive weeks, speed
is 2.5–3.5 cm/s

• Restoring the level of
KCC2 contributes to the
amelioration of spasticity and
allodynia

• VU0240551

Liabeuf et al.
(2017)

• Adult female Wistar
rats

• spinal cord transection
at T8

• PCPZ • i.v. 10 μg/kg • Phenothiazine piperazine
derivatives
upregulate KCC2 function

• baclofen • i.v. 2 mg/kg • PCPZ enhances inhibition and
decreases spasticity after SCI by
modulating the expression of
KCC2

• DIOA • i.t. 40 µg • PCPZ plays the same role as
baclofen in reducing spasticity

Beverungen et al.
(2020)

• Adult female
Sprague-Dawley rats

• Completely thoracic
transection injury at T12

• VU0240551 • 50 mM • Decreasing spinal
hyperexcitability and spasticity
requires the activity of KCC2

• TrkB-IgG • Decreasing the activity of BDNF
alleviates spinal hyperexcitability
and spasticity

• bicycling
session

• Beginning on day 5,
60 min/day

• BDNF signaling is required for
increasing the expression of
KCC2 after SCI

• NKCC1 and KCC2 protein levels
are reciprocally regulated

Liao et al. (2022) • Adult male Sprague
Dawley (SD) rats

• spinal cord transection
at T10

•LIFU • 4 weeks • LIFU treatment decreases
spasticity

• LIFU activates spinal
neurocircuits

(Continued on following page)

Frontiers in Physiology frontiersin.org08

Talifu et al. 10.3389/fphys.2022.1045520

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1045520


TABLE 1 (Continued) Summary of animal experiments related to the regulation of KCC2 and NKCC1 after spinal cord injury.

Ref Experimental
animals

Experimental models Treatment Main outcome

• LIFU treatment upregulates the
expression of KCC2 after SCI

Huang et al.
(2017)

• Male Sprague-
Dawley rats

• Spinally transected and
cannulized at T2

• Bicuculline • i.t. 0.3 μg • Increasing the activation of the
GABAAR maintains the
capsaicin-induced EMR and
modulates central sensitization

• LSP • i.t. 100 μg • GABAergic neurons maintain
central sensitization after SCI

• Gabazine • i.t. 0.0 μg/0.001 μg/0.01 μg • Spinal transection reduces the
expression of KCC2

• DIOA • i.t. 20 μg • GABA function can be altered by
reducing the concentration of
membrane-bound KCC2

• bumetanide • i.t. 1 mM

Ma et al. (2021) • Adult male
Kunming mice

• SNI by transected a
2–3 mm portion of the
tibial and common
peroneal nerves were

• BDNF • i.t., 0.5 μg • KCC2 expression in the spinal
cord dorsal horn can be
decreased by BDNF via inducing
KCC2 ubiquitination

• The knockdown of Cbl-b
expression decreases
KCC2 ubiquitination levels and
attenuates BDNF-induced pain
hypersensitivity

Plantier et al.
(2019)

• Neonatal rats within
the first 12 h after
birth

• Spinal cord transection at
the T8-T9

• MDL28170 • i.p., 60 mg/kg or
120 mg/kg

• Calpain regulates INaP and
KCC2 in neonatal rat lumbar
motoneurons

• Acute inhibition of calpains
restores the motoneuronal
expression of Nav and KCC2,
normalizes INaP and
KCC2 function, and curtails
spasticity

• The calpain-mediated proteolysis
of Nav and KCC2 leads to
spasticity after SCI by driving the
hyperexcitability of motoneurons

Li et al. (2022) • Female adult
Sprague–Dawley
rats

• Incomplete SCI at T10 • TrkB-IgG • 0.25 g/l • Exercise training reduces the
excitability of motoneurons and
boosts the production of GAD-
65, GAD-67, and KCC2 after SCI
via TrkB signaling

