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In recent years, cervical spondylosis has become one of the most common

chronic diseases and has received much attention from the public. Magnetic

resonance imaging (MRI) is the most widely used imaging modality for the

diagnosis of degenerative cervical spondylosis. The manual identification and

segmentation of the cervical spine on MRI makes it a laborious, time-

consuming, and error-prone process. In this work, we collected a new

dataset of 300 patients with a total of 600 cervical spine images in the MRI

T2-weighted (T2W)modality for the first time, which included the cervical spine,

intervertebral discs, spinal cord, and spinal canal information. A new instance

segmentation approach called SeUneter was proposed for cervical spine

segmentation. SeUneter expanded the depth of the network structure based

on the original U-Net and added a channel attention module to the double

convolution of the feature extraction. SeUneter could enhance the semantic

information of the segmentation and weaken the characteristic information of

non-segmentation to the screen for important feature channels in double

convolution. In the meantime, to alleviate the over-fitting of the model

under insufficient samples, the Cutout was used to crop the pixel

information in the original image at random positions of a fixed size, and the

number of training samples in the original data was increased. Prior knowledge

of the data was used to optimize the segmentation results by a post-process to

improve the segmentation performance. The mean of Intersection Over Union

(mIOU) was calculated for the different categories, while the mean of the Dice

similarity coefficient (mDSC) and mIOU were calculated to compare the

segmentation results of different deep learning models for all categories.

Compared with multiple models under the same experimental settings, our

proposed SeUneter’s performance was superior to U-Net, AttU-Net, UNet++,

DeepLab-v3+, TransUNet, and Swin-Unet on the spinal cord with mIOU of

86.34% and the spinal canal with mIOU of 73.44%. The SeUneter matched or

exceeded the performance of the aforementioned segmentation models when

segmenting vertebral bodies or intervertebral discs. Among all models,

SeUneter achieved the highest mIOU and mDSC of 82.73% and 90.66%,

respectively, for the whole cervical spine.
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1 Introduction

Degenerative cervical spondylosis is a chronic and

progressive degeneration of osseocartilaginous components of

the cervical spine that is usually related to wear and tear during

aging (Theodore, 2020). Patients with degenerative cervical

spondylosis may present with neck pain, cervical

radiculopathy, or myelopathy due to the compression and

inflammation of the nerve roots and spinal cord (Voorhies,

2001). A recent Global Burden of Disease study estimated that

nearly a third of a billion people worldwide had neck pain

(Dieleman et al., 2020; Safiri et al., 2020). Despite the huge

personal and socioeconomic burden that neck pain causes, it

receives only a fraction of research attention and publicity

compared to low back pain (Cohen, 2015). Medical imaging

techniques such as radiographs, computed tomography (CT),

and magnetic resonance imaging (MRI) are widely used in the

diagnosis of degenerative cervical spondylosis. Of them, MRI is

the most used imaging modality for the diagnosis of the cervical

degenerative disc disease and neurological compression because

it can clearly show the anatomical details of the cervical spine,

including the vertebral body, intervertebral disc, spinal canal, and

spinal cord. However, in current clinical practice, the manual

identification and segmentation of the components of the

cervical spine on MRI make it a laborious, time-consuming,

and error-prone process, particularly in basic medical

institutions. The development of an MRI-based automated

and accurate segmentation system of cervical spine

components is urgently needed. Several kinds of literature

reported the automated segmentation of the lumbar spine

based on deep learning.

