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Steady state erythropoiesis produces new erythrocytes at a constant rate to replace
the senescent cells that are removed by macrophages in the liver and spleen.
However, infection and tissue damage disrupt the production of erythrocytes by
steady state erythropoiesis. During these times, stress erythropoiesis is induced to
compensate for the loss of erythroid output. The strategy of stress erythropoiesis is
different than steady state erythropoiesis. Stress erythropoiesis generates a wave of
new erythrocytes tomaintain homeostasis until steady state conditions are resumed.
Stress erythropoiesis relies on the rapid proliferation of immature progenitor cells
that do not differentiate until the increase in serum Erythropoietin (Epo) promotes
the transition to committed progenitors that enables their synchronous
differentiation. Emerging evidence has revealed a central role for cell metabolism
in regulating the proliferation and differentiation of stress erythroid progenitors.
During the initial expansion stage, the immature progenitors are supported by
extensive metabolic changes which are designed to direct the use of glucose and
glutamine to increase the biosynthesis of macromolecules necessary for cell growth
and division. At the same time, these metabolic changes act to suppress the
expression of genes involved in erythroid differentiation. In the subsequent
transition stage, changes in niche signals alter progenitor metabolism which in
turn removes the inhibition of erythroid differentiation generating a bolus of new
erythrocytes to alleviate anemia. This review summarizes what is known about the
metabolic regulation of stress erythropoiesis and discusses potential mechanisms for
metabolic regulation of proliferation and differentiation.
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Introduction

Steady state erythropoiesis maintains erythroid homeostasis, which requires precise control
over the production and turnover of erythrocytes. The bone marrow has an enormous capacity
for erythropoiesis and produces 2.5 × 10̂ 6 erythrocytes per second in humans (Palis, 2014; Seu
et al., 2017). This production is offset by a similar rate of turnover of erythrocytes in the spleen
and liver such that the concentration of erythrocytes maintained in circulation optimizes
oxygen delivery and minimizes problems due to increased blood viscosity (Klei et al., 2017).
Situations that compromise oxygen delivery require a response that will increase tissue
oxygenation. Blood loss and hypoxia can be compensated by increasing Epo levels which
increases differentiation of committed erythroid progenitors (Tusi et al., 2018). In addition,
sustained increases in serum Epo levels can skew hematopoiesis shunting progenitor cells down
the CMP-MEP erythroid progenitor pathway at the expense of myelopoiesis (Grover et al.,
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2014; Singh et al., 2018). This phenomenon is enhanced steady state
erythropoiesis. In contrast, inflammation caused by tissue damage or
infection affects erythropoiesis at many levels. Pro-inflammatory
cytokines inhibit steady state erythropoiesis (Rusten and Jacobsen,
1995; Zamai et al., 2000; Xiao et al., 2002; Tsopra et al., 2009). These
factors also skew hematopoiesis towards myelopoiesis which increases
the production of myeloid effector cells at the expense of steady state
erythropoiesis (Oduro et al., 2012; Pietras et al., 2016; Pietras, 2017;
Caiado et al., 2021). Pro-inflammatory cytokines like IL-6 increase the
levels of hepcidin, which leads to sequestration of iron, making it
unavailable for hemoglobin synthesis (Jurado, 1997; Cassat and Skaar,
2013; Soares and Weiss, 2015). Furthermore, inflammatory signals
increase erythrocyte turnover, which further exacerbates the anemia
(Libregts et al., 2011; Akilesh et al., 2019). To compensate for this loss
in production, inflammation induces stress erythropoiesis (Paulson
et al., 2020a). Unlike steady state erythropoiesis, the pro-inflammatory
cytokines initiate stress erythropoiesis and promote the proliferation
of immature progenitor cells (Bennett et al., 2019). The expansion of
this progenitor population leads to increased production of
erythroferrone (Erfe), which inhibits hepcidin expression so that
once these progenitors start to differentiate, iron will be available
for hemoglobin biosynthesis (Kautz et al., 2014a; Kautz et al., 2014b;
Arezes et al., 2018). Furthermore, increased erythroid turnover by
macrophages leads to heme dependent signaling, which increases
production by macrophages of key factors like GDF15 and
BMP4 that are required for stress erythropoiesis (Bennett et al.,
2019). These observations support the idea that stress
erythropoiesis is part of a coordinated inflammatory response,
which allows bone marrow hematopoiesis to concentrate on the
production of immune effector cells while erythroid homeostasis is
maintained by extra-medullary stress erythropoiesis (Paulson et al.,
2020a). In mice, this response is primarily in the spleen and liver.
Stress erythropoiesis is highly conserved in humans (Xiang et al., 2015;
Paulson et al., 2020b; Chen et al., 2020). Although the location of stress
erythropoiesis in humans has not be definitively identified, there are
many reports of extra-medullary stress erythropoiesis in anemia
patients (for review see (Paulson et al., 2020b)).