• BWSTT • From the 8th day after SCI,
6 m/min for 20 min per
session, twice a day, 5 days
a week, for 4 weeks

Allen et al. (2019) • Adult male Lewis
rats

• Unilateral cervical spinal
cord contusion (C2SC)

• NKCC1 and KCC2 are present
on phrenic motor neurons and
may respond with transient
dysregulation after spinal injury

Huang et al.
(2017)

• Male Sprague-
Dawley rats

• Spinal transections at T2 • BDNF • i.t., 0.4 μg, 10 μl vol • SCI changes how BDNF affects
the expression of KCC2 and the
function of GABA

• capsaicin • subcutaneous injections,
50 μl vol

• BDNF plays an essential role in
blocking the development of
spinally mediated nociceptive
sensitization but does not
reverse EMR

(Continued on following page)
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spinal cord by targeting KCC2 and NKCC1 represents a

promising therapeutic direction for restoring the inhibitory

function of the GABAergic system and ultimately relieving or

improving neuropathic pain.

The role of BDNF in neuropathic pain after SCI has also

been intensively studied given that it functions upstream of

KCC2. Inflammation or nerve injury can inhibit the expression

and function of KCC2 in the dorsal horn of the spinal cord

through the BDNF/TrkB signaling pathway and promote the

occurrence and development of neuropathic pain (Rivera et al.,

2002; Miletic and Miletic, 2008). Promoting BDNF expression

in normal adult rats can downregulate the level of membrane-

bound KCC2 and reduce the inhibitory effect of the

GABAergic system (Huang et al., 2017). Meanwhile,

promoting BDNF expression in rats with transected spinal

cords can enhance the originally attenuated GABAergic

inhibitory effect, which, in turn, can increase the expression

of KCC2 and relieve hyperalgesia, which may associate with

BDNF-/TRKB-induced upregulation of KCC2 expression

(Wenner, 2014; Huang et al., 2017; Sanchez-Brualla et al.,

2018). In a rat model of neuropathic pain, the

administration of neuroheal was found to alter the sensory

signal input of the dorsal root ganglia through the P2X4-

BDNF-KCC2 pathway, thereby reducing neuropathic pain

(Romeo-Guitart and Casas, 2020). Moreover, it has been

reported that the effect of BDNF on pain may be mediated

via the regulation of the ubiquitination level of KCC2 in the

posterior horn of the spinal cord (Ma et al., 2021).

TABLE 1 (Continued) Summary of animal experiments related to the regulation of KCC2 and NKCC1 after spinal cord injury.

Ref Experimental
animals

Experimental models Treatment Main outcome

• SCI leads to an increase in ERK/
pERK expression while BDNF
lowers the expression of ERK/
pERK

Yan et al. (2018) • Adult female (8-
week old) Sprague-
Dawley (SD) rats

• Acute SCI at T12 • TGN-020 • intra-peritoneally
injection 200 mg/kg

• Decreasing the expression of
AQP4 and NKCC1 can reduce
spinal cord edema and neuronal
loss after SCI• Bumetanide • intra-peritoneally

injection 3 mg/kg

Lee et al. (2011) • Adult male Sprague-
Dawley rats

• Contusive SCI at T9 • During acute and chronic phases
following SCI, the
phosphorylation of NKCC1 and
WNK1 undergoes a sustained
increase

Mòdol et al.
(2014)

• Adult male Sprague-
Dawley rats

• Right sciatic nerve lesion • Bumetanide • Intraperitoneal injection
daily, 30 mg/kg, from 1 to
16 dpi

• Changes in NKCC1 and KCC2 in
DRG, spinal cord, and central
pain areas contribute to the
development of neuropathic pain

Mekhael et al.
(2019)

