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Purpose: Myocardial infarction (MI) is one of the most common cardiovascular
diseases, frequently resulting in death. Early and accurate diagnosis is therefore
important, and the electrocardiogram (ECG) is a simple and effective method for
achieving this. However, it requires assessment by a specialist; so many recent works
have focused on the automatic assessment of ECG signals.

Methods: For the detection and localization of MI, deep learning models have been
proposed, but the diagnostic accuracy of this approaches still need to be improved.
Moreover, with deep learning methods the way in which a given result was achieved
lacks interpretability. In this study, ECG data was obtained from the PhysioBank open
access database, and was analyzed as follows. Firstly, the 12-lead ECG signal was
preprocessed to identify each beat and obtain each heart interval. Secondly, a multi-
scale deep learning model combined with a residual network and attention mechanism
was proposed, where the input was the 12-lead ECG recording. Through the SENet
model and the Grad-CAM algorithm, the weighting of each lead was calculated and
visualized. Using existing knowledge of the way in which different types of MI gave
characteristic patterns in specific ECG leads, the model was used to provisionally
diagnose the type of MI according to the characteristics of each of the 12 ECG leads.

Results: Ten types of MI anterior, anterior lateral, anterior septal, inferior, inferior lateral,
inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral were
diagnosed. The average accuracy, sensitivity, and specificity for MI detection of all
lesion types was 99.98, 99.94, and 99.98%, respectively; and the average accuracy,
sensitivity, and specificity for MI localization was 99.79, 99.88, and 99.98%, respectively.
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Conclusion: When compared to existing models based on traditional machine learning
methods, convolutional neural networks and recurrent neural networks, the results
showed that the proposed model had better diagnostic performance, being superior
in accuracy, sensitivity, and specificity.

Keywords: myocardial infarction, multi-lead ECG, residual network, attention mechanism, gradient class
activation mapping

INTRODUCTION

Myocardial infarction (MI) resulting from coronary artery
occlusion causes rapid and irreversible myocardial injury and
before the event, the occlusive lesion often causes no warning
symptoms. According to the World Health Organization,
coronary heart disease is the main cause of MI, accounting for
approximately one third of deaths in those over 35 years old
(Roger, 2007). It is estimated that an additional 155,000 silent
first MIs, i.e., those with few, if any symptoms, occur every year
(Benjamin et al., 2018).

The early detection of MI is of great value in averting
complications such as heart failure, and arrhythmia, as well
as death. The ECG is a rich source of information about the
performance of the heart and is the most widely used means
to diagnose cardiovascular disease (Sharma and Sunkaria, 2018,
2020; Zhang and Li, 2019). In patients, at risk of cardiovascular
disease, the ECG signal may depart from its normal pattern
in a way which can reveal the presence of abnormal heart
activity, often before overt symptoms are seen. Thus, the ECG
is important for the early diagnosis of a variety of cardiovascular
pathologies, including MI. However, to analyze the ECG signal
is time consuming and requires specialist knowledge. In recent
years, machine learning and deep learning have become widely
used for disease diagnosis, including cardiovascular disorders
such as arrhythmia (Wang et al., 2010; Oh et al., 2019; Yao
et al., 2020). For the diagnosis and prediction of MI, many
machine learning models have been proposed. Dohare et al.
(2018) extracted 220 features of the ECG signal including P
wave duration, QRS duration, ST-T composite interval and
QT interval, and obtained 14 features by principal component
analysis, which were then input into a support vector machine
(SVM) model to detect MI. Diker et al. (2018) used 23
features extracted from the morphology, statistics and discrete
wavelet transform of ECG signals, and employed a genetic
algorithm to reveal the most relevant features. In the process,
the dimensionality of the feature set was reduced from 23 to
9. Finally, a SVM model was employed to classify the features.
Sharma et al. (2018) decomposed the ECG signal into six
sub-bands by the wavelet transform, and then extracted three
features such as entropy, signal fractal dimension and Rennie

Abbreviations: A, anterior; ACC, accuracy; AL, anterior lateral; AS, anterior
septal; BN, batch normalization; CNN, convolutional neural networks; ECG,
electrocardiogram; Grad-CAM, gradient class activation mapping; I, inferior; IL,
inferior lateral; IP, inferior posterior; IPL, inferior posterior lateral; KNN, K-nearest
neighbors algorithm; L, lateral; LSTM, long short-term memory; MI, myocardial
infarction; P, posterior; PL, posterior lateral; PRE, precision; RNN, recurrent neural
networks; SPE, specificity; SVM, support vector machine.

entropy from the sub-bands. Following this the features were
input into the k-nearest neighbors algorithm (KNN) for the
diagnosis of MI. Acharya et al. (2016) extracted four kinds
of features from different decomposition bands using leads II,
III, and AVF, these being sample entropy, normalized sub-
band energy, energy entropy, and average slope. They were
input into the SVM, KNN, and the inert algorithm and their
performance was compared. Sharma et al. (2018) extracted
three time-domain features of each beat (T-wave amplitude,
Q-wave amplitude, and standard deviation) and combined them
with the 12-lead data to form a 36-dimensional feature vector,
which was input to a KNN classifier again for MI diagnosis.
Bhaskar (2015) proposed an artificial neural network based on
preprocessing, the wavelet transform and principal component
analysis to obtain the features of ECG signals for classification.
The performance was analyzed by a back propagation neural
network and a support vector machine. Machine learning
has achieved promising results, but there is still much room
for improvement.