Because of the stress response nature of stress erythropoiesis, the
strategy for erythroid production is different from steady state
erythropoiesis. As described above, steady state erythropoiesis
constantly produces new erythrocytes. Stress erythropoiesis
generates a bolus of new erythrocytes that maintain homeostasis
until the source of the inflammation can be resolved (Perry et al.,
2009; Paulson et al., 2020b). This response is more similar to stem cell-
based tissue regeneration systems like those observed in muscle, lung
and the intestinal epithelium (Asfaha, 2015; Tidball, 2017; Shen et al.,
2022). These systems rely on tissue specific stem cells that are distinct
from the stem cells that maintain tissue homeostasis. A common
theme in tissue regeneration is that these stem cells respond to
inflammatory signals which leads to proliferation of a transient
amplifying population of progenitors that differentiates into mature
cells that repair the damaged tissue. One of the better characterized
regeneration systems is muscle regeneration, where satellite cells
resident in the muscle are activated by inflammatory signals
expressed by macrophages and infiltrating monocytes (Burzyn
et al., 2013; Tidball, 2017; Scaramozza et al., 2019; Theret et al.,
2019; Theret et al., 2022). These cells proliferate and differentiate
to form new myotubes that repair the damaged muscle. The signals
that drive the differentiation of myogenic precursors coincide with a

switch from an inflammatory environment to a pro-resolving
response. This example underscores the key role for inflammatory
signals in initiating tissue regeneration, but also shows that resolving
inflammatory signals plays a role in the transition to differentiation.
Stress erythropoiesis shows a similar developmental trajectory. The
initiation of stress erythropoiesis relies on inflammatory signals.
Macrophage expression of TNFα, Interferon γ (Ifnγ) and IL-1β is
transiently increased in the spleen following treatment with LPS and
zymosan, which induces inflammatory anemia. In vitro, TNFα
increases the proliferation of immature stress erythroid progenitors
(SEPs) suggesting that transient TNFα signaling in SEPs drives their
proliferation (Bennett et al., 2019). The mechanism by which TNFα
promotes proliferation is not understood. At this stage, SEPs maintain
stem cell characteristics, are capable of self-renewal, but do not
differentiate (Harandi et al., 2010; Xiang et al., 2015). Analysis of
SEPs showed that this transient amplifying population is
heterogenous, made up of three distinct populations, with
CD34+CD133+Kit + Sca1+ cells being the most immature,
CD34negCD133+Kit + Sca1+ being the intermediate, and
CD34negCD133negKit + Sca1+ being the most mature (Xiang et al.,
2015). The transition from a proliferating SEP to a SEP committed to
erythroid differentiation relies on erythropoietin (Epo) signaling in
splenic macrophages, which alters the signals made by the niche. Epo
signaling leads to a loss of pro-proliferative signals like canonical Wnts
and an increase in signals that promote differentiation like
Prostaglandin E2 (PGE2) (Chen et al., 2020). This change in signals
is part of a change in the niche from a pro-inflammatory niche
dominated by M1 macrophage type signals to a pro-resolving niche
dominated by M2 macrophage like signals (Bennett et al., 2019). After
this transition, SEPs lose their ability to self-renew and commit to
differentiation, characterized by continued proliferation and
subsequent entry into the terminal differentiation pathway
(Harandi et al., 2010; Xiang et al., 2015). Although many of the
signals that regulate stress erythropoiesis have been identified, the role
of cellular metabolism and how these signals affect metabolism is
largely unknown. In this review, we discuss what is known about
metabolic regulation of stress erythropoiesis. We will identify open
questions and discuss examples from other systems that illustrate
potential paradigms for how changes in metabolism can regulate
proliferation and differentiation of SEPs.