In recent years, artificial intelligence technology has played

an important role in medical imaging processing. Convolutional

neural networks (CNN) have unique advantages in image

processing with their special structure of local weight sharing

and are widely used in various downstream tasks. In semantic

segmentation, the common architectural design was mainly the

encoder–decoder structure, such as FCN (Shelhamer et al., 2017),

U-Net, and DeepLab-v3+ (Chen et al., 2018). Among them, the

structure of U-Net could often achieve superior performance

when the number of samples was insufficient, so various U-Net-

based methods were proposed. H-DenseUNet (Li et al., 2018)

included a 2D DenseUNet for efficiently extracting intra-slice

features and a 3DDenseUNet aggregation for the liver and tumor

segmentation. UNet++ (Zhou et al., 2018) added the nested and

dense skipped connections based on U-Net. The nnU-Net

(Isensee et al., 2019) was a robust adaptive framework based

on 2D and 3D U-Nets. The subsequently proposed UNet3+

(Huang et al., 2020) used full-scale skipped connections to fuse

feature maps of different scales for segmenting the positions and

boundaries of organs in images. A novel Low-cost U-Net (LCU-

Net) (Zhang et al., 2021a) for the environmental microorganism

(EM) image segmentation task was proposed to assist

microbiologists in detecting and identifying EMs more

effectively. In addition, the attention mechanism was also

introduced into segmentation tasks in medical image

segmentation. For example, attention U-Net (Oktay et al.,

2018) was integrated based on the U-Net and attention gates.

Several researchers had introduced the transformer (Vaswani

et al., 2017) to computer vision tasks. Some models added

transformer modules or completely relied on the transformer

to design segmentation networks. U-Net (Hatamizadeh et al.,

2021) applied the transformer as an encoder to learn a sequential

representation of the input volume and capture global multi-

scale information efficiently, while also following the design of a

successful “U-shaped” network. TransUNet (Chen et al., 2021)

took the transformer as the basic network architecture and

combined it with U-Net to enhance the finer details by

recovering the local spatial information of the image. It was

an alternative framework for the main medical image

segmentation methods based on FCN. Swin-Unet (Cao et al.,

2021) was the first pure transformer-based U-shaped

architecture, using the hierarchical Swin Transformer (Liu

et al., 2021) with shifted windows as the encoder to extract

contextual features.

Deep learning (DL) algorithms were also widely used in

image segmentation ofMRI datasets. In 2021, a DL-based lumbar

spine MRI segmentation method was proposed (Li et al., 2021).

At the same time, a new detection-guided hybrid supervised

segmentation network (Suri et al., 2021) was proposed to achieve

automatic lumbar spine segmentation on T2-weighted (T2W)

MRI. The newly proposed DGMSNet (Pang et al., 2022) network

enabled the automated, multimodal segmentation of vertebral

bodies and intervertebral discs, while the concurrently proposed

2D U-Net model (Hwang et al., 2021) segmented the lumbar

bone marrow in sagittal T1-weighted MRI. Zhang and Wang

(2021) proposed a novel segmentation method for the cervical

vertebrae based on PointNet++ and converging segmentation.

For spinal cord segmentation, some methods based on the

morphology, region, and watershed were used to judge and

segment spinal cord information (Ahammad and Rajesh,

2018; Garg and Bhagyashree, 2021).

However, the current segmentation tasks mainly involved the

segmentation tasks of the lumbar and thoracic spine, and the

research on the segmentation of the cervical spine MRI images

was still lacking. Given the smaller vertebral bodies and discs

compared to the lumbar spine, the greater variation in endplate

shape and the lack of consideration of the spinal cord data and

the relative segmentation task of the cervical spine remained a

challenge. Many current studies only focused on the
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segmentation of the cervical vertebral mass or the segmentation

of the spinal cord, without joint-training segmentation, or fail to

achieve the end-to-end goal by multi-step segmentation. The

identification of the cervical spinal cord together with the spinal

canal was of critical importance for further automated diagnosis

of spinal stenosis or neural compression. Therefore, we aimed to

develop a new segmentation method for the automatic

segmentation of the cervical spine MRI image, including the

cervical vertebrae, cervical disc, spinal cord, and spinal canal.

Considering that the majority of cervical spine disorders were

diagnosed by MRI, our proposed model held great promise for

the automatic diagnosis of cervical spine disorders.