In recent years, deep learning has been widely used in the
diagnosis and prediction of MI. Convolutional neural networks
(CNN) have achieved notable success. Acharya et al. (2017) and
Baloglu et al. (2019) proposed a 10-layer and 11-layer CNN
to detect MI. Reasat and Shahnaz (2017) took three-lead ECG
signal segments and the signal from each lead was input to
an induction module. Tripathy et al. (2019a) have used 12-lead
ECG data for the detection of MI from Physikalisch-Technische
Bundesanstalt (PTB) diagnostic ECG database based on the
deep layer least-square SVM. The CNN was used for used for
the localization of MI. The extracted features were then fed
into a global average pooling layer and finally classified by a
SoftMax layer (Tripathy et al., 2019b). In addition, recurrent
neural networks (RNN) have achieved success in processing
time series signals. Long short-term memory (LSTM), with its
inherent suitability in processing time series signals, provides
higher diagnostic accuracy in combination with a CNN than by
using CNN alone. Lui and Chow (2018) proposed a CNN-LSTM
model to detect MI. Because of its gate structure, LSTM effectively
solves the long-term dependence problem in standard recurrent
neural networks. Although the aforementioned methods have
met with some success, they rely on extracting features manually,
which leads to poor generalization performance and insufficient
accuracy for clinical requirements. Moreover, deep learning
methods obscure the link between the ECG findings and the
underlying pathophysiology.

This study was motivated by the limited performance of
current methods for diagnosing MI from the characteristics
of ECG signals as well as the lack of feature analysis
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obtained by deep learning methods. To overcome these
limitations, an ECGNet model which contains a multi-scale
ResNet based on residual blocks, combined with the attention
mechanism approach is proposed for detecting and localizing
MIs. Specifically, the two main motivations were: firstly, to extract
the characteristic information each dimension using a multi-
scale model and to analyze the effect on the various ECG leads
of different types of myocardial infarction. The second was to
further improve the accuracy of the model. When compared to
other approaches based on deep learning, the proposed method
provided more abundant features from the ECG signals. The
main innovations are as follows:

(1) One-dimensional ECG data is treated as a two-
dimensional, and the same convolution kernel is used
in processing the signals from different leads, thus
making full use of the similarity between the different
leads, and reducing the number of parameters without
sacrificing accuracy.

(2) For the same lead, different sizes of convolution kernel are
used to extract diverse features and fuse them to achieve
intelligent detection and accurate positioning of the MI.

(3) Focusing on the influence of different leads on the
localization of MI, the SENet model is added to
automatically calculate the weighting assigned to each lead
for each type of MI immediately before the data is input
into the network and after convolution of different scales.
Thus, the effect of different leads can be analyzed by
visualizing these weights.

(4) The gradient class activation mapping (Grad-CAM)
algorithm is used to calculate the contribution of each

lead to the localization of different types of MI and
is combined with an explanation based on clinical
experience and knowledge of MI pathology to provide an
accurate diagnosis.

The article is organized as follows: Section 2 describes the
materials and methods. Section 3 reports the results of MI
detection and localization, while the discussion and conclusion
are offered in Section 4 and Section 5.

MATERIALS AND METHODS

Datasets
We used the PhysioBank open access database (PTB Diagnosis
ECG database) (Goldberger et al., 2000), which consists of
standard 12-lead ECG data of 52 normal subjects (80 records)
and 148 MI patients (368 records). The ECG signals were
digitized at a sampling rate of 1,000 Hz. The MIs were divided
into 10 types based on their localization: anterior (A), anterior
lateral (AL), anterior septal (AS), inferior (I), inferior lateral
(IL), inferior posterior (IP), inferior posterior lateral (IPL), lateral
(L), posterior (P), and posterior lateral (PL). The database also
includes labels on the ten types of MI and the localization.

Data Preprocessing
The preprocessing of the ECG data consisted of two parts:
removing baseline drift and segmenting the ECG signal to extract
individual heart beats. As shown in Figure 1, a median filter over
333 sample points (333 ms) was used to remove baseline drift.
The R waves were extracted, using the compute_hr function and

A

B

FIGURE 1 | ECG signal before (A) and after (B) preprocessing.
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the correct peaks function in the waveform-database (WFDB)
package for Python. A typical example of the extracted R waves
is shown in Figure 2A. When segmenting the ECG signals, each
segment comprised a total of 651 sampling points, with 250 to
the left of the R-peak (i.e., preceding it) and 400 to the right, as
shown in Figure 2B (Baloglu et al., 2019). This window of 651 ms
was sufficient to capture the QRS complex and the ST segment in
all subjects. Table 1 lists the number of extracted heart beats from
the 12-lead ECG.

The Proposed ECGNet Model
The structure of the proposed model is shown in Figure 3. The
input to the model is a 651 × 12 array. Each channel of the
12-lead ECG is processed using the same convolution kernel.

