
Sex differences in stretch-induced
hypertrophy, maximal strength and
flexibility gains

Konstantin Warneke1,2*, Astrid Zech3, Carl-Maximilian Wagner4,
Andreas Konrad5,2, Masatoshi Nakamura6, Michael Keiner4,
Brad J. Schoenfeld7 and David George Behm2

1Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany, 2School of Human
Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada, 3Department of
Human Motion Science and Exercise Physiology, Friedrich Schuller University, Jena, Germany, 4Department
of Training Science, GermanUniversity of Health & Sport, Ismaning, Germany, 5Institute of HumanMovement
Science, Sport and Health, University of Graz, Graz, Austria, 6Faculty of Rehabilitation Sciences, Nishi Kyushu
University, Kanzaki, Saga, Japan, 7Department of Exercise Science and Recreation, Lehman College, Bronx,
NY, United States

Introduction: If the aim is to increasemaximal strength (MSt) andmusclemass, resistance
training (RT) is primarily used to achieve these outcomes. However, research indicates that
long-duration stretching sessions of up to 2 h per day can also provide sufficient stimuli to
induce muscle growth. In RT literature, sex-related differences in adaptations are widely
discussed, however, there is a lack of evidence addressing the sex-related effects on MSt
andmuscle thickness (MTh) of longer duration stretch training. Therefore, this study aimed
to investigate the effects of 6weeks of daily (1 h) unilateral static stretch training of the
plantar flexors using a calf-muscle stretching device.

Methods: Fifty-five healthy (m = 28, f = 27), active participants joined the study. MSt
and range of motion (ROM) were measured with extended and flexed knee joint, and
MTh was investigated in the medial and lateral heads of the gastrocnemius.

Results: Statistically significant increases in MSt of 6%–15% (p < .001–.049, d =
0.45–1.09), ROM of 6%–21% (p < .001–.037, d = 0.47–1.38) and MTh of 4%–14% (p <
.001–.005, d = 0.46–0.72) from pre-to post-test were observed, considering both
sexes and both legs. Furthermore, there was a significant higher increase in MSt, MTh
and ROM in male participants. In both groups, participants showed more
pronounced adaptations in MSt and ROM with an extended knee joint as well as
MTh in themedial head of the gastrocnemius (p < .001–.047). Results for relative MSt
increases showed a similar result (p < .001–.036, d = 0.48–1.03).

Discussion: Results are in accordance with previous studies pointing out significant
increases of MSt, MTh and ROM due to long duration static stretch training. Both
sexes showed significant increases in listed parameters however, male participants
showed superior increases.
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1 Introduction

Strength capacity is of paramount importance in various health- and performance-related
settings, with benefits for daily life, good health, and longevity (Cooper et al., 2010; Westcott,
2012; Williams et al., 2017), rehabilitation (Stevens et al., 2004; Maestroni et al., 2020), and
performance level in recreational- and elite sports (Styles et al., 2016; Suchomel et al., 2016).
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Traditionally, resistance training (RT) is the most commonly
employed intervention to enhance maximal muscle strength (MSt)
(Kraemer et al., 2002) and induce muscle hypertrophy (Schoenfeld
et al., 2019; Schoenfeld et al., 2017).

Alternatively, animal research using long-durations of static
stretching have demonstrated significant increases in MSt,
thickness (MTh) and muscle length (Warneke et al., 2022a).
Research using stretching durations from 30 min to 24 h per day,
7 days per week applied to the wings of chickens and quails showed a
dose-response relationship for morphological adaptations (Frankeny
et al., 1983; Bates, 1993). However, using quails, Bates (Bates, 1993)
showed that using 1 hour of stretch led to an increase of 59% in muscle
mass (MM), while doubling the stretching duration led to an
enhancement of 67%, pointing out a most economical stretching
duration of 30 min to 1 h. In contrast, Nunes et al. (Nunes et al.,
2020) reviewed the current human literature, showing no significant
hypertrophy effects in humans with stretch training. The eligible
studies in this review investigated the effects of approximately
2 minutes of stretching per session, which cannot be compared
with the much greater stretch durations from animal studies.

However, longer durations of individual static stretching
interventions (sessions) with humans of up to 2 hours per day
showed significant increases in MSt, which were accompanied by
significant hypertrophy (Warneke et al., 2022b). Hence, it is shown if
stretching is performed with sufficient session duration, intensity, and
weekly frequency flexibility adaptations can be accompanied by
increases in muscle hypertrophy and MSt (Warneke et al., 2022b;
Warneke et al., 2022c). These studies showed that long duration static
stretching sessions implemented for 6 weeks resulted in moderate to
large magnitude MSt increases of 14.2%–22.3% (d = 0.51–0.91),
increases in MTh and ROM of 15.3% (d = 0.84) and 13.2%–27.3%
(d = 0.47–0.87) dependent on used knee joint angle, respectively
(Warneke et al., 2022b; Warneke et al., 2022c). Interestingly, previous
studies also showed significant cross-education effects in response to
stretching interventions of up to 12 weeks regarding MSt (Nelson
et al., 2012; Warneke et al., 2022b; Warneke et al., 2022c), which might
be attributed to neuronal adaptations induced by increased activity of
stretch reflex afferents (Zhou, 2000; Zhou et al., 2022).