Metabolic control of progenitor
proliferation

For efficient stress erythropoiesis, immature progenitor
populations must be expanded prior to the commitment to
differentiation. This process requires the translation of proliferative
signals, like Wnt2b and 8a and GDF15, into changes in metabolism
that support proliferation and prevent changes in chromatin structure
associated with the activation of the erythroid gene program.

Our previous work identified signaling pathways that are required
for the expansion of immature SEP populations. The questions that
remain are how these signals regulate metabolism and how changes in
metabolism result in the proliferating, self-renewing, uncommitted
SEP populations we observe in vivo. To address these questions, we
must first acknowledge that metabolism regulates all cellular
processes. It is often discussed as though the different metabolic
processes are independent pathways, however, that is not how we
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should think about metabolism. As articulated by Murphy and
O’Neill, a more correct way to think about metabolism is that
metabolic pathways are interconnected such that changes in one
metabolic pathway affect the flux of metabolites through other
pathways (Murphy and O’Neill, 2020). In stress erythropoiesis, the
initial stage requires the expansion of immature SEP populations.
Signals that drive the proliferation of SEPs establish a metabolism that
favors anabolic processes required to generate sufficient amino acids,
lipids, nucleotides and other macromolecules to generate biomass for
cell division. In cancer cells, this type of metabolism is referred to as
aerobic glycolysis or the “Warburg effect”, which is dominated by
glycolysis and is present in rapidly proliferating cell populations
(Warburg, 1956; Lunt and Vander Heiden, 2011). Although
glycolysis is higher than oxidative phosphorylation at these times,
this type of metabolism can really be thought of as a highly efficient
anabolic metabolism where glycolytic metabolites can be shunted into
anabolic pathways like the Pentose phosphate pathway (PPP) and the
serine glycine (Ser/Gly) pathway, which generate nucleotides, amino
acids, metabolites used in 1-carbon metabolism and regenerate
NADPH levels (Wise et al., 2008; Lunt and Vander Heiden, 2011;
Le et al., 2012). A role for these pathways in stress erythropoiesis was
shown by Oburoglu et al. who demonstrated that commitment of
human CD34+ cells to the erythroid lineage required glutamine and
the PPP. Inhibition of glutamine metabolism with the glutamine
analog 6-diazo-5-oxo-L-norleucine (DON) blocked erythroid
commitment (Oburoglu et al., 2014; Oburoglu et al., 2016). This
effect could be rescued with exogenous nucleotides further
demonstrating the need for nucleotide biogenesis in erythropoiesis.
Although this work used in vitro human CD34+ cell cultures, the same
group showed that in vivo stress erythropoiesis induced by
phenylhydrazine treatment in mice was blocked by DON, while
myelopoiesis increased in the spleen (Oburoglu et al., 2014;
Oburoglu et al., 2016). In cancer cells, highly efficient usage of the
PPP and Ser/Gly pathways relies on the establishment of metabolons,
like the purinosome, which is a complex of at least 10 enzymes that
uses metabolic channeling to drive de novo purine biosynthesis (An
et al., 2008; Zhao et al., 2015; Pedley et al., 2022). It remains to be
demonstrated whether signals that promote the proliferation of SEPs
also drive the formation of the purinosome and other metabolons to
increase metabolic efficiency. The ability of the purinosome to increase
purine biosynthesis has the potential to profoundly impact overall cell
metabolism and cell signaling as increased levels of guanine and
adenine activate the mTorC1 pathway (Ben-Sahra et al., 2016;
Emmanuel et al., 2017; Hoxhaj et al., 2017). mTorC1 is a central
regulator of metabolism. Blocking mTorC1 activity compromises
stress erythropoiesis and limits SEP proliferation (Knight et al.,
2014). Furthermore, through the downstream activation of ATF4,
mTorC1 can feed back to increase purine biosynthesis by increasing
the expression of Mthfd2, an enzyme involved in the mitochondrial
tetrahydrofolate cycle (Ben-Sahra et al., 2016). Like mTorC1,
mutations in ATF4 severely compromise stress erythropoiesis
(Masuoka and Townes, 2002). In addition to purine biosynthesis,
mTorC1 also increases pyrimidine biosynthesis by phosphorylating
CAD, the initial enzyme in the de novo pyrimidine biosynthesis
pathway (Ben-Sahra et al., 2013; Robitaille et al., 2013). This
modification also leads to increased rRNA and ribosomal
biogenesis, which are needed to increase protein biomass during
cell division (Claiborne et al., 2022). Although data support the
role of mTorC1/ATF4 dependent control of metabolism in