This approach can not only extract the common characteristics
of the different leads, but also reduce the number of the model
parameters. It is better to use a long convolution kernel model
in ECG signal processing (Hannun et al., 2019). Therefore, at
the start of the processing a relatively long kernel is adopted for
feature extraction. As the network continues to extract features,
the length of the convolution kernel can be reduced, which
in turn reduces the computational burden. When the 12-lead
ECG data is input to the model, the SENet model is applied
to obtain the weighting of the signal from each lead. After the
convolution operation is completed at each scale, the SENet
model is again applied, this time to the eigenvector of each
lead, and the weight information of each lead in the model after
convolution is then updated.

A

B

FIGURE 2 | A typical ECG signal (A) Identification of the R-wave peaks (red crosses) (B) schematic diagram of heartbeat extraction.
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TABLE 1 | Number of 12-lead ECG beats analyzed for healthy subjects and each
type of MI.

MI type Number of beats

Healthy 112,800

Anterior 72,880

Anterior lateral 74,480

Anterior septal 137,680

Inferior 151,520

Inferior lateral 83,600

Inferior posterior 480

Inferior posterior lateral 27,840

Lateral 6,160

Posterior 6560

Posterior lateral 8,880

Total 682,880

A schematic of the network modules of Block1 and Block2 is
shown in Figure 4. As described by He et al. (2016) the improved
residual module is adopted, and the order of the modules is batch
normalization (BN), activation and convolution. In Figure 4, the
only difference between the structures of Block1 and Block2 is
that the processing steps are repeated three times in Block2.

This article adopts the channel attention mechanism proposed
by the SENet network (Jie et al., 2017) for weight learning,
and its structure is shown in Figure 4. Based on the previously
designed multi-scale network, we have introduced the attention
mechanism into the whole feature extraction process, so as to

BN2d

ReLu2d

conv2d

SENet

Block1

BN2d

ReLu2d

conv2d

SENet

Block2

×3

FIGURE 4 | Schematic diagram of Block1 and Block2.

better learn local salient features, and have added the attention
mechanism module to the ResNet module. The module is mainly
realized by three operations: it can adaptively learn the weights
of the various channel feature graphs. The first step is the
squeeze operation. By means of global average pooling, the input
feature map is compressed in the channel direction, and the
two-dimensional feature map is transformed into a real number.
Due to the global pooling, the obtained real number has a
global receptive field. The second step is the exception operation,
which corresponds to two full connection layers and one ReLU
activation function layer. The weight is generated for each feature
channel through the parameter W. The last step is the reweighting
operation, which treats the weight of the exception output as
the importance of each feature channel after feature selection,
and then weights the input features channel-by-channel through

19×1 Conv,32,/2

SENet

15×1 Block1,32,/2 ×3

5×1 Block2,32 ×4 7×1 Block2,32 ×43×1 Block2,32 ×4

SENet

Avgpool

SENet SENet

Avgpool Avgpool

Concat

Softmax

FIGURE 3 | Schematic of the ECGNet model showing the individual modules. Avgpool is the average pooling layer. Concat is the operator to concatenate the
features of different scales, SoftMax is the function which calculates the probability that the sample belongs to each category. The maximum probability determines
that the sample is assigned to the specified class.
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multiplication, to complete the readjustment of the original
features in the channel dimension.

The previously mentioned multi-scale network involves the
sampling of different scales of the signal. Usually, we can observe
different features at different scales to complete different tasks.
Increasing the number of layers (deepening) of the convolutional
neural network corresponds to the feature conversion process
from low-level to high-level feature extraction. For an ECG
signal, the shallow extraction of the network is generally low-
level information such as waveform trends. As the network
deepens, the extracted feature information may already be able to
describe the entire ECG signal. However, each layer will lose some
information in the process. To solve this problem, a solution of
multi-scale feature fusion has appeared. The basic idea is to save
the feature map of the previous layer and to add the feature map
of the current layer, before the network convolution operation of
the layer, so that some information from the previous layer can
be retained and the loss of shallow information can be reduced.

The Class Activation Mapping (CAM) method has been
proposed (Zhou et al., 2016). It is a visualization method that
uses the activation of feature maps to understand neurons in the
output layer. As the depth of the convolutional layer increases,
the scattered detailed features are gradually transformed into
overall contour features. The feature information extracted by
the last convolutional layer is the most abundant, and CAM can
use the information contained in that layer. The CAM calculates
the weight matrix of the neural network by replacing the fully
connected layer in the network with the global average pooling
layer. It uses the weight matrix to weight the feature maps of
the last layer, and to overlap the weighted feature maps into
one matrix. The matrix is drawn and colored using a thermal
imaging color scale and merged with the original input picture
to intuitively display the area on which the model is based
when making a judgment. However, because CAM requires a
change in the structure of the model, it cannot be applied on
a large scale to a well-trained depth model. Selvaraju et al.
(2017) proposed Grad-CAM. For this approach, the idea of
the CAM method is followed, but there is no need to change
the original model and retrain. Instead, the gradient average is
used to calculate the weight, and the deep learning model is
visually displayed. Grad-CAM, as a generalized form of CAM,
has a higher resolution as a thermal imaging color scale. The
time series is used as the abscissa and the 12-lead ECG signal
is used as the ordinate to convert one-dimensional signals into
two-dimensional data.