A research question, which was not considered in previous
research was the sex-related influence on stretch-induced
adaptations in MSt, MTh and ROM. A limitation of the
aforementioned studies is the lack of calculation of sex differences
between groups (Lacio et al., 2021). Even if scientific research showing
similar responses in hypertrophy andMSt increases between male and
female participants (Roberts et al., 2020) it is a popularly held belief
that females show lower adaptations to RT stimuli than males (Lewis
et al., 1986). In terms of flexibility, there might be evidence for
significantly better baseline ROM values in females compared to
males (Cipriani et al., 2012; Yu et al., 2022). However, both,
Cipriani et al. (Cipriani et al., 2012) and Yu et al. (Yu et al., 2022),
failed to show significant differences between sexes in changes of
flexibility due to stretch training (4 weeks, three to six times per week).
In this regard, Yu et al. (Yu et al., 2022) countered that a significantly
higher passive muscle stiffness was accompanied by significantly lower
flexibility in male participants compared to their female counterparts
(in pre-test values). Since Morrison et al. (Morrison et al., 2015)
showed that Achilles tendon stiffness seems to be influenced by MSt
instead of sex, one could question the magnitude of the effects of sex
on differences in flexibility. While it is still assumed that male

participants show higher absolute MSt and greater muscle cross-
sectional area (Nonaka et al., 2006; Nagai et al., 2020), which is
often attributed to the difference between sexes in testosterone
(Handelsman et al., 2018), the differences in strength capacity seem
to disappear when normalized for fat-free body mass (Freilich et al.,
1995; Nonaka et al., 2006; Sandbakk et al., 2018). Moreover, a meta-
analysis performed by Roberts et al. (Roberts et al., 2020) showed no
significant differences in hypertrophic response to RT in the lower
extremity between sexes, but even higher effects in female participants
in the upper body, which was attributed to lower pre-test training
status of the female participants. Accordingly, Bishop et al. (Bishop
et al., 1989) stated that there was no difference between trained male
and female swimmers regarding their fat-free cross-sectional area,
using fat free mass as a covariate.

Based on this premise, the purpose of this study was to investigate
the effects of long-duration unilateral and daily static stretching for
1 hour a day over 6 weeks on MSt, MTh and ROM by considering
potential sex differences, using a calf muscle stretching orthosis.
Furthermore, significant higher increases in MSt, MTh and ROM
training adaptations are hypothesized in males compared with
females.

2 Methods

2.1 Study design

Existing data sets (Warneke et al., 2022b; Warneke et al., 2022c)
were used to investigated sex-related responses of the plantar flexors to
6-week daily stretching training. Participants were divided into male
and female groups. All participants performed 1 hour of unilateral
daily stretching with their dominant leg for 6 weeks. Maximum
isometric strength, and ankle dorsiflexion flexibility with extended
and flexed knee joint as well as MTh were examined in pre- and post-
tests. Prior to testing, participants performed a five-minute warm-up
consisting of ergometer cycling with 1 W/kg bodyweight.

2.2 Participants

A priori calculation of sample size using G-Power revealed a
required total sample size of at least 40 participants assuming an effect
size of 0.7 based on a previous study in the topic (Warneke et al., 2022),
including four groups (intervened leg and contralateral leg from male
and female participants) and two measurements. To offset possible
dropouts, 55 participants (male: n = 28, age: 27.3 ± 4.1 years, height:
178.5 ± 4.4 cm, weight: 82.5 ± 4.1 kg; female: n = 27, age: 26.9 ±
2.1 years, height: 167.3 ± 3.9 cm, body mass: 65.3 ± 3.3 kg) were
recruited in the northern area of Germany for this study. Participants
were categorized as athletically active, having performed strength
training for at least 1 year in local sports clubs for a minimum of
twice a week. Moreover, they had to be free of injury for the last
6 months. All participants were informed about the experimental risks
and provided written informed consent to participate in the present
study. Approval for this study was obtained from the institutional
review board (Carl von Ossietzky University Oldenburg, No.
121–2021). The study was conducted in accordance with the
Helsinki Declaration. All participants finished the studies without
missing more than two stretching sessions.
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2.3 Testing procedure

Warm-up was included before starting the strength testing
procedure performing ergometer cycling for 5 min using a heart
rate of 100–120 bpm. Testing procedure is illustrated in Figure 1.

MThL = Measurement of muscle thickness in the lateral head of
the gastrocnemius, MThM = Measurement of muscle thickness in the
medial head of the gastrocnemius, MVC180 = Maximal voluntary
contraction testing with extended knee joint, MVC90 = Maximal
voluntary contraction testing with bent knee joint, KtW = dorsiflexion

range of motion testing using the knee to wall test, ORTH =
Dorsiflexion range of motion testing using the goniometer of the
orthosis.

2.3.1 Maximal strength testing
The testing procedure as well as the devices were used as

previously described (Warneke et al., 2022b; Warneke et al.,
2022c). Plantar flexors MSt was determined via an isometric
maximal voluntary contraction (MVC) at a 180° (MVC180) and
90° knee angle (MVC90) under unilateral testing conditions in

FIGURE 1
Graphical illustration of the testing procedure.