In this paper, a new dataset of cervical spine MRI was

collected. The images were acquired in the T2-weighted

(T2W) mode, including the cervical vertebral body,

intervertebral disc, spinal canal, and spinal cord. The whole

MRI dataset contained 600 images in total, with 16 categories

(including the background), which was used for instance

segmentation in this work.

To make the dataset more suitable for the segmentation task

and alleviate the problem of insufficient samples, we proposed a

new improved model termed SeUneter based on the classical

U-Net architecture (Ronneberger et al., 2015), which enjoyed the

main structure of U-Net, including skipped connections and a

U-shaped structure. SeUneter adjusted the network depth and

introduced the channel attention mechanism into U-Net.

Specifically, through deepening the depth of the network and

improving its extraction of feature information, the down-

sampling process was extended to a depth of five layers, and

its dimension changes to 1024 × 16×16. In addition, in order to

expand the feature extraction capability of the double-layer

convolution (double conv) in U-Net, a channel attention

module (SeNet (Hu et al., 2018)) was added to the double

convolution in each layer, in order to learn the information of

channels in the convolution process. This way, it could enhance

the channels that are beneficial to the segmentation results and

weaken the adverse effects, to improve the segmentation ability of

the model. Moreover, we leveraged the characteristics of the

dataset to optimize and adjust the segmentation results through

prior knowledge. On the basis of model adjustment, we used a

data augmentation strategy named Cutout (Devries and Taylor,

2017) to increase the availability of the data samples and alleviate

over-fitting.

Our contributions could be summarized as follows: 1) the

SeUneter method was proposed to improve the performance of

the original U-Net. SeUneter deepened the network layer at the

network level to achieve the extraction of deep characteristics by

adding channel attention in the original dual-layer convolution

and transferring the characteristics in the channel to the direction

that was conducive to image segmentation. 2) Enhancing the

training data through data augmentation Cutout eased the over-

fitting situation to a certain extent and achieved segmentation

improvement. 3) The structure of the segmentation result and the

interior of the segmentation were adjusted and optimized

according to the prior knowledge of the cervical spine MRI

medical image data. 4) A medical image MRI dataset for

cervical spine segmentation at our institution was collected,

including 600 MRI images of 300 patients, each image

contains 15 segmentation class labels and background (sixteen

classes in total), which could be used for instance segmentation.

FIGURE 1
Diagram of the SeUneter approach.
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2 Methods and materials

2.1 Dataset

This study was approved by the Ethics Committee of

Biomedical Research, West China Hospital of Sichuan

University. Written informed consent was waived because of

the retrospective nature of data collection (age/gender) and the

use of de-identified MRI images. A total of 319 consecutive

patients in an age range between 18 and 95, who were prescribed

cervical MRI for medical reasons and who were scanned between

2019 and 2021 using either of the Siemens 3.0-T scanners at the

West China Hospital of Sichuan University. In all, 19 patients

were excluded for the following reasons: 1) incomplete image of

the cervical spine (n = 17); 2) insufficient MRI quality (n = 3).

Finally, 300 patients were retrospectively collected in this study.

The images were acquired in the T2-weighted (T2W), including

the cervical vertebral body, intervertebral disc, spinal canal, and

spinal cord. The whole MRI dataset contained 600 images in total,

with 16 categories: cervical bodies: C2, C3, C4, C5, C6, C7, and T1;

cervical intervertebral disc: C2/3, C3/4, C4/5, C5/6, C6/7, andC7/T1;

spinal canal; spinal cord; and background. Since eachMRI contained

a complete set of 16 categories, the total dataset had a total of 600 of

each category.

2.2 Approach

The slices of MRI images were thicker than other medical

images such as CT; hence, there were relatively fewer available

MRI images. However, the insufficient volume of data may cause

the models to over-fit during the training process. The U-shaped

structure could concatenate the same-level information of an

encoder and decoder into a small number of medical samples,

thus providing more refined features for segmentation,

alleviating over-fitting, and improving the segmentation ability

to a certain extent.