The ECGNet model training incorporated a categorical cross
entropy loss function and the Adam optimizer with learning rate
of 0.0000008. The training process was stopped when there was
no further reduction in the value of the loss function over 5
consecutive epochs using a batch size of 64. Moreover, for the MI
localization or detection, the model that achieved the lowest error
on the testing dataset was chosen. Hyper-parameters, including
learning rate, batch size, and the number of epochs, seriously
influence the overall performance detection and localization of
MI. These were adjusted by trial and error. The highest validation
accuracy and, as mentioned above, the lowest loss function were
the criteria for selecting model parameters.

Evaluation Metric
In order to evaluate the performance of the model on the testing
data, we calculated the following commonly used evaluation
criteria. These are accuracy (ACC), precision (PRE), sensitivity
(SEN), specificity (SPE), and F1-Score. The TP, FP, TN, and FN
are true positive, false positive, true negative and false negative,
respectively. These are defined as follows:

ACC =
TP+ TN

TP+ FP+ TN+ FN
(1)

PRE =
TP

TP+ FP
(2)

SPE =
TN

TN+ FP
(3)

SEN =
TP

TP+ FP
(4)

F1-Score =
2× SEN× PRE

SEN+ PRE
(5)

RESULTS

The network was developed in Python 3.6.9 using Keras
and TensorFlow as the backend deep learning library. The
workstation used for training the models consisted of two
NVIDIA GeForce TRX 2080Ti, a 32 core CPU and 128 GB
memory. This server ran a Linux system. As shown in Figure 5,
for the evaluation of the model, 85% of the data were used for
training and the remaining 15% for testing. The model training
data are then partitioned for training and validation in the ratio of
7:3. The selection of training and test 12-lead ECG frames for the
ECGNet approach was performed using five-fold cross validation
techniques (Sharma et al., 2018).

Myocardial Infarction Detection
For the detection of MI, each ECG signal was classified as one of
only two types, healthy or MI. Using five-fold cross validation, the
evaluation indexes of the two types of heartbeat were calculated,
according to eqs. (1–5). The results of the MI detection are listed
in Table 2. The average accuracy, sensitivity, specificity, precision,
and F1-score of the detection of HC based on the proposed
method were 99.98, 99.87, 99.99, 99.99, and 99.93%, respectively.
The average accuracy, sensitivity, specificity, precision, and F1-
score of the detection of MI based on the proposed method were
99.98, 99.99, 99.87, 99.98, and 99.98%, respectively.

As shown in Table 3, there are 8,536 samples in the test
data set, among which 7,123 samples of MI were correctly
identified, with an average sensitivity of nearly 100%, and a low
rate of missed detection. Among the 1,410 healthy samples, 1408
were correctly identified and 2 were wrongly classified as MI,
demonstrating the low false detection rate. The results as shown
by the confusion matrix confirm the excellent performance.
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Training for model (85%) Testing (15%)

Training  (70%) Validation (30%)

FIGURE 5 | Distribution of the dataset among training, validation, and testing.

Myocardial Infarction Localization
The classification results of the localization of MI using five-fold
cross validation are listed in Table 4. For inferior posterior and
lateral infarctions, the average sensitivity, specificity, precision,
F1-score were 100%; the classification performance of other
categories was also excellent. Anterior MIs, were detected with
the lowest sensitivity (99.47%), the lowest specificity (99.94%),
the lowest precision (99.45%) and the lowest F1-score (99.46%).
These results strongly support the effectiveness of the proposed
model. During the training process, the accuracy of the loss
function and training set tended to be stable after 25 epochs.
Finally, the accuracy of the training set was 100%, the accuracy
of the verification set was 99.86%, the loss of the verification set
was 0.02413, and the accuracy of the final test was 99.89%. In
order to show the performance of the model in more detail, the
confusion matrix from the test set is given in Table 5. Among the
8536 samples in the test set, 8,527 were correctly classified, and

TABLE 2 | Results of five-fold cross validation for MI detection (HC denotes
healthy controls).

Folds Category ACC (%) SEN (%) SPE (%) PRE (%) F1-score

Fold 1 HC 99.94 99.72 99.99 99.93 99.82

MI 99.94 99.99 99.72 99.94 99.96

Average 99.94 99.86 99.86 99.94 99.89

Fold 2 HC 99.98 99.86 100.00 100.00 99.93

MI 99.98 100.00 99.86 99.97 99.99

Average 99.98 99.93 99.93 99.99 99.96

Fold 3 HC 99.99 99.93 100.00 100.00 99.96

MI 99.99 100.00 99.93 99.99 99.99

Average 99.99 99.97 99.97 100.00 99.98

Fold 4 HC 99.99 99.93 100.00 100.00 99.96

MI 99.99 100.00 99.93 99.99 99.99

Average 99.99 99.97 99.97 100.00 99.98

Fold 5 HC 99.99 99.93 100.00 100.00 99.96

MI 99.99 100.00 99.93 99.99 99.99

Average 99.99 99.97 99.97 100.00 99.98

TABLE 3 | Confusion matrix for MI detection.