FIGURE 2
Measurement of MSt in the extended knee joint (A) and the flexed knee joint (B).

Frontiers in Physiology frontiersin.org03

Warneke et al. 10.3389/fphys.2022.1078301

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1078301


both the intervened leg (IL) and the control leg (CL) in all participants.
A 50 × 60 cm Kistler force plate with a force transducer (company
AST, Leipzig, model KAC) with a measurement range of ±5000 N as
well as a 13-bit analog-to-digital converter attached to the sled of a 45°

leg press was used for examining MVC180. For the MVC180,
industrial grade tensioning straps fixed the position so that the
starting position was set to an ankle joint angle of 90° with the
metatarsophalangeal joint of the foot placed flush to the edge (see
Figure 2A). MVC90 was tested using a calf muscle testing device
(CMD) equipped with 10 × 10 cm force plates attached to the footrests
and force sensors “Kistler Element 9251” with a resolution of 1.25 N, a
pull-in frequency of 1,000 Hz, and a measurement range of ±5000 N.
A charge amplifier Type5009 and a 13- bit analog-to-digital converter
NI6009 were used to record the vertical forces (Fz). Similarly, for
MVC90 the straps fixed the thigh pad in a position with the starting
position that enabled an ankle joint angle of 90° with the
metatarsophalangeal joint of the foot placed flush to the edge (see
Figure 2B). Participants performed an isometric MVC against the
force plate in response to an acoustic signal and held the contraction
for 3 seconds. Participants rested for 1 minute between repetitions to
avoid fatigue. Measurements were conducted until no improvement in
MSt was recorded, but for a minimum of three trials. The intraclass
correlation (ICC) for isometric strength measurements was previously
stated with ICC = 0.95 (Warneke et al., 2022c). Reliability of the MSt
measurements is provided in Table 1.

2.3.2 ROM measurement
ROM in the upper ankle joint was assessed using the “knee-to-wall

stretch” test (KtW) and the angle measurement device on the orthosis
(ORTH). To use the KtW, a sliding device was used as previously
described (Warneke et al., 2022c) to measure ROM in the upper ankle
with a bent knee joint. Participants were instructed to place the foot on
the attached marker of the device and to push the board of the sliding
device forward with their knee until the heel of the standing leg started
to lift off (see Figure 3A). During this procedure, one investigator
constantly pulled on a sheet of paper. The measurement was stopped
when the paper could be pulled from underneath the heel. The value
for ROM was obtained from the measuring device in cm. Participants
had to perform three valid trials per leg. The best (maximal) value was
used for the statistical analyses.

Furthermore, ROM with an extended knee joint was assessed
using ORTH. For this purpose, the foot of the participant was placed
on an object with the same height as the chair to improve stretching of

the plantar flexors and dorsal muscle chain (see Figure 3B). The
orthosis was used to reach maximal dorsiflexed position in the ankle
joint while staying in an extended knee joint position. Testing started
from a neutral 0° position in the ankle and was performed three times.
The best trial was used for statistical analysis. Each major indentation
of the goniometer corresponds to an increase of 5° and each minor
indentation to an increase of 2.5°. With ICC = .99 ROM assessments in
the ankle joint using these devices can be classified as high (Warneke
et al., 2022c). Reliability of the ROM measurements are stated in
Table 1.

2.3.3 Ultrasonography for assessing muscle
thickness

As previously described (Warneke et al., 2022c), ultrasonography
was used to assess MTh, herein defined as the distance between upper
and the deep fascia. Measures were obtained at pre- and post-study in
both legs separately, using a two-dimensional B-mode ultrasound with
a linear transducer (12, 13 MHz, Mindray Diagnostic Ultrasound
System of 5 cm probe length). MTh was determined in the lateral
(MThL) and medial (MThM) heads of the gastrocnemius. For this
assessment, each participant laid in a prone position with their legs
completely extended and feet hanging off the end of a table; they were
instructed to stay completely relaxed during imaging. Measurements
were obtained at 25 percent of the distance between the most lateral
point of the joint space of the knee and themost lateral tip of the lateral
malleolus. The superficial and deep aponeuroses were as parallel as
possible to optimize visibility of the fascicles as continuous striations
from one aponeurosis to the other. For measurement of MTh, the
transducer was positioned at the midpoint of each muscle belly
perpendicular to the long axis of the participant’s leg. The data for
each measurement resulted from averaging three measurements
across the proximal, central and sital portion of the produced
image (Sarto et al., 2021) (see Figure 4). Two examiners performed
twomeasurements per muscle independently from each other, blinded
for the group. Thus, muscle thickness was evaluated by using
MicroDicom (Sofia, Bulgaria). Reliability of sonography was
determined previously with ICC = 0.95–0.97 (Warneke et al., 2022c).

2.4 Intervention

Stretching was performed as previously described (Warneke et al.,
2022c). Participants stretched the plantar flexors for 1 hour per day for

TABLE 1 Intraclass correlations coefficients (ICC) and the coefficient of variability (CV) are stated to determine the reliability of included tests.