In this paper, considering the size information ofMRI images

and the use of the channel attention mechanism in the

convolutional network, we propose an improved U-Net

method, called SeUneter, which contains two components: the

SeDeepUnet model and post-processing. SeDeepUnet realizes

the segmentation of the cervical spine MRI image, and post-

processing is used to adjust the segmentation results by using

prior knowledge about cervical spine MRI images to obtain more

precise results. As shown in Figure 1, the overall structure design

of the SeDeepUnet model is like the U-Net structure, while it

deepens the layers and further samples to the 16 × 16 size to

extract more detailed feature information and designs the

different channel weight during the further convolutional

process formed through the convolution. Furthermore, the

double conv is re-designed by adding the SeNet channel

attention module. In the meantime, to reduce the over-fitting

phenomenon brought on by less data, the original training data

have been augmented by Cutout.

2.2.1 Data augmentation
Deep neural networks often over-fit when it learns from less

data, which is due to the difficulty of capturing features and

requires a more complicated network design. Hence, the low data

FIGURE 2
Comparison image of the original sample and the augmented sample of the three diagrams.
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volume is not enough to support the training of models. Then,

increasing the volume of training data samples through a certain

data augmentation method can alleviate the excess of the model

to a certain extent. Considering that the photos of the MRI

cervical spine medical images (such as the shooting posture, and

the position of the cervical spine) are similar on the whole, the

division of the MRI cervical spine images is a fine-grained

learning problem. Therefore, the Cutout method for data

augmentation of MRI images is adopted in our approach, to

improve the robustness and overall performance of

convolutional neural networks.

The MRI dataset was divided into training and testing parts,

and the training concentration includes 175 cases; each case only

contained two more clear MRI cervical spine images. To retain

the original details of the original image, the image was not

cropped or resized and the size was maintained at 512 × 512, but

the process of data augmentation by the Cutout method (Devries

and Taylor, 2017) was performed, which expanded the number

to 700 samples.

The Cutout contained two parameters: the number of masks

Holen and the hole border that needed to be maskedMaskl. The

Cutout erased the original image information by randomly

selecting a square area of a fixed size and then using an all-0

fill method. In this work, we set theHolen as 5 and theMaskl as

47, which were cut randomly for each picture. Masking the local

information so that most feature information is retained, the

generalization ability of the model is improved.

mask randx: randx +Maskl, randy: randy +Maskl( ) � 0. (1)
image � image pmask. (2)

Themask was constructed to erase the original sample, randx
was a random value based on the image width, randy was a

random value based on the image height, Maskl was the edge

length of the square filled with zero, image was the original

image, and additionally, Holen was the number of squares to be

erased.

The comparison image of the original sample and the

augmented sample is shown in Figure 2. A small square area

was randomly selected for an image, and the pixel value in this

area was set to 0. The Cutout may enable CNNs to make better

use of the global information about an image, rather than relying

on a small set of specific visual features.

2.2.2 The SeDeepUnet model
As Figure 1 shows, for extracting more underlying image

information, the SeDeepUnet’s structure grows to a deeper

dimension. The encoding part contains five lower sampling

FIGURE 3
Three main anomaly segmentation cases from the validation set.

FIGURE 4
Multiple progressive modules for the post-processing
section.
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modules, and the number of channels is increased to 1,024 to

extract features of the cervical spine data. The decoding part

contains five upper sampling modules, which are used to restore

the image feature extraction to the original image size and

implement the pixel segmentation.

In addition to deepening the network layer, considering that

double conv operations in traditional U-Net did not analyze the

importance of the channel, the channels after equal convolution

are defective. The effects of different channels will have different

effects, so the effect of individual channels is distributed by

adding a channel attention mechanism in the current network

layer.