Original/Predicted MI HC

MI 7,125 2

HC 1 1,408

1410 normal ECGs were correctly classified as non-MI samples,
so the false detection rate too, was very low. The missed detection
rate was, similarly, very low, with only one MI sample classified
as healthy. In only 8 of the 7,126 MI samples, was the localization
wrongly identified, although in each case the presence of an MI
was correctly detected. The localization error rate was 0.11%,
confirming the excellent performance in detecting the position
of the MIs. The accuracy, sensitivity and specificity were 99.79,
99.88, and 99.98%, respectively.

The signals from different leads are correlated, but the
signal of each lead is one-dimensional, so a two-dimensional
convolution is not applicable. Inspired by the concept of multi-
sensor data fusion, we treated the data from all the leads as
a two-dimensional by combining the one-dimensional signals
from all 12-leads. Thus, each beat of the 12-lead signal was
represented by a 12 × 651 array. To extract abundant feature
information effectively by using a two-dimensional convolution,
three different convolution kernels were used, these being 3 × 1,
5 × 1 and 7 × 1. Taking the 7 × 1 kernel as an example, seven
consecutive sampling points from the same lead were extracted
in one convolution.

According to the association between the localization of the
MI and the pattern of signals from the 12 leads ECG, the
SENet model automatically calculates the weighting of each lead
at the first stage of the model and again after three different
convolution orders. Figure 6 shows the results of this procedure
using representative anterior and inferior MIs as examples.
Initially, with an un-convolved input, there is little variation
in the weighting of each lead, with values between 0.4 and
0.6, as shown in Figures 6A,B. Following convolution, the lead
weightings fall into two patterns according to the convolution
order. As shown in Figure 6C, for the of 3 × 1 convolution
kernel, the weights of leads V6, I, III, and AVL are larger than
the average, and the weights of the other leads are smaller. This
implies that the model “thinks” the features acquired from these
four leads are more important. Figure 6E shows that, for the
5× 1 convolution kernel, the weights of leads I, V5, and AVR are
generally larger, suggesting that the characteristics of these leads
are more important. In addition, the common localizations of
different infarct types will have an effect. For example, the weights
of AVL and V2 are, respectively, 1 and 0.97 for the inferior
infarction in Figure 6F. The weighting information obtained by
the three convolution scales is quite different, which confirms
the notion that the multi-scale model extracts different levels of
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TABLE 4 | Classification performance of MI localization (five-fold cross validation).

Category SEN (%) SPE (%) PRE (%) F1-score
(%)