Parameter ICC (95% CI) CV (95% CI)

MVC180 0.997 (0.994–0.999) 0.98% (0.84–1.11)

MVC90 0.987 (0.950–0.993) 2.31% (1.92–2.94)

KtW 0.944 (0.925–0.967) 2.97% (2.24–3.29)

ORTH 0.991 (0.980–0.994) 1.11% (1.00–1.64)

MThL 0.913 (0.892–0.929) 3.31% (2.81–4.02)

MThM 0.947 (0.903–0.968) 2.90 (2.22–3.51)

MVC180 = maximal voluntary contraction in the plantar flexors with extended knee joint, MVC90 = maximal voluntary contraction in the plantar flexors with bent knee joint, KtW = ROM, of the

ankle joint using the knee to wall test, ORTH = ROM, of the ankle joint using the goniometer of the orthosis, MThL = muscle thickness of the lateral head of the gastrocnemius, MThM = muscle

thickness of the medial head of the gastrocnemius.
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6 weeks using a calf muscle stretching orthosis (see Figure 3B). The
participants sat with their backs as straight as possible against the
backrest of a chair with their foot in the orthosis on a support object of
the same height to ensure extension of the knee and optimize stretch of

the plantar flexors. The set angle of the orthosis as well as the time of
daily stretch was documented by the participants in a stretching log.
They were instructed to reach an individual stretching pain of 7-8 on a
visual analogue scale of 1–10 (with 0 = no pain; 10 = maximum point

FIGURE 3
Measurement of flexibility via KtW (A) and ORTH (B).

FIGURE 4
Showing ultrasound procedure on the lateral head of the gastrocnemius (A) and one example of sonography measurement of the medial head of the
gastrocnemius (B).
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of discomfort) at the start of the stretching, the maximum angle could
be read from the angle measuring device of the orthosis. Without re-
adjusting the orthosis, stretch pain decreased within seconds to few
minutes, probably because of assumed relaxation effects. Therefore,
the stretching pain was only very high at beginning of the
investigation. The participants should perform 1 hour of stretching
without any breaks. The stretch stimulus was not to be adjusted, even if
stretch pain decreased after a couple of minutes.

2.5 Data analysis

The data analysis was performed with SPSS 28. Data are presented
using mean (M) ± standard deviation (SD). Normal distribution was
confirmed for the used data via the Kolmogorov Smirnov test. The best
performance in each test were used for the statistical analysis.
Reliability was determined using the ICC, 95% confidence interval
(95% CI) and coefficient of variability (CV) for listed monitoring
assessments (Table 1). Moreover, the Levene-test for homogeneity in
variance was performed. The IL and CL of all participants were
included for further calculation. One-way ANOVA was used to
evaluate significant baseline differences between the groups. Since
the one-way ANOVA revealed significant pre-test differences between
male and female participants, pre-test values were set to 100% to
compare the increases of the different groups post-exercise values were
normalized to pre-test values. A mixed model two-way ANOVA with
repeated measurements was used for transformed values and Time
effects as well as Group*Time interactions. To investigate if there was a
significant percentage increase from pre-to post-test, paired t-tests
were used and corrected for α-error using the false discovery rate by
Benjamini—Hochberg (Ferreira and Zwinderman, 2006) as post hoc
analysis for time effects. The Scheffé-test was used as a post hoc test for
mean differences of increases between groups to calculate significant
differences in increases between sex and legs. Effect sizes are presented
as Eta squares (ƞ2) and categorized as: small ƞ2 < 0.06, medium ƞ2 =
0.06–0.14, large ƞ2 > 0.14 (Cohen, 1988). Additionally, effect sizes are
reported with Cohen’s d (Cohen, 1988) and categorized as: trivial <0.2,
small d = 0.2−<0.5, medium d = 0.5–0.8, large d > 0.8. Since literature
indicates that there might be differences in results using relative
strength values compared to absolute strength values, relative
strength values (absolute value/body mass) were also used for
calculation. Post-hoc power (1-β) was calculated via G-Power
(Version 3.1, Düsseldorf, Germany). The level of significance
was p < .05.

3 Results

3.1 Assessment of sex-related baseline
differences

There were significant differences between males and females in
pre-test values for MVC180 (p < .001), MVC90 (p < .001) and ORTH
(p = .011), showing higher values in male participants in strength-
related parameters, while females showed higher flexibility. No sex-
related differences were observed for KtW (p = .552), MThL (p = .297)
and MThM (p = .239) when considering absolute values. With relative
values, there was no difference in pre-test values for MVC180 (p =
.419). One-way ANOVAs determined significantly higher values (p <

.001) for strength MVC90, MThL and MThM in male participants.
However, females had significantly higher flexibility values.

3.2 Assessment of sex-related changes from
pre-to post-test

Mean stretching time per week was 6.7 ± 0.8 h. Progression of
absolute values for MVC180 and MVC90 are displayed in Figure 5,
progression of KtW and ORTH are displayed in Figure 6 and
progression of MThL and MThM are illustrated in Figure 7.
Table 2 provides the percentage values in the post-test when
compared to the pre-test, as those were set to 100%.