The adverse channel is weakened, and the benefit is

enhanced; the SeNet module can extract more useful feature

information. Specifically, SeNet first uses the squeeze operation

of the feature map obtained by convolution to obtain the global

characteristics of the channel level and then uses the excitation

operation of the global features to learn the relationship between

each channel. In essence, SeNet is an attention mechanism or

door control operation in the channel dimension. As shown in

Figure 1, SeNet is applied to each double conv of U-Net to realize

the attention of the channel, and it contains more information for

the important channel, to reduce the impact of interference.

2.2.3 Model learning
In our model, the objective is the combined classification loss

(i.e., cross-entropy) and Dice Loss. The cross-entropy loss

(CeLoss) evaluates the class prediction of each pixel vector

individually and then averages over all pixels, which gives a

better prediction of the global information of the image. The Dice

Loss is used to evaluate the similarity of two sample statistics,

which essentially measures the overlap of the two samples. The

Dice Loss (DeLoss) is equivalent to global examination, while

cross-entropy is approximated pixel-by-pixel microscopically,

with complementary perspectives, which can alleviate the

situation when there is an extreme imbalance between the

front and back view and when there is an imbalance in the

segmentation content, while CeLoss can play a guiding role for

Dice Loss. We use the combination of the cross-entropy function,

CeLoss1, and the DeLoss2 function to show the degree of

difference between the prediction and the actual data, as

shown in Eqs 3, 4, 5:

CeLoss � − 1
N

∑N

i�1∑
C

c�1g
c
i logs

c
i , (3)

DeLoss � 1 − 2 y ⋂ŷ
∣∣∣∣

∣∣∣∣
y
∣∣∣∣
∣∣∣∣ + ŷ

∣∣∣∣
∣∣∣∣
, (4)

Loss � λCeLoss + 1 − λ( )DeLoss. (5)

Cross-entropy (CE) was a measure of the difference between

two distributions, where i was each pixel, c is the classification, gc
i

was an indication of whether the classification was correct, and sci
was the probability of being classified into a certain class. Dice

was used to calculate the similarity between two images, where y

represented the true segmentation label and ŷ represented the

segmentation result predicted by the model. The loss function

allocated the cross-entropy loss function and the dice loss

function with λ. We set λ to 0.5 in the experiment.

2.2.4 Post-processing
In general, after training using the training dataset, deep

learning models are directly used to perform the segmentation.

However, there are some cases that are not expected. As shown in

Figure 3, three main abnormal segmentation cases are present in

the validation set. In the proposed method, fine-tuning is

performed according to the segmentation results and the

relevant knowledge of the data itself after the segmentation

task to overcome the aforementioned abnormal cases. As

shown in Figure 4, the post-processing of the current cervical

spine data is mainly divided into two parts: the first two are

external optimizations and the next two are internal

optimizations.

2.2.4.1 Optimizing external segmentation results

Considering that the number of labeling classes in the current

cervical spine data is consistent, we first remove the large block

anomaly segmentation. For the large redundant anomaly,

segmentation result YP, its structure is often very different

from that of the labeled YL. Therefore, a larger size kernel,

KerL, is used to perform the connected domain operation, and

the obtained block information Y 1
B
is used to judge the structural

abnormality of the block segmentation result in YP. A larger

FIGURE 5
Cervical bodies: C2, C3, C4, C5, C6, C7, and T1; cervical
intervertebral disc: C2/3, C3/4, C4/5, C5/6, C6/7, and C7/T1; spinal
canal; and spine cord.
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threshold ηl is used to filter the block information. If there is a

large abnormal structure, after comparing with a large threshold,

the segmentation results below the threshold will be replaced and

modified into background labels; otherwise, the category

information of the original segmentation results will be retained.

In contrast, after the removal of the larger abnormal

segmentation results is completed, some small block abnormal

segmentation information is still hidden in the segmentation

results. At this time, through the connected domain operation

with the small kernel size, the segmentation results after the first

optimization are classified into fine-grained. Considering that the

single cervical vertebra segmentation has a certain size, a smaller

threshold ηs is set, and the pixel category below the current

threshold information is classified as the background label.