Number
of beats

Healthy Fold 1 99.93 99.96 99.93 99.93 1,410

Fold 2 100 99.96 100 100 1,410

Fold 3 99.92 99.96 99.93 99.93 1,410

Fold 4 99.93 99.97 99.86 99.89 1,410

Fold 5 99.93 100 100 99.96 1,410

Average 99.94 99.97 99.94 99.94 1,410

Anterior Fold 1 99.45 99.93 99.45 99.45 911

Fold 2 99.34 99.93 99.34 99.34 911

Fold 3 99.56 99.96 99.67 99.62 911

Fold 4 99.45 99.93 99.45 99.45 911

Fold 5 99.56 99.93 99.34 99.45 911

Average 99.47 99.94 99.45 99.46 911

Anterior lateral Fold 1 99.79 99.97 99.79 99.79 931

Fold 2 99.88 99.97 100.00 99.84 931

Fold 3 99.79 99.96 99.68 99.73 931

Fold 4 99.68 100.00 100.00 99.84 931

Fold 5 99.79 99.90 100.00 99.89 931

Average 99.79 99.96 99.89 99.82 931

Anterior septal Fold 1 99.71 99.90 99.59 99.65 1,721

Fold 2 99.95 99.90 99.54 99.59 1,721

Fold 3 99.97 99.93 99.71 99.71 1,721

Fold 4 99.88 99.88 99.54 99.71 1,721

Fold 5 99.59 99.93 99.59 99.59 1,721

Average 99.82 99.91 99.59 99.65 1,721

Inferior Fold 1 99.74 99.98 99.95 99.84 1,894

Fold 2 99.96 99.98 99.84 99.76 1,894

Fold 3 99.89 99.95 99.84 99.87 1,894

Fold 4 99.63 99.97 99.89 99.76 1,894

Fold 5 99.63 99.97 99.79 99.71 1,894

Average 99.77 99.97 99.86 99.79 1,894

Inferior lateral Fold 1 99.90 100.00 100.00 99.95 1,045

Fold 2 100.00 100.00 99.71 99.86 1,045

Fold 3 99.81 99.99 99.90 99.86 1,045

Fold 4 99.63 99.97 99.90 99.95 1,045

Fold 5 99.90 99.95 99.62 99.76 1,045

Average 99.85 99.98 99.83 99.88 1,045

Inferior posterior Fold 1 100.00 100.00 100.00 100.00 6

Fold 2 99.99 100.00 100.00 100.00 6

Fold 3 100.00 100.00 100.00 100.00 6

Fold 4 100.00 99.99 100.00 100.00 6

Fold 5 100.00 100.00 100.00 100.00 6

Average 100.00 100.00 100.00 100.00 6

Inferior posterior
lateral

Fold 1 100.00 99.98 99.43 99.71 348

Fold 2 100.00 99.98 99.71 99.71 348

Fold 3 100.00 100.00 100.00 100.00 348

Fold 4 100.00 100.00 100.00 100.00 348

Fold 5 99.71 99.98 99.43 99.57 348

Average 99.94 99.99 99.71 99.80 348

Lateral Fold 1 100.00 100.00 100.00 100.00 77

Fold 2 100.00 100.00 100.00 100.00 77

Fold 3 100.00 100.00 100.00 100.00 77

Fold 4 100.00 100.00 100.00 100.00 77

Fold 5 100.00 100.00 100.00 100.00 77

Average 100.00 100.00 100.00 100.00 77

Posterior Fold 1 100.00 99.99 98.80 99.39 82

Fold 2 100.00 99.99 98.80 100.00 82

Fold 3 100.00 100.00 100.00 100.00 82

Fold 4 100.00 100.00 100.00 100.00 82

Fold 5 100.00 100.00 100.00 100.00 82

Average 100.00 100.00 99.52 99.88 82

(Continued)

TABLE 4 | (Continued)

Category SEN (%) SPE (%) PRE (%) F1-score
(%)

Number
of beats

Posterior lateral Fold 1 100.00 100.00 100.00 100.00 111

Fold 2 99.99 100.00 99.11 99.55 111

Fold 3 100.00 100.00 100.00 100.00 111

Fold 4 100.00 100.00 100.00 100.00 111

Fold 5 100.00 100.00 100.00 100.00 111

Average 100.00 100.00 99.82 99.91 111

TABLE 5 | Confusion matrix for MI localization.

Original/Predicted H A AL AS I IL IP IPL L P PL

H 1410 0 0 0 0 0 0 0 0 0 0

A 0 910 0 0 0 1 0 0 0 0 0

AL 0 0 929 2 0 0 0 0 0 0 0

AS 1 0 0 1719 1 0 0 0 0 0 0

I 0 2 0 2 1890 0 0 0 0 0 0

IL 0 0 0 0 0 1045 0 0 0 0 0

IP 0 0 0 0 0 0 6 0 0 0 0

IPL 0 0 0 0 0 0 0 348 0 0 0

L 0 0 0 0 0 0 0 0 77 0 0

P 0 0 0 0 0 0 0 0 0 82 0

PL 0 0 0 0 0 0 0 0 0 0 111

feature information from the data, and that the feature set is more
abundant after feature fusion.

Figure 7 shows the weighting of each lead derived from the
Grad-CAM model trained using 406313 samples (i.e., 70% of the
580448 samples used for training). A typical anterior MI is shown
in Figure 7A, and a posterior case, in Figure 7B. For the anterior
case, the relative lead weights are ordered from high to low as
follows: V4, V3, AVL, V5, I, V6, AVR, II, III, V1, V2, and AVF,
where the weights of the lowest 4 (II, III, V1, V2, and AVF) are
0. For the posterior MI, the order is: III, V2, V4, I, AVL, V6, V1,
AVF, II, AVR, V3, and V5, where the weights of the lowest 3 (AVR,
V3, and V5) are 0. In the pathology of MI, leads V3 and V4 are
associated with the anterior wall of the heart, while leads II, III
and AVF are associated with the posterior wall. Thus, V3 and V4
contribute the most to the detection of anterior MIs, while lead
III contributes the most to the detection of posterior MIs (Chang
et al., 2012). It can be concluded that lead weighting analysis
can provide diagnostic information about the localization of the
MI. However, due to the limited sample size in this study and
variability between patients, the results cannot fully explain the
pathological significance of the features extracted by the model.

DISCUSSION

Myocardial Infarction Detection
Table 6 shows that several current approaches, some of which are
briefly discussed below, also perform well in the detection of MI.
Dohare et al. (2018) extracted the peak amplitude, area, average
and standard deviation of the P wave, the QRS band, QT interval
and ST segment of 12-lead ECG signals to act as the feature
set for MI detection. After screening, the features were passed
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to the support vector machine for training, achieving an MI
detection accuracy of 96.66%. The performance of the algorithm
was closely related to the accuracy of prior segmentation of
the ST segment, T wave, Q wave, and P wave. However, the

characteristic ECG changes in patients with MI will vary with the
time since the MI occurred. This increases the difficulty of prior
segmentation of the ECG signal, and greatly affects the ability to
accurately detect MIs.

A B

C D

E F

FIGURE 6 | (Continued)
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G H

FIGURE 6 | 12-lead ECG weightings obtained by SENet. Polar plots from two representative infarctions. (A–G) Anterior MI: (A) without convolution; (C) with 3 × 1
convolution; (E) with 5 × 1 convolution; (G) with 7 × 1 convolution. (B–H) Inferior MI: (B) without convolution; (D) with 3 × 1 convolution; (F) with 7 × 1 convolution;
(H) with 7 × 1 convolution.