proliferating SEPs, further work is needed to understand how pro-
inflammatory signals establish this anabolic metabolism and how
other key stress erythropoiesis signals like canonical Wnts,
GDF15 and BMP4 impact these metabolic pathways.

Proliferating SEPs are able to self-renew and maintain an
immature phenotype characterized by the expression of stem cell
genes and low-level expression of erythroid genes (Xiang et al., 2015).
How does metabolic regulation maintain this immature cell state? In
macrophages, inflammatory signals alter the TCA cycle. This
alteration is referred to as a “broken TCA cycle” (Lampropoulou
et al., 2016; O’Neill, 2015; Ryan and O’Neill, 2020). Metabolites like
citrate and succinate are exported from the mitochondria and act in
other pathways. Glutamine is converted to alpha-ketoglutarate (αKG),
which can generate both citrate and succinate through oxidative and
reductive pathways (Mullen et al., 2014). When citrate and succinate
are exported from the mitochondria, they contribute both to the
anabolic metabolism and affect gene expression (Mills and O’Neill,
2014; Ryan et al., 2019; Tannahill et al., 2013; Williams and O’Neill,
2018). Exported citrate is converted by ATP Citrate lyase (Acly) to
oxaloacetate and acetyl-CoA. In cancer cells, the latter is used by
histone acetyltransferases to maintain expression of glycolytic
enzymes (Wellen et al., 2009). Acetyl-CoA is also used in
lipogenesis, which supports cell division. Succinate on the other
hand acts as an inhibitor of αKG dependent dioxygenases, which
includes the family of proline hydroxylases (PHDs) that regulate the
stability of hypoxia inducible transcription factors (Hifs) (Tannahill
et al., 2013). The inhibition of PHDs increases hypoxia dependent
glycolysis. Other enzymes that are inhibited by succinate include
jumonji-domain histone deacetylases and the TET proteins that
demethylate DNA. These data suggest that increased succinate
plays a role in inhibiting differentiation of SEPs by preventing
changes in DNA and histone methylation. Further work is needed
to establish that metabolic control of epigenetics marks inhibits
erythroid differentiation, while at the same time increasing the
expression of genes that promote proliferation.