2.2.4.2 Optimizing internal segmentation results

After completing the two-step abnormal optimization of the

external segmentation result, the abnormal structure in the

segmentation result is eliminated. The adjustment basis for

the internal segmentation result comes from the unified

correction of the segmentation result and the connected

domain. Considering that there may be a large connection

relationship between the spinal cord information and multiple

cervical vertebrae during segmentation, the original

segmentation results are separated according to the spinal

cord and cervical vertebrae.

If the number of segmentation classes that remove the spinal

cord information (class = 14) is equal to the result of the

connected domain, it is considered that the connected domain

brings segmentation information, which is equivalent to the

segmentation result, and the segmentation result is perfected

according to the result of the connected domain. If the number of

results of the connected domain segmented is greater than the

current number of segmentation classes, it is considered that the

segmentation result contains additional abnormal information.

The segmentation result is adjusted to hide the additional

information about the current connected domain and adjust

the result.

The fact that the connected domain segmentation result is

smaller than the number of classes is mainly because of the

adhesion in the vertebral disc of the segmentation result.

Therefore, the cervical spine and the intervertebral disc are

separated. Considering the small volume of the intervertebral

disc, only the original segmentation was adjusted according to its

segmentation result. For the segmentation of the intervertebral disc,

considering its adhesion with the spinal cord information, an

additional number of categories will be introduced under the

connected domain operation. However, this part of the

additional information is relatively small, so a smaller new

threshold is introduced here to eliminate the influence of spinal

cord information and then performing the segmentation according

to the connected domain, adjusting the original segmentation result.

In contrast, the adjustment of the segmentation results of the spinal

cord and other information only fills the inner cavity, which has little

effect on the change of the results.

2.3 Experiment

2.3.1 Data description
This experiment uses 2D image data in the T2-weighted

(T2W) mode of MRI, where each patient is labeled with two

TABLE 1 Performance improvement of the model after the stacking of different modules (%).

Metrics U-Net U-Net +
A1

U-Net +
A1 +
A2

U-Net +
A1 +
A2 +
A3

U-Net +
A1 +
A2 +
A3 +
A4

DSC (±STD) 85.18 ± 1.61 87.24 ± 1.70 89.00 ± 1.66 90.14 ± 1.62 90.67 ± 1.63

Note: DSC, Dice similarity coefficient; STD, standard deviation; and A1 means adding the SeNet module, A2 increases the model depth in the previous process, A3 adds data enhancement

operations, and A4 introduces post-processing operations in the segmentation results to optimize the segmentation performance.

FIGURE 6
Testing Dice and training loss SeUneter with data
augmentation and without data augmentation.
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slices. These annotated data were converted into the png format

needed for the model. The classes to be segmented are 16

(including the background) (Figure 5).

2.3.2 Experiment setting
In the experimental training process, we set the relevant

parameters of the training process, the learning rate of the model

is uniformly set to 1e-05, batch size is 6, epoch is 200, the

backpropagation method is RMSprop, and the measured metric

is the mean Dice similarity coefficient. The U-Net, AttU-Net

(Attention U-Net), UNet ++, DeepLab-v3+, Swin-Unet, and

TransUNet are selected for experimental comparison.

Measures of interest include the mean of IOU (mIOU) index

for the different categories and the mean of Dice similarity

coefficient (mDSC) and mIOU for all classes. A 10-time

validation strategy was performed on each model. Among the

600 images, 350 images are used for training sets, 100 validation

sets, and 150 test sets.

TABLE 2 Post-processing performance (%).

Metrics Origin Step-1 Step-2 Step-3 Step-4

DSC (±STD) 90.14 ± 1.62 90.16 ± 1.57 90.16 ± 2.18 90.67 ± 1.33 90.67 ± 1.63

Note: DSC, Dice similarity coefficient; STD, standard deviation.