A B

FIGURE 7 | Lead weighting distribution obtained by Grad-CAM for two representative MIs. (A) Anterior; (B) inferior.

Kumar et al. (2017) used the flexible wavelet transform to
map the ECG signal of lead II to multidimensional space, then
extracted the sample entropy associated with each frequency
band of the signal as the feature of interest. Sharma et al. (2018)
used the improved wavelet transform to decompose the ECG
signal and extract the entropy of each sub-band to form the
feature set. Combined with the KNN method, they achieved
a high level of precision in recognizing MI from noise-free as
well as noisy signals (Sharma et al., 2018). Although this kind
of approach using feature space to extract useful features has
achieved satisfactory results, problems remain, such as the need
for manual feature selection, and lack of applicability to the ECG
signals associated with a wide range of MI types.

Deep learning has solved the problem of the lack of
generalizability inherent in manual feature extraction,
traditionally used in MI detection. Lui and Chow (2018)

achieved excellent performance with a combination of a
convolutional neural network and a recurrent neural network,
giving a sensitivity and specificity of 92.40 and 97.70%,
respectively. Tripathy et al. (2019a) performed a Fourier-Bessel
series expansion-based empirical wavelet transform on 12-lead
ECG signals to extract useful features for detection of MIs,
achieving an accuracy, sensitivity, and specificity of 99.74, 99.87,
and 99.94%, respectively.

The multi-scale ResNet approach to detect MI proposed in
this study, differs from the methods described in Table 6. The
proposed method does not require prior segmentation, manual
feature extraction or manual selection of features. It automatically
extracts relevant feature information, and automatically learns
which are the important features for detecting MI, through the
SENet model which, accordingly, adjusts the weighting value
of each lead to obtain better classification accuracy. As shown
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in Table 6, the experimental results show that the accuracy,
sensitivity, and specificity of our approach are higher than those
achieved by others, thus verifying the effectiveness of the method
described here. It is notable that the residual network based on
a multi-scale approach has enriched the comprehensive features
of the ECG signal and the channel attention mechanism has
enhanced the important features automatically.

Myocardial Infarction Localization
The position of an MI can be found by analyzing its effect on
different ECG leads, especially those closest to the infarction.
A previous study analyzing the relationship between infarction
position and characteristic lead patterns, obtained good results
(Fu et al., 2020). However, it did not exploit this further
to gain information about the localization of the lesion. In
recent years, the attention mechanism has attracted extensive
interest in clinical diagnosis and the deep fusion attention
mechanism model has been used to extract complex features
from physiological signals for disease classification and diagnosis

(Yuan and Jia, 2019). In the diagnosis of MI, the attention
mechanism based on a beat-by-beat analysis has been introduced
to automatically calculate the relative weighting of unlabeled
beats (Zhang et al., 2019). The attention mechanism has strong
explanatory power. Not only can it calculate the contribution of
different extracted features to the results, but it can also calculate
the weighting of multiple lead signals.

Table 7 briefly summarizes some recent studies on the
localization of MI from ECG signals. Some methods are based on
traditional manual feature extraction algorithms, which mainly
yield features in the time and transform domains, while others
extract features automatically, using deep learning approaches.
As listed in Table 7, recent studies have achieved good results
in the localization of MI. Arif et al. (2012) manually extracted
morphological features from 12-lead ECG signals, such as the
T wave, Q wave and ST segment amplitude and combined
these with KNN classifier training, obtaining an MI localization
accuracy of 99.8%. Acharya et al. (2016) used the discrete wavelet
transform to map the ECG signal to a 9-layer scale space, where

TABLE 6 | Comparison of MI detection results from this study with other recent reports.

Study Lead ACC (%) SEN (%) SPE (%)

Dohare et al. (2018) 12 leads 96.66 96.66 96.66

Kumar et al. (2017) II lead 96.84 95.80 97.60

Sharma et al. (2018) Signal lead With noise:
99.62

Without noise:
99.74

With noise:
99.76

Without noise:
99.84

With noise:
92.83

Without noise:
94.19

Acharya et al. (2017) II lead With noise:
93.53

Without noise:
95.22

With noise:
93.71

Without noise:
95.49

With noise:
92.83

Without noise:
94.19

Strodthoff and Strodthoff (2019) 12 leads – 93.30 89.70

Liu et al. (2018) 12 leads 99.95 – –

Lui and Chow (2018) I lead – 92.40 97.70

Tripathy et al. (2019a) 12 leads 99.74 99.87 99.60

This study 12 leads 99.98 99.94 99.94

ACC, accuracy; SEN, sensitivity; SPE, specificity.

TABLE 7 | Comparison of MI localization results from recent reports with those from this study.