GDF15 and the Hippo-Yap signaling pathways play an essential
role in stress erythropoiesis (Hao et al., 2019a; Hao et al., 2019b).
Mutation of these pathways significantly impairs proliferation of SEPs.
We observed that both pathways regulate the expression of genes
involved in glycolysis and the TCA cycle (Hao et al., 2019b).
GDF15 signaling increases the expression of PDK1 and PDK3, two
enzymes that limit the flow of pyruvate into the TCA cycle, which is
consistent with an altered TCA cycle in SEPs. GDF15 also increases
the expression of Hif1α and Glut1, which increases glycolysis.
Similarly, the expression of Gls1 is increased with
GDF15 treatment. Gls1 is an enzyme that catalyzes the breakdown
of glutamine, which channels glutamine into anabolic pathways. Like
GDF15, our analysis of Yap1, a transcriptional co-activator whose
activity is regulated by the Hippo pathway and Wnt signaling, showed
that it maintains the proliferative anabolic metabolism in immature
SEPs(Azzolin et al., 2014; Enzo et al., 2015; Koo and Guan, 2018; Hao
et al., 2019a; Ibar and Irvine, 2020). Mutation of Yap1 severely impairs
the expansion of immature SEP populations. Yap1 regulates the
expression of Psat1, an enzyme in the Ser/Gly pathway which
generates Serine from the glycolytic metabolite 3-phosphoglycerate
that is used in one carbon metabolism and the production of
S-adenosyl-methionine. Serine is also needed for the production of
folate, which feeds into purine and pyrimidine biosynthesis. Yap1 also
regulates the expression of Got1, a transaminase that generates
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aspartate from αKG. Inhibition of Got1 blocks erythroid commitment
to the erythroid lineage (Hao et al., 2019a). In addition to our data,
work in several experimental systems has shown thatYap1 regulates
the expression of glycolytic enzymes and other enzymes involved in

glutamine metabolism (Enzo et al., 2015; Cox et al., 2016; Cox et al.,
2018; Koo and Guan, 2018; Ibar and Irvine, 2020). These data suggest
that the mechanisms that regulate the proliferation of SEPs rely on a
complex integration of signaling pathways which shape the anabolic

FIGURE 1
Initiation of stress erythropoiesis and the expansion of immature SEPs. Figure depicts the inflammatory signals that initiate stress erythropoiesis, the
formation of the stress erythropoiesis niche and the expansion of a transient amplifying population of immature stress progenitors. Included in the figure are
observed signals and potential changes that would be predicted to occur as discussed in the review.

FIGURE 2
The transition to differentiation and the terminal differentiation of stress erythroid progenitors. The figure depicts the transition to differentiation and
terminal differentiation. Changes in signals and metabolism in the niche and progenitors are indicated.
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metabolism needed to support the expansion of these progenitor
populations. Further work is needed to understand how this
integration of cell signaling and metabolism is accomplished.
(Figure 1).

Metabolic regulation of differentiation

The transition from uncommitted proliferating SEPs to SEPs
committed to differentiation requires changes in the signals made
by the niche. Epo dependent signaling leads to a loss of Wnt
expression and an increase in PGE2 production, however, GDF15,
BMP4 and Yap1 dependent signaling pathways remain in SEPs,
but now these pathways promote differentiation (Chen et al.,
2020). In addition, the niche also switches from one dominated by
pro-inflammatory signals to one dominated by pro-resolving
anti-inflammatory signals (Liao et al., 2018). This change in
signals and microenvironment will have a profound impact on
the differentiation of SEPs. Although we know little about the
metabolic changes that drive differentiation, data from others
have identified some paradigms that may also play a role in stress
erythropoiesis. (Figure 2). Analysis of hematopoietic stem cells
(HSCs) showed that quiescent HSCs prefer glycolysis, but as they
become mobilized and differentiate, oxidative phosphorylation
(OXPHOS) increases (Simsek et al., 2010; Suda et al., 2011; Harris
et al., 2013; Takubo et al., 2013; Ito and Suda, 2014; Maryanovich
et al., 2015). Again, this switch in metabolism does not mean that
glycolysis is off and OXPHOS is on, but rather the relative
amounts of metabolites that flux through these pathways
change. The increase of OXPHOS and the TCA cycle leads to
changes in metabolites that affect other signaling pathways. As
mentioned above, high levels of succinate generated when the
TCA cycle is broken can inhibit jumonji-domain histone
demethylases and TET DNA demethylases, but when
mitochondrial respiration is increased and the levels of αKG
available for enzymes increases. During muscle regeneration,
the H3K27 demethylases JmjD3 and UTX (KDM6A), which
require αKG, increase their activity at different times during
the recovery from muscle injury (Liu and Rando, 2016;
Gabellini, 2022). JmjD3 activity is needed to increase the
expression of Has2, an enzyme that initiates the production of
hyaluronic acid. The expansion of the extracellular matrix leads
to an exit from quiescence allowing for the proliferation of muscle
stem cells (Nakka et al., 2022). UTX has no role at this stage,
however, later UTX is required for the commitment of myocytes
to differentiation. This step is characterized by the UTX
dependent removal of H3K27me3 at the myogenin locus and
at other loci associated with muscle development. Mutation of
JmjD3 or UTX leads to increased levels of H3K27me, but they
show distinct defects in muscle regeneration (Faralli et al., 2016).
These two examples demonstrate how tight regulation of histone
H3K27 demethylase activity can control the proliferation and
differentiation of muscle stem cells during muscle regenration.
Changes in niche signaling can also induce metabolic
reprogramming and induce histone demethylase activity.
Germinal center B cell differentiation is induced by IL-4
signaling, which increases mitochondrial respiration and αKG
production in activated B cells. By increasing this metabolite,
UTX activity increases and removes H3K27me3 marks at the