FIGURE 7
Comparison image of the original sample and the post-processing sample of the three diagrams.
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2.4 Statistical analysis

The Shapiro–Wilk test verified the normality of the data

distribution, and the data that satisfied a normal distribution are

represented by the mean value and standard deviation. A paired

t-test was adopted for comparisons between our method and

baseline methods (the U-Net, AttU-Net (Attention U-Net), UNet

++, DeepLab-v3+, Swin-Unet, and TransUNet). p < 0.05 was

considered statistically significant.

3 Results and discussions

3.1 Ablation experiment

For different adjustments of the model, the effects of different

modules on the results are verified according to their progressive

relationship, and the results brought by different adjustments are

shown in Table 1. Among them, A1 means adding the SeNet

module, A2 increases the model depth in the previous process,

A3 adds data enhancement operations, and A4 introduces post-

processing operations in the segmentation results to optimize the

segmentation performance. When adding the module of A1, the

U-Net + A1 performed significantly better in terms of the mDSC

compared to U-Net (87.24 ± 1.70 vs. 85.18 ± 1.61; p = 0.009). In

addition, the mDSC was improved by more than 5% using

A1+A2+A3+A4 (90.67 ± 1.63 vs. 85.18 ± 1.61; p < 0.05). The

U-Net combined with A2, A3, and A4 performed significantly

better in terms of the mDSC compared to U-Net + A1 (90.67 ±

1.63 vs. 87.24 ± 1.70; p < 0.001).

3.2 Image augmentation comparison

To verify the influence of data augmentation during training, the

training loss and testing Dice in each epoch were plotted. As shown

in Figure 6, the model using augmented data gradually smoothed its

loss, which indicates that the model reached convergence. Without

data augmentation, the drop of loss is lower, while the Dice index is

relatively lower, indicating that the model produces over-fitting on

the current dataset, while the data augmentation Cutout makes the

data samples more differentiated and reduces the over-fitting of the

model to some extent. Also, after adding the Cutout operation, its

model can reach the smooth state more quickly.

3.3 Post-processing comparison

To prove the effectiveness of post-processing, the results of

multiple processes of post-processing are verified according to

different results. As showed in Table 2, after adopting post-

processing, the mDSC was improved (90.67 ± 1.63 vs. 90.14 ±

1.62) but did not reach a level of statistical significance (p =

0.506). According to Figure 7, after post-processing, abnormal

TABLE 3 Mean of the IOU for a segmented class (%).

Class Model

U-Net AttU-Net UNet++ DeepLab-v3+ TransUNet Swin-Unet Ours

Background 99.13 99.13 99.11 99.07 99.11 98.94 99.21

C2 81.89 81.01 80.69 78.29 80.5 76.9 82.63

C2/3 77.47 77.12 75.64 74.76 73.09 69.93 78.21

C3 87.17 87.61 85.54 84.15 84.42 81.37 88.35

C3/4 73.57 77.96 76.14 76.87 74.47 69.87 78.95

C4 77.39 87.48 83.79 85.24 84.44 79.50 88.84

C4/5 68.92 78.24 71.81 77.61 75.15 69.30 78.84

C5 75.22 83.81 79.11 83.57 82.89 77.03 85.44

C5/6 67.65 75.87 69.96 75.54 73.52 68.80 76.47

C6 76.8 81.39 78.47 84.03 83.3 76.31 85.31

C6/7 69.47 70.74 69.14 77.13 74.85 67.52 76.13

C7 76.17 77.37 74.50 85.79 85.14 77.68 84.97

C7/Tl 70.46 70.41 63.99 78.29 74.61 64.70 76.60

T1 77.35 77.53 73.68 85.5 85.9 75.07 83.93

Spinal cord 85.46 85.55 85.49 84.86 83.84 79.95 86.34

Spinal canal 72.47 72.82 72.43 70.59 66.89 62.94 73.44

Note: IOU, Intersection Over Union.

Bold represents the largest value of the row.
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FIGURE 8
Segmentation effect on different models for two patients with a total of four legends.

TABLE 4 Metrics for each model (%).