3.3 Measurement of maximal strength

For MVC180 absolute strength values, there was a time effect
(F1,106 = 66.64, p < .001, ƞ2 = 0.39) and a group*time interaction
(F3,106 = 16.84, p < .001, ƞ2 = 0.32). The Scheffé test revealed higher
increases in the male IL compared with female IL (p = .049, d = 0.45) as
well as higher improvements in the female IL compared with female
CL (p = .002, d = 0.63). Furthermore, there was a significantly higher
enhancement in MVC180 for the male IL compared with all other
groups (p < .001–.049, d = 0.74–1.09). No differences were found for
the progressions between the female IL and male CL (p = .387) and the
female CL and male CL (p = .167).

For MVC90 absolute values there was a time effect showing MVC
increases (F1,106 = 23.06, p < .001, ƞ2 = 0.18) but no significant
group*time interaction (F3,106 = 0.82, p = .486, ƞ2 = 0.02).

There was a time effect (F1,106 = 67.69, p < .001, ƞ2 = 0.39) and a
Group*Time interaction (F3,106 = 16.67, p < .001, ƞ2 = 0.32). The
Scheffé test showed a higher increase in the male IL compared with
female IL (p = .036, d = 0.48) and higher increases in the female IL and
CL (p = .003, d = 0.54). Furthermore, there were higher increases in the
intervened leg of the male participants compared with the CL of male
and females (p < .001, d = 0.72–1.03).

With MVC90, there was a significant increase associated with a
time effect (F1,106 = 25.83, p < .001, ƞ2 = .196), but no significant
Group*Time interaction (F3,106 = 1.026, p = .384, ƞ2 = .028).

3.4 Measurement of flexibility

A Time effect (F1,106 = 36.75, p < .001, ƞ2 = 0.26) and
Group*Time interaction (F3,106 = 30.94, p < .001, ƞ2 = 0.47) was
observed for ROM via the KtW. The Scheffé test revealed significantly
greater increases in the male IL compared with female IL (p < .001, d =
0.717) and also higher increases for the females IL versus CL (p = .001,
d = 0.65). There was a higher increase in the male IL compared with all
other groups (p < .001, d = 1.24–1.38). No difference was shown in the
change of both CLs between male and female participants (p = 0.822).

For ORTH there was also a significant increase with a time effect
(F1,106 = 71.63, p < .001, ƞ2 = 0.40) and Group*Time interaction
(F3,106 = 33.02, p < .001, ƞ2 = 0.48). The Scheffé test revealed higher
increases in the male IL compared with the female participants (p =
.037, d = 0.47) and for the IL compared with the CL in the female
participants (p < .001, d = 0.85). The male IL showed greater increases
compared with all other groups (p < .001–.037, d = 1.27–1.33). No

Frontiers in Physiology frontiersin.org06

Warneke et al. 10.3389/fphys.2022.1078301

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1078301


FIGURE 5
Graphical illustration of progression in ROM in IL and CL due to 1-h daily stretching training in plantar flexor in MVC180 (Maximal strength testing with
extended knee joint) (A) and MVC90 (Maximal strength testing with bent knee joint) (B) considering sex. The * illustrates a significant difference to the control
leg, the + illustrates a significant difference to the other sex.

FIGURE 6
Graphical illustration of progression in ROM in IL and CL due to 1-h daily stretching training in plantar flexor in KtW (ROM testing using the knee to wall
test) (A) and ORTH (ROM testing using the goniometer of the orthosis) (B) considering sex. The * illustrates a significant difference to the control leg, the +
illustrates a significant difference to the other sex.
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differences were observed between the CLs of male and female
participants (p = .987).

3.5 Measurement of hypertrophy

For MThL there were significant increases associated with a time
effect (F1,106 = 8.36, p = .005, ƞ2 = 0.073) but no significant

Group*Time interaction (F3,106 = 0.95, p = .419, ƞ2 = 0.03).
Figure 8 illustrates the pre-to post-test progression exemplary.

Statistical analysis showed time effect increases in MThM
(F1,106 = 27.94, p < .001, ƞ2 = 0.21) and a Group*Time
interaction (F3,106 = 7.31, p < .001, ƞ2 = 0.17). The Scheffé test
revealed higher increases in the male IL compared with the female IL
(p = .02, d = 0.51) but also compared with the CL groups (p <
.001–.047 days = 0.46–0.72). No differences were observed between

FIGURE 7
Graphical illustration of progression in MTh in IL and CL due to 1-h daily stretching training in plantar flexor in MThL (muscle thickness in the lateral head
of the gastrocnemius) (A) andMThM (muscle thickness in themedial head of the gastrocnemius) (B) considering sex. The * illustrates a significant difference to
the control leg, the + illustrates a significant difference to the other sex.

TABLE 2 Post-test percentage values of included parameters in relationship to the pre-test 100%.