Study Lead Number of MI
localizations studied

ACC (%) SEN (%) SPE (%)

Sun et al. (2012) 12 leads 5 – 85.00 –

Arif et al. (2012) 12 leads 11 98.8 – –

Acharya et al. (2016) 12 leads 11 98.74 99.55 99.16

Padhy and Dandapat (2017) 12 leads 6 98.1 – –

Le et al. (2013) 3 leads 6 – 88.00 92.00

Sharma et al. (2015) 12 leads 6 99.58 – –

Barmpoutis et al. (2019) 12 leads 5 100 – –

Liu et al. (2018) 12 leads 6 99.81 – –

Baloglu et al. (2019) 12 leads 11 99.78 – –

Tripathy et al. (2019b) 12 leads 7 99.84 – –

This study 12 leads 11 99.79 99.88 99.98

ACC, accuracy; SEN, sensitivity; SPE, specificity. Note, up to 10 localizations studied, plus healthy controls.
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each layer extracted 12 kinds of non-linear entropy as features.
These were sent to a KNN classifier for localizing MIs further.
The accuracy, sensitivity and specificity were 98.74, 99.55, and
99.16%, respectively. Liu et al. (2018) used the wavelet transform
to process individual beats of the ECG signal to construct a
wavelet tensor. This was combined with a decision tree classifier
to realize the localization of the MI, obtaining an accuracy, of
99.81%. Barmpoutis et al. (2019) also used the wavelet transform
to construct tensor data, but in this case mapped them to
Euclidean space and Glassman space for feature extraction and
then fused these two different feature representations and the
complementary information produced by each, into a common
Hilbert space for classification. This resulted in the localization
of MIs with an accuracy of 100%, although they identified only
5 MI localizations and did not report sensitivity or specificity
figures. In the clinical environment, the presence of an MI will
lead to complex waveform changes of multi-lead ECG signals,
and different patients will have different ECG waveforms. In
spite of their impressive results, these studies do not lend
themselves well to widespread clinical use because, due to
differences between patients, even those with the same pathology,
they require manual intervention and in many cases are not
able to provide detailed localization data. In comparison with
traditional machine learning, deep learning is more effective
in recognizing features and is better able to identify features
specific to each type of MI, even in the face of variability
between patients. The residual network based on multiple scale
and the channel attention mechanism in our proposed approach
can extract more information and more effectively identify the
important features.

Furthermore, MI localization algorithms based on deep
learning can, in principle, solve the problem of manual feature
extraction used in traditional approaches, because feature
information can be obtained automatically. Zhang et al. (2019)
used the combination of sparse encoder and bagged decision
tree to automatically extract the features of single lead ECG
signal and obtained accuracy, sensitivity, and specificity of MI
localization of 98.88, 99.95, and 99.87%, respectively. Baloglu
et al. (2019) used a deep convolutional neural network model
to automatically identify 12-lead ECG signals and obtained
a positional accuracy of 99.78%. However, although these
methods have achieved good performance in MI localization,
most of them assume that each lead contributes equally to the
results and do not therefore exploit the fact that each lead’s
signal contains unique information about the position of the
lesion causing the MI.

Unlike the other localization algorithms described in Table 7,
the multi-scale ResNet approach based on multi-lead ECG signals
proposed in this paper, does not need to extract the wave features
prior to locating the MI, and fully considers the similarities
and difference amongst different leads to extract their features.
Having identified these common features, the SENet model then
automatically calculates the weighting for each lead (dependent
on the localization of the MI) after feature extraction, using
various convolution kernels. The average accuracy, sensitivity
and specificity of the proposed method are 99.79, 99.88, and
99.98%, respectively, and it can reliably identify 10 types of MI

as well as those patients without an infarction. At the same time,
the ECGNet extracts rich feature information at different levels,
reduces the number of parameters, and embodies an efficient and
concise positioning model. This is enhanced by assigning and
considering the weighting of each lead. The results show that the
approach is ideal for inferring the localization of an MI from a
12-lead ECG, although further verification with a wide range of
clinical data is necessary.

The detection and localization of MI based on deep learning
applied to ECG signals proposed in this work has achieved good
results, although there are still some limitations. At present, most
studies of this type, including this one, are based on public
databases. Future work to address this limitation should include
an expanded dataset containing more clinical data to improve
the generalizability of the model. A second limitation is that the
algorithm used by the SENet model relies only on the differences
between leads in signal amplitude to identify the various types
of myocardial infarction. In future work, we will apply the
analysis to different segments of the cardiac cycle, rather than the
entire heartbeat.

CONCLUSION

Computer aided diagnosis of myocardial infarction remains a
challenging topic. During the training, the weighting information
for the 12-lead is calculated using the SENet model, Grad-
CAM algorithm, and combined with clinical and pathological
experience of myocardial infarctions. The results of the model
are based on the lead level, rather than analysis of each beat, as
is the case in other studies. The process automatically extracts
relevant feature information, and through the SENet model,
automatically learns important features for detecting MI, and
by adjusting the weighting of nearby leads achieves an accurate
and robust determination of the lesion’s localization. Ten types
of myocardial infarction are diagnosed from the 12-lead ECG
signals. We conclude that the multi-scale deep learning model
based on a residual network and attention mechanism proposed
here, is an effective method to detect and locate MI and after
further testing and validation on a larger number of cases, will
provide a significant addition to the field of automatic ECG-based
cardiovascular diagnosis.
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