Metrics U-Net AttU-Net UNet++ DeepLab-v3+ TransUNet Swin-Unet Ours (U-Net +
A1 + A2
+ A3 +
A4)

IOU (±STD) 77.29 ± 1.45 80.25 ± 1.55 77.47 ± 1.58 81.33 ± 1.54 80.13 ± 1.64 74.74 ± 2.06 82.73 ± 1.59

DSC (±STD) 85.09 ± 1.65 87.68 ± 1.55 85.08 ± 1.62 88.78 ± 1.78 87.9 ± 1.53 84.51 ± 1.55 90.67 ± 1.31

Note: IOU, Intersection Over Union; DSC, Dice similarity coefficient; STD, standard deviation. A1 means adding the SeNet module, A2 increases the model depth in the previous process,

A3 adds data enhancement operations, and A4 introduces post-processing operations in the segmentation results to optimize the segmentation performance.
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segmentation was corrected and the edges were segmented more

precisely, thus more closely matching the ground truth.

3.4 Experimental results of multiple
models

We tested the performance metrics of some strong image

segmentation algorithms to verify the possible results achieved by

different models. As shown in Table 3, during the measurement,

the proposed SeUneter performed superior to U-Net, AttU-Net,

UNet++, DeepLab-v3+, TransUNet, and Swin-Unet on the

spinal cord with mIOU of 86.34% and the spinal canal with

mIOU of 73.44%. The SeUneter matched or exceeded the

performance of the aforementioned segmentation models

when segmenting vertebral bodies or intervertebral discs.

In addition, Table 4 showed that our proposed SeUneter

achieved the highest mIOU of 82.73%, outperforming U-Net

(82.73 ± 1.59 vs. 77.29 ± 1.45; p < 0.001), AttU-Net (82.73 ±

1.59 vs. 80.25 ± 1.55; p = 0.002), UNet++ (82.73 ± 1.59 vs. 77.47 ±

1.58; p < 0.001), TransUNet (82.73 ± 1.59 vs. 80.13 ± 1.64; p =

0.001), and Swin-Unet (82.73 ± 1.59 vs. 74.74 ± 2.06, p < 0.001).

The mDSC of SeUneter was higher than that of DeepLab-v3+

(82.73 ± 1.59 vs. 81.33 ± 1.54) but did not reach a level of

statistical significance (p = 0.073).

Furthermore, our proposed SeUneter achieved the highest

mDSC of 90.67%, outperforming U-Net (90.67 ± 1.31 vs. 85.09 ±

1.65; p < 0.001), AttU-Net (90.67 ± 1.31 vs. 87.68 ± 1.55; p <
0.001), UNet++ (90.67 ± 1.31 vs. 85.08 ± 1.62; p < 0.001),

DeepLab-v3+ (90.67 ± 1.31 vs. 88.78 ± 1.78; p = 0.016),

TransUNet (90.67 ± 1.31 vs. 87.9 ± 1.53; p = 0.001), and

Swin-Unet (90.67 ± 1.31 vs. 84.51 ± 1.55; p < 0.001).

As shown in Figure 8, the SeUneter model could segment the

model more clearly in terms of pixel points, and the prediction of

the edges was smoother compared with other networks.

4 Conclusion

In this paper, we collect and label a new medical image

segmentation dataset for cervical MRI. We propose an improved

method called SeUneter, which is based on the U-Net network by

deepening the network structure and introducing channel attention

to adapt the feature information of the current dataset. Furthermore,

the proposedmethod using the characteristics of the data to construct

its prior knowledge and correct the deficiencies of the model

prediction performance achieves slightly better results than the

current high-level segmentation methods in the cervical spine

segmentation task. In future works, further exploration of model

over-fitting can be attempted to improve the robustness of the

current dataset in different models. Future works can be further

enriched. The transformermay be further used to compensate for the

lack of the CNN convolutional feature extraction and build multi-

scale feature fusions to enhance the information of the sample itself to

further optimize the segmentation performance of the model.
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