• Adult female CD-1
mice

• SCI at T13 • TNF-α • Lumbar intrathecal
injection, 200 ng

• The upregulation of NKCC1 in
mice leads to spasticity

• MG-132 • Lumbar intrathecal
injection, 375 ng

• a-tsDCS treatment can lead to a
long-lasting reduction in
spasticity following SCI via the
downregulation of NKCC1• a-tsDCS • 1.5 mA,20-min/day,

7 days

López-Álvarez
et al. (2015)

• Adult female
Sprague-Dawley rats

• Right sciatic nerve lesion • iTR session • 1-h running, starting at
10 cm/s, increasing 2 cm/s
every 5 min, until a
maximal speed of 32 cm/s

• iTR normalizes the expression of
NKCC1 and boosts that of KCC2

• iTR reduces microgliosis in the
L3–L5 dorsal horn

• iTR increases BDNF expression
in microglia 1–2 weeks post-
injury

• iTR prevents neuropathic pain by
blocking collateral sprouting and
NKCC1/KCC2 dysregulation

SCI, spinal cord injury; SNI, spated nerve injury; DIOA, (dihydroindenyl) oxy] alkanoic aci; BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin-receptor-kinase-B; Cbl-b, Casitas

B-lineage lymphoma b; PLCγ, Phospholipase C-γ; LSP, lipopolysaccharide; BWSTT, Body weight-supported treadmill training; a-tsDCS, anodal-sDCS; iTR, session,increasing-intensity

treadmill exercise; i.t., intrathecal injection; i.p., intraperitoneal injection; LIFU, Low-intensity focused ultrasound.
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In addition to impaired motor and sensory pathways, 5-HT

axons originating from the brainstem are often also impaired in

function and display reduced receptor expression after SCI,

leading to neural circuit reorganization (Khalki et al., 2018).

Damaged 5-HT neurons also play a part in the process of chronic

pain, spasms, and autonomic hyperreflexia after SCI (Fauss et al.,

2022). The 5HT2A/2B/2C-specific agonist DOI can restore chloride

homeostasis through the Ca2+-dependent PKC pathway (Bos

et al., 2013). Meanwhile, specific activators of the 5-HT2A

receptor can exert an analgesic effect by enhancing the

expression of KCC2 in spinal dorsal peduncle neurons

(Sánchez-Brualla et al., 2018).

Transient receptor potential vanilloid 1 (TRPV1) is an

important protein in the perception of pain (Takayama et al.,

2015) and its expression in the dorsal horn of the spinal cord is an

essential link in the emergence of neuropathic pain after SCI (Wu

et al., 2013; Lee et al., 2021). The regulation of NKCC1 expression

mediated by TRPV1 through the activation of the PKC/

phosphorylated extracellular signal-regulated kinase (pERK)

signaling pathway may be the mechanism underlying its

involvement in SCI-related neuropathic pain (Deng et al., 2021).

KCC2/NKCC1 and spasticity after spinal
cord injury

The plasticity of nerves after SCI not only engenders

beneficial changes in structure and function in the spinal cord

but also leads to the appearance of spasticity, which occurs in

approximately 60%–80% of affected patients (Finnerup, 2017).

Spasticity after SCI can also lead to chronic pain and deformity of

the musculoskeletal system, which subsequently affect the mood,

sleep, quality of life, cognitive function, and recreational activities

of patients, and can also greatly affect their rehabilitation

(Andresen et al., 2016; Holtz et al., 2017). Common

treatments for spasticity include drugs such as baclofen,

chemical neurolysis, botulinum toxin injection, surgery, and

electrical stimulation, all of which have drawbacks and

differences in efficacy (Walter et al., 2002; Elbasiouny et al.,

2010). Spasticity after SCI may share some afferent pathways

with neuropathic pain; however, owing to differences in

symptoms, studies on neuropathic pain focus more on

sensory neurons in the superficial dorsal horn of the spinal

cord, while investigations relating to spasticity focus more on

motor neurons in the anterior horn. Therefore, its chloride

homeostasis is mainly regulated by KCC2 (Côté, 2020).