Bcl6 enhancer and promoter. In addition to changing
metabolism, IL-4 signaling activates Stat6 which recruits UTX
to the enhancer and promoter in Bcl6. These data show that IL-4
signaling establishes a metabolism that increases UTX activity,
but also targets UTX to key genes required for germinal center
B cell development (Haniuda et al., 2020). These examples show
how changes in metabolism lead to mobilization of chromatin
remodeling enzymes that drive the changes in gene expression
programs necessary for the differentiation of progenitor cells. The
specificity of these epigenetic changes comes from the integration
of cell signaling with metabolic reprogramming. Future work on
SEP differentiation will be needed to determine how pro-
resolving signals lead to changes in metabolism that de-repress
the erythroid gene expression program and promote
differentiation.

The increase in αKG coupled with a relative decrease in succinate
and fumarate will also lead to the activation of the Ten-eleven
translocation (TET) enzymes. Like the histone demethylases these
enzymes require iron, oxygen and αKG (Laukka et al., 2016; Koivunen
and Laukka, 2018). They catalyze the oxidation of 5-methylcytosine
(5-mC) to 5-hydroxymethylcytosine (5hmC), which can be
subsequently converted to un-methylated cytosine (Cimmino et al.,
2011; Wu and Zhang, 2011). Changes in DNA methylation have been
previously shown to regulate globin gene expression (Ley et al., 1982;
Ginder et al., 1998; Siegfried et al., 1999). In addition, analysis of
human, mouse and zebrafish showed that Tet2 plays a role in lineage
commitment. Analysis of human CD34+ bone marrow cell cultures,
showed that there is an increase in 5hmC during the erythroid
commitment stage of the culture, which was associated with
increased binding of erythroid transcription factors and increased
chromatin accessibility (Madzo et al., 2014). Cultures of cord blood
cells showed that inhibiting Tet2 leads to increased myeloid
differentiation, while decreasing erythroid differentiation (Pronier
et al., 2011). ShRNA knockdown Tet2 in CD34+ cell cultures led to
increased proliferation of immature erythroid progenitors and
impaired their differentiation (Yan et al., 2017). These observations
are of interest as mutations in TET2 are often observed in
myelodysplastic syndromes, which exhibit impaired erythroid
differentiation and is associated with clonal hematopoiesis
(Fujishima et al., 2021; Florez et al., 2022; Gurnari et al., 2022).
These data are similar to what is observed when Tet2 is knocked
down in zebrafish embryos (Ge et al., 2014). These data suggest a role
for TET2 dependent changes in DNAmethylation in the commitment
of SEPs to differentiation. Further work will be needed to determine
how changes in DNA methylation affect stress erythropoiesis.

Final thoughts

This small set of examples illustrate some of the areas where
metabolism could regulate stress erythropoiesis. The challenge
for future research will be to integrate transcriptomic and
metabolomics data with cell signaling. These analyses will
address how metabolism impacts gene expression at each of
the developmental stages of stress erythropoiesis, how changes
in metabolism drive the transition from proliferating SEPs to
differentiating SEPs and how signals from the niche impact and
change metabolism so that sufficient erythrocytes are produced to
maintain erythroid homeostasis.
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