Parameter Intervened leg Control leg

Female Male Female Male

MVC180 (in %) 8.7 ± 8.76a,b p < .001c 15.5 ± 10.53a,b p < .001c −1.0 ± 8.86 p = .574 4.5 ± 7.01 p = .002c

MVC90 (in %) 6.2 ± 10.76 p = .006c 8.3 ± 10.6 p < .001c 6.7 ± 20.29 p = .098 2.9 ± 7.95 p = .062

KtW (in %) 6.0 ± 9.20a,b p = .002c 15.5 ± 6.33a,b p < .001c −2.75 ± 8.30 p = .097 −0.73 ± 7.10 p = .587

ORTH (in %) 13.3 ± 11.00a,b p < .001c 21.4 ± 13.02a,b p < .001c −1.5 ± 8.30 p = .355 −0.46 ± 7.40 p = .745

MThL (in %) 5.2 ± 8.87 p = .005c 4.5 ± 11.38 p = .044 2.5 ± 12.35 p = .309 0.5 ± 13.11 p = .841

MThM (in%) 4.2 ± 9.10b p = .023c 14.5 ± 11.76a,b p < .001c −0.01 ± 11.61 p = .976 5.3 ± 14.55 p = .06

MVC180 = maximal voluntary contraction in the plantar flexors with extended knee joint, MVC90 = maximal voluntary contraction in the plantar flexors with bent knee joint, KtW = ROM, in the

dorsiflexion using the knee to wall stretch, ORTH = ROM, in the dorsiflexion using the goniometer of the orthosis, MThL = muscle thickness in the lateral head of the gastrocnemius, MThM=muscle

thickness in the medial head of the gastrocnemius.
asignificant difference compared to the control leg
bsignificant difference compared to the other sex
csignificant percentage increase from pre-to post test.
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the female IL and CL (p = .63), as well as for the CL of the male and
female participants (p = .416).

4 Discussion

The primary aim of this study was to investigate sex specific
adaptations to long duration static stretch training in MSt, Mth and
ROM in the plantar flexors showing significant higher increases for
MVC180, KtW, ORTH and MThM in male participants compared
with female participants. Results confirm significant baseline
differences, stated in literature (Cipriani et al., 2012). Pre-test
results showed significantly greater male MSt and higher female
ROM, while no significant differences could be observed for Mth.
However, relative values showed no significant difference for
MVC180, while for MVC90 male participants showed higher MSt
values. Concerning relative absolute training adaptations, males had
greater responses in MVC180 (relative and absolute), KtW, ORTH
and MThM compared to females.

4.1 Baseline differences between males and
females

The absolute MSt values are in accordance with literature showing
greater superiority for males compared to females (Nonaka et al., 2006;
Nagai et al., 2020). The lack of significant MVC180 pre-test relative
differences between sexes are in accordance with previous literature,
suggesting that differences in strength capacity are trivial when
normalized for fat-free mass (Freilich et al., 1995; Nonaka et al.,
2006; Sandbakk et al., 2018). The present study showed no significant
sex-related differences in the plantar flexors Mth. Furthermore, Abe
et al. (Abe et al., 2021) demonstrated that females possess
approximately 30% less muscle mass in the upper limbs compared
to male participants; however, the magnitude of muscle mass seems to
be more equal in the lower limbs. In contrast, Abe et al. (Abe et al.,

2020) reported higher absolute muscle mass in trained and untrained
male participants compared to females (Abe et al., 2003), which could
potentially be attributed to sex-specific hormones influencing human
collagen and muscles and therefore, subsequently, physical
performance (Handelsman et al., 2018). Accordingly, Bishop et al.
(Bishop et al., 1989) found no significant difference in arm muscle
mass of trained swimmers, independent of sex, while in untrained
participants males exhibited greater fat free mass. These findings
suggest that the level of physical activity could be a more
important factor influencing muscle mass and calls into question
the high relevance of sex on muscle size. Furthermore, this raises the
possibility that in non-athletic populations females have lower
physical activity levels compared to males, thereby leading to
significant differences in fat free muscle mass compared to male
participants (Bishop et al., 1989). Since the present study included
a very homogenous group of participants (moderately trained sport
students and gym members), similar activity levels in this sample
might be responsible for the lack of significant baseline calf MTh
differences between male and female participants.

The flexibility results of the pre-test values were inconsistent in
male and female participants. ORTH showed significantly higher pre-
test ROM for females versus males, while no differences could be
detected in KtW. Difference between tests might be the involvement of
different knee angles. The KtW tested the ROM with a flexed knee,
while using ORTH, the knee joint stayed extended, which influences
the integration of different muscle fibers in the calf (Signorile et al.,
2002; Arampatzis et al., 2006). Furthermore, Morrison et al. (Morrison
et al., 2015) argued that Achilles tendon stiffness is primarily
influenced by maximal strength. Assuming higher absolute male
MSt values, the results can be seen as a confirmation of the
hypothesis that higher stiffness and high MSt values seem to be
linked, as MVC180 and MVC90 were significantly higher in males.
Furthermore, Yu et al. (Yu et al., 2022) described a negative
relationship between stiffness and flexibility. Therefore, if high MSt
is linked to higher stiffness and lower flexibility, then lower flexibility
accompanied by higherMSt inmales could be expected (Cipriani et al.,

FIGURE 8
Illustrating the progression in muscle thickness (MTh) in the pre-test (A) and the post-test (B) exemplary.
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2012; Yu et al., 2022). Furthermore, it can be speculated that there are
more parameters influencing the ROM than flexibility of the muscle
especially in the KtW test, e.g. joint- and bone structure, as an
anteroposterior talocrural joint mobilization also led to significant
changes in joint ROM, while no significant increases in flexibility of
the muscle can be assumed (Holland et al., 2015).