Disruption of chloride homeostasis after SCI, especially the

downregulation of KCC2 in motor neuron membranes,

depolarizes the Cl− equilibrium potential and reduces the

strength of postsynaptic inhibition (Boulenguez et al., 2010). In

healthy rats, pharmacological blockade of KCC2 can reduce the rate-

dependent inhibition of the Hoffman reflex (rate-dependent

depression, RDD) and produce spasticity like that seen in rats

with SCI. Improvements in spasticity-like symptoms have also

been reported (Boulenguez et al., 2010). When a KCC2 activator

was administered to rats with spinal cord lesions, it was found that

the expression of KCC2 was up-regulated in the membranes of

motor neurons of the lumbar enlargement, and the spasticity

symptoms were alleviated (Bilchak et al., 2021). Body Weight-

Supported Treadmill training can also up-regulate KCC2 through

the trkB pathway, regulating spinal cord excitability and reducing

spasticity (Li et al., 2022). Additionally, (Mekhael et al., 2019),

reported that transspinal direct current stimulation in injured

mice can reduce spasticity and promote motor function recovery,

and that this effect may be related to the downregulation of NKCC1,

but not the upregulation of KCC2.

An increase in BDNF expression through exercise followed

by the remodeling of KCC2 function was found to be an effective

means of improving spasticity symptoms after SCI (Tashiro et al.,

2015; Côté et al., 2014; Beverungen et al., 2020). The

overexpression of the neurotrophic factors Neurotrofin-3 (NT-

3), and Insulin-like growth factor 1 (IGF-1) has also been

suggested as a treatment for spasticity after SCI, and their

efficacy was speculated to be related to the functional

remodeling of KCC2 (Chang et al., 2019; Talifu et al., 2022).

In contrast to that found in the neuropathic pain model after SCI,

Ryu et al. reported that an increase in the levels of 5-HT2A after

SCI did not significantly affect spasticity symptoms or

KCC2 expression in motor neurons (Ryu et al., 2021).

When TCB-2 is used to specifically activate the 5-HT2A receptor,

it can also be stabilized by KCC2-mediated chloride ion, relieving

spasticity after SCI (Bos et al., 2013). Although the downregulation of

KCC2 begins within 24 h after SCI, spasticity only appear weeks or

even months later, possibly because of the presence of persistent

inward currents (PICs), PICs require prolonged depolarization to be

fully activated and are inhibited by hyperpolarization (Li et al., 2004;

Bras and Liabeuf, 2021). The depolarization of excitatory

postsynaptic potentials (EPSPs) following KCC2 downregulation

may allow sensory input-evoked depolarization to activate PICs

and these may fail to inactivate owing to the inability to

hyperpolarize, which ultimately induces spasticity (Li et al., 2004;

Bras and Liabeuf, 2021). In a neonatal rat model of SCI, it was also

found that calpain can up-regulate the sustained sodium ion current

in motor neurons and downregulate KCC2 expression after SCI,

resulting in the appearance of spasticity (Plantier et al., 2019).

Combined, these observations suggest that the downregulation of

KCC2 and the upregulation of PICsmay play a synergistic role in the

pathophysiology of spasticity.

In brief, the downregulation of KCC2 expression below the

injury site after SCI, especially in motor neuron membranes, can

depolarize the intracellular membrane potential and exert excitatory

effects, and may represent an important component in the

occurrence of spasticity (Boulenguez et al., 2010; Bilchak et al.,

2021). BDNF, exercise training, or regulation of neurotrophic factor

levels can improve spasticity by promoting KCC2 expression

(Tashiro et al., 2015; Ma et al., 2021; Talifu et al., 2022).
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KCC2 andmotor function after spinal cord
injury

Substantial evidence supports the use of exercise training in

current rehabilitation regimes for the functional recovery of

spinal cord injuries (Harvey, 2016). The restoration of

chloride homeostasis mediated by NKCC1 and KCC2 may be

an important physiological basis for the associated improvement

in spinal cord functions (Côté et al., 2014).

The regulation of KCC2 has a unique role in the recovery of

motor function after SCI, making this co-transporters an important

target for motor reconstruction in the spinal cord following injury

(Chen et al., 2018). The administration of the KCC2-specific

activator CLP290 could significantly restore the coordinated step

function ofmice that had completely lost descending control; similar

functional recovery was also achieved by adeno-associated virus-

mediated overexpression of KCC2 (Chen et al., 2018). However, the

authors also indicated that KCC2 promotes the recovery of motor

function, but in amanner different from that involved in the relief of

spasticity and neuropathic pain, that is, promoting the expression of

KCC2 in inhibitory interneurons is the key to the reconstruction of

motor function (Chen et al., 2018). Increased KCC2 expression can

also be achieved by overexpressing BDNF; however, this approach

may have complications, such as spasticity, resulting from motor

neuron hyperexcitation (Ziemlińska et al., 2014). The positive and

quantitative regulation of KCC2 to promote the recovery of motor

function may become the focus of research for SCI rehabilitation.

At present, there is no convincing evidence regarding the

existence of a relationship between NKCC1 expression and

motor function after SCI. In animal models of brain injury,

the long-term administration of the NKCC1-specific inhibitor

bumetanide in rats can enhance axonal bud growth after focal

cerebral ischemia. In addition, bumetanide treatment can up-

regulate KCC2 and BDNF levels, downregulate those of NKCC1,

and improve exercise-related behavior in rats after stroke (Mu

et al., 2017). Another report also showed that bumetanide

improves sensory and motor recovery after traumatic brain

injury (Zhang et al., 2017). The results of these studies

suggested that in animal models of traumatic SCI, the

downregulation of NKCC1 levels may also have the potential

to improve neurological outcomes, although this effect may be

achieved indirectly through the modulation of chloride

homeostasis. Endogenous serotonin levels may also affect the

alternate movement pattern of lower limbs by affecting chloride

ion homeostasis and the GABAergic system, which is also a

potential target for motor reconstruction after SCI (Tang, 2020).

Conclusion

Numerous basic studies have confirmed the notable

therapeutic potential of NKCC1 and KCC2 in neuropathic

pain, spasticity, and motor function recovery after SCI, and

these co-transporters are expected to become key targets in

future SCI treatment (Boulenguez et al., 2010; Chen et al., 2018).

To achieve this, key pathways are blocked/activated by

pharmacological means, such as the P2X4-BDNF-

KCC2 pathway (Ferrini et al., 2013; Romeo-Guitart and Casas,

2020), BDNF-trkb (Miletic and Miletic, 2008; Rivera et al., 2002;

Rivera et al., 2004; Huang et al., 2017; Wenner, 2014; Sánchez-

Brualla et al., 2018) or direct regulation of KCC2 activity, such as N

and C termin (Ferrini et al., 2013) N-terminal loop Chi et al., 2021,

phosphorylation of serine 940 (Leonzino et al., 2016) will likely be

potential targets for clinical treatment of spinal cord injury and its

complications. In addition, through exercise training, modulation

of the 5-HTergic system (Bos et al., 2013; Sánchez-Brualla et al.,

2018; Ryu et al., 2021), the GABAergic system, and TRPV1 (Deng

et al., 2021) to indirectly affect NKCC1 andKCC2 expression levels

are also feasible intervention strategies. The targeted regulation of

different types of neurons may become a future treatment strategy

for SCI and its complications (Chen et al., 2018). As KCC2 and

NKCC1 are widely distributed in the nervous system, how to

achieve localization, orientation, and quantitative regulation of

their levels may be the biggest obstacle to their clinical application

in the treatment of SCI. It is necessary to solve these problems

throughmore in-depth and comprehensive research for the benefit

of patients with SCI.
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