4.2 Long-term effects of stretching

Results of this study, in addition to previous studies using animal
and human models (Alway, 1994; Kelley, 1996; Warneke et al., 2022a;
Warneke et al., 2022b; Warneke et al., 2022c), show that long duration
static stretching routines could be considered as an alternative method
to induce increases in MSt, MTh, and ROM in both sexes.

Most popular hypothesis explaining muscle hypertrophy effects
and increases in MSt due to stretching attribute those responses to
mechanical loading (Sola et al., 1973; Devol et al., 1991), resulting in
structural damage of the fiber and triggering upregulation of anabolic
signaling pathways such as mTOR, p70S6K (Aguilar-Agon et al., 2019;
Boppart and Mahmassani, 2019) or calcineurin/calmodulin (Sakuma
and Yamaguchi, 2010), which lead to enhanced protein synthesis
(Sparrow, 1982; Czerwinski et al., 1994; Goldspink, 1999). In humans,
it can also be assumed that high intensities in strength training lead to
high mechanical loading and tension in muscular tissue, which can be
hypothesized to be more effective to induce MSt compared with low
load resistance training (Schoenfeld et al., 2015; Krzysztofik et al.,
2019), while for MTh, the time of induced tension-stimulus and
therefore the induced “time-tension-integral” seems to be also very
important (Martineau and Gardiner, 2002; Schoenfeld et al., 2017).
Accordingly, Kremer (Kremer, 2017) and Tegtbur et al. (Tegtbur et al.,
2009) refer to stretching and strength training as sufficient stimuli to
induce enhancements in protein synthesis via anabolic signaling
pathways (Akt/mTOR/p70S6K) (Sasai et al., 2010; Suzuki and
Takeda, 2011; Timur et al., 2019) in humans. To specify, it seems
that mechanical tension per sarcomere could have a crucial impact on
hypertrophy and MSt increases. Devol et al. (Devol et al., 1991)
showed throughout the first days of training greater increases in
muscle cross-sectional area. Afterwards, there was a decrease in
hypertrophy, which can possibly be attributed to lower mechanical
tension per sarcomere after few days of stretching without re-adjusting
the stretching intensity by reaching higher degrees of stretch. In the
study, the authors hypothesized the lower mechanical load per
sarcomere due to an increased number of sarcomeres in series
would lead to lower mechanical tension per contractile unit.
Accordingly, the highest increases in muscle mass in animal studies
(318%) were achieved when performing a progressively increasing
stretching stimulus from 10% of the animal’s bodyweight to 35% over
about 5 weeks (Antonio et al., 1993). If mechanical loading,
irrespective of stretching or strength training, is of high impact on
physiological responses in the muscle (Kjær, 2004; Tegtbur et al., 2009;
Kremer, 2017), questions arise about sex differences, as factors such as
IGF-1, HGH, FGF are present in both sexes. First, in males there are
higher chronic values of testosterone, which seems to be important for
adaptations of RT (Tipton, 2001). Secondly, it can be hypothesized
that in females, it might be more difficult to induce high mechanical
tension via stretching. Ryan et al. (Ryan et al., 2011) showed that
passive stiffness and peak torque as well as passive stiffness and
amount of muscle tissue are well correlated. Accordingly, lower

strength capability and smaller muscle cross-section or muscle
thickness might be related to lower stiffness, which might influence
the passive peak torque and therefore, it can be hypothesized that it
may be harder to reach high mechanical tension via stretch.

Especially considering the significant higher flexibility in females
in the present study (i.e., in ORTH) and in previous research (Cipriani
et al., 2012) with an accompanied lower degree of stiffness (Yu et al.,
2022), it could be speculated that it is more challenging to induce a
high mechanical stimulus to the stretched muscle compared to males.
It might be hypothesized that in male participants, due to lower
baseline flexibility, higher relative magnitudes of ROM improvements
could be reached compared to females. Since high degrees of stretch
are reported to be important to induce greater ROM and changes in
muscle architecture (Apostolopoulos et al., 2015; Freitas et al., 2015;
Freitas andMil-Homens, 2015), it can be hypothesized that differences
in stretch intensity could be responsible for sex differences.

However, since intensity in stretching is often quantified using the
VAS (Freitas et al., 2015; Warneke et al., 2022b; Warneke et al., 2022c;
Hatano et al., 2022) there is a lack of objective quantification of
stretching intensity in the present and previous studies (Lim and Park,
2017), consequently, the role of stretching intensity remains
hypothetical. Even if in some studies [such as Simpson et al.
(Simpson et al., 2017)], a standardized weight was used to perform
stretching, considering the passive torque as an important factor to
achieve mechanical tension, quantification of intensity seems still
questionable. Therefore, an objective quantification of intensity in
stretching literature is necessary in further studies (Nakamura et al.,
2021).

The hypothesis that sex-related differences would depend on the
analysis of absolute vs. relative values (Jones et al., 2021) was not
confirmed in this study. There were only small differences between
stretching responses regarding MSt between absolute and relative
values. It could be hypothesized that differences in the magnitude
of adaptations between absolute and relative values might be a result of
sex differences in bodyweight or fat free muscle mass. As the
participants were all classified as athletically active, a comparably
high homogeneity could be assumed within the group, so
normalization of the data for body mass would only result in a
homogeneous downshift of values without changing the
relationships. Hence, changes in the measures due to stretching
seem not to depend on taking body weight into account, which is
in contrast with findings of Varley-Campbell et al. (Varley-Campbell
et al., 2018) and Jones et al. (Jones et al., 2021). According to the
literature (Sandbakk et al., 2018; Jones et al., 2021), males had higher
absolute muscle mass in pre-as well as post-test compared to females
in the calf muscle and higher MSt measured via MVC90.

Furthermore, the present study showed significant increases in
MVC180 and MVC90 in the non-stretched contralateral leg, which
served as a control condition in this study. Previous research showed
significant contralateral force transfer as well (Nelson et al., 2012;
Caldwell et al., 2019; Warneke et al., 2022b; Warneke et al., 2022c).
Since the measurement design of the present study is limited through
the absence of a non-intervened control group, interpretation
regarding the contralateral force transfer is limited. However,
previous research using similar groups of participants showed no
significant increase in control conditions while significant increases in
MSt in the contralateral control leg were reported as well. The
contralateral force transfer is well known from strength training
routines (Lee and Carroll, 2007; Manca et al., 2021). An
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explanatory approach of Zhou (2000, 2022) attributes increases in the
contralateral leg with afferent signals induced by different training
routines, which could be present without a central innervation of the
muscle by voluntary contraction. This may be of an importance
because no voluntary contraction can be assumed in passive
stretch. The finding of significant increases in ROM for both sexes
is common in the literature (Cipriani et al., 2012; Cejudo et al., 2020)
and is generally attributed to changes in pain threshold or pain
perception (Freitas and Mil-Homens, 2015; Freitas et al., 2018), or
by changes in the muscle tendon unit architecture (Abellaneda et al.,
2009; Nakamura et al., 2017).

4.3 Practical applications

Increases in MSt and MTh are commonly associated with
resistance training routines. Results of this study are in accordance
with previous findings of Warneke et al. (Warneke et al., 2022b;
Warneke et al., 2022c). It can be hypothesized that the stretch training
can possibly be used as a substitution for resistance training, especially
if no active resistance training can be performed to increase MSt and
MTh. This is, for example, the case in rehabilitation of
immobilization-induced muscular atrophy and strength loss
(Stevens et al., 2004; Wilson et al., 2019), if no joint stress or active
muscle contraction can be induced by conventional resistance
training. The individual could provide beneficial anabolic stress to
the affected muscle while watching television, seated and working on a
computer or other similar sedentary activities. Therefore, previous
research pointed out an application of 1 h of stretch to counteract
muscular imbalances in the calf muscles (Warneke et al., 2022d)
without active muscle contraction. Therefore, the results (partially)
confirm recent findings of Li et al. (Li et al., 2022) showing that in
participants with low baseline strength values a sole flexibility training
seems to be effective in increasing strength and flexibility capacity.
However, results of the current study showing also that stretching with
sufficient intensity and duration provide an appropriate stimulus to
induce strength, flexibility and muscle thickness increases in trained
participants. Therefore, the current findings provide deeper insights in
this topic, showing that using stretching, effects are superior in male
participants.

4.4 Limitations

This study had some limitations. Sonography is the most used
assessment to investigate hypertrophy effects because of its relatively
low cost and time-efficiency, and is a valid and reliable procedure to
investigate MTh and MCSA (Mendis et al., 2010; Betz et al., 2021).
Nevertheless, there are studies showing limitations of sonography
especially because of subjective influence of pressure of the transducer
and no real standardization (Hebert et al., 2009; English et al., 2012;
Warneke et al., 2022e), which were confirmed in present study
showing high %-SDs for changes in MTh of the control
group. However, the ICC in the present study is very high for the
obtainedmeasures, providing confidence in the results. In addition, we
did not endeavor to investigate the physiological mechanisms
underlying the increases in range of motion. Thus, we cannot draw
strong inferences as to the underlying explanatory causes of our
findings. In general, adaptations might be influenced by sex

hormones. Those were not assessed regarding this study,
consequently, all discussion about this remains speculative.

5 Conclusion

There are previous studies investigating effects of long-duration
stretch training on MSt, ROM and MTh in animals and humans,
however, without consideration of sex-related differences. The present
study showed that a daily stretching regimen of 1 hour over 6 weeks
led to significant increases in MSt of up to 15% and 8%, ROM of up to
13% and 21% and MTh of up to 5% and 14% in male and female
participants, respectively. However, increases were significantly higher
in male participants compared with females in most measured
parameters. Evaluation procedures in the current stretching
literature typically assess stretching intensity by using subjective
pain threshold, which seems to lack objective (quantitative)
sensitivity. Consequently, further studies should include an
objective quantification of intensity.
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