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INTRODUCTION

Microgravity challenges the human body and brain in many different ways. One of the most
evident challenges is the altered functioning of sensory systems, including absent support afference,
degraded proprioceptive feedback and unreliable vestibular input. The result is a conflict between
the input from different channels, which is resolved through sensory realignment and reweighting
(Horak et al., 1990; Block and Bastian, 2012). Vision remains informative and gains priority in
the planning and feedback for locomotion and manual actions during spaceflight (Berger et al.,
1997). The greater role of visual input in sensorimotor coordination is usually analyzed in the
context of compensatory strategies or sensory reweighting and in comparison with other sensory
modalities (Kornilova and Kozlovskaya, 2003; Clément, 2007). Alterations and adaptations within
the visual system per se, including the transformed interplay of its subsystems, has not been the
focus of previous analyses. As we will demonstrate below, experimental studies of the changes
in sensorimotor coordination during spaceflight or in ground-based microgravity models usually
address performance in specific visually guided motor tasks rather than more basic neurocognitive
mechanisms of the adaptive processes.

We suggest that the theory of two visual systems (Goodale and Milner, 1992; Rizzolatti and
Matelli, 2003; Kravitz et al., 2011) is a promising framework for facilitating the understanding
of sensorimotor coordination in space. Two streams, or pathways, in the neural processing of
visual information, both originate in the primary visual cortex (Mishkin and Ungerleider, 1982).
The ventral stream (the “what” pathway) ascends to the anterior part of the temporal lobe and
provides information for visual awareness, or conscious perception (the “vision for perception”
system). Meanwhile, the dorsal stream (the “where” or “how” pathway) ascends to the parietal
lobe and propagates to the premotor cortex; it is considered to be the “vision for action” system
since it is involved in the processing of spatial information critical for visually guided actions
such as object and tool manipulation, and it is believed to be immune to visual illusions and to
function independently of subjective states of consciousness (Milner and Goodale, 1995; Giese and
Rizzolatti, 2015).

In this opinion paper, we will briefly review the facts that are potentially relevant for predicting
alterations in the ventral and dorsal pathways during the actual spaceflight and in ground-based
microgravity analogs. We will also discuss the idea that the dorsal and ventral streams may be
affected differently during a microgravity-stimulated recalibration of sensorimotor coordination.
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VENTRAL PATHWAY IN MICROGRAVITY

The ventral visual subsystem’s primary function is the
recognition and identification of visual objects and events;
it is believed to incorporate visual memory representations
of object categories, individual objects, and features such as
color and shape, and to utilize an allocentric frame of reference
(Norman, 2002; Jang and Jang, 2018). The ventral stream is
recruited in tasks that require verbal judgments on visual stimuli
(Milner, 2017). Findings relevant to these aspects of visual
perception may be used as markers of the functioning of the
ventral stream.

Scarce evidence suggests that microgravity may induce subtle
changes in color perception, mainly in perceived brightness and
saturation (Schlacht et al., 2009 for review). The recognition of
complex objects such as faces remains generally preserved. The
absence of a gravitational frame of reference and the “upright”
direction in the spaceflight environment has implications for
object recognition since the crew is frequently exposed to unusual
points of view of objects, including upside-down perspectives.
One possible adaptation may be the development of viewpoint-
invariant recognition abilities. This could lead to a disappearance
of the inversion effect in face recognition (poor recognition
of upside-down faces, popularized as the Thatcher illusion).
However, the inversion effect is preserved, as has been revealed
on the Mir space station. Furthermore, the memory for novel
faces suffers during the flight compared to pre- and post-mission
measurements, which indicates difficulties in the ventral stream
rather than its hyperfunctioning. So, if they exist at all, viewpoint-
invariant representations developed during a spaceflight are
limited to familiar objects seen from different viewpoints on a
daily basis (for a review, see Leone, 1998).

DORSAL PATHWAY IN MICROGRAVITY

The primary function of the dorsal stream is the visual
guidance of behavior (Norman, 2002). Frequently studied special
cases include manual actions performed with stationary visual
targets (pointing, aiming, reaching, and grasping) or with
moving objects (tracking and catching). The dorsal subsystem
incorporates spatial representations such as the 3D structure
of objects and spatial relations, and it enables mental spatial
manipulations such as rotation (Freud et al., 2016); it processes
dynamic features such as motion direction or speed and is
able to utilize an egocentric frame of reference (Norman,
2002). The dorsal pathway is recruited for visuomotor control
(Milner, 2017). Evidence on these aspects of perception and
action may be used as markers of the functioning of the dorsal
visual stream.

The characteristics of visually guided movements in
microgravity are task-dependent (Bock et al., 2003). During
space missions, pointing (with variations such as aiming
and step-tracking) has been found to slow down without
any loss of accuracy (Berger et al., 1997; Sangals et al., 1999;
Mechtcheriakov et al., 2002; Bock et al., 2003; Casellato et al.,
2016); the same is true for grasping (Bock et al., 2003). In some
Mir station crew members (but not in others), the duration of

movements recovered in a couple of months after the launch.
However, the presence or absence of visual feedback affects
pointing accuracy but not the velocity profile of the movement.
Microgravity, in contrast, did not affect pointing accuracy,
but it decreased peak velocity and acceleration (Berger et al.,
1997; Mechtcheriakov et al., 2002). Converging evidence from
Neurolab experiments was reported by Bock et al. (2001, 2003).
Therefore, the transformation of pointing actions cannot be
attributed to specific adaptations of the dorsal visual pathway.
Data from parabolic flights are contradictory [aiming slowed
down (Crevecoeur et al., 2010, 2014), while reaching was
unaffected (Gaveau et al., 2016; Macaluso et al., 2017)], which
indicates that the adaptation of the velocity profile needs time
to unfold.

The hand movements involved in catching a ball are initiated
earlier during a space mission than in terrestrial conditions. This
suggests that, even in weightlessness, humans use an internal
model of the Earth’s gravity rather than relying on a Gibsonian
direct perception when anticipating object motion (McIntyre
et al., 2001). A dedicated fMRI study by Indovina et al. (2005)
showed that using such internal models in normogravity may
be implemented as an interplay between dorsal pathway areas
(such as MT) and the vestibular neural network. The internal
gravity model may be adjusted by training using mental imagery
of an object’s motion in space station vs. terrestrial environments
(Gravano et al., 2021).

For manual tracking, the data are inconsistent; some studies
find it slowing down during a space mission (Manzey et al.,
2000) and others report that it is unaffected (Bock et al., 2003).
Decrements in manual tracking performance may be driven by
microgravity effects per se, most prominently during the early
adaptation phase (accuracy may recover in about 3 weeks), and
by attentional impairment due to stress and fatigue later in the
mission (Manzey et al., 2000). Consistent with this, Kornilova
et al. (2016) showed that optokinetic stimulation improves both
visual and manual tracking in a dry immersion microgravity
model, supposedly by recruiting more attentional resources
(which may also engage the dorsal stream as a neural substrate
of attention; Corbetta and Shulman, 2002).

Adaptation to the space station environment with its absence
of the gravitational vertical and the presence of a variety of
viewpoints for all surroundings may involve a boost in the
traveler’s mental rotation ability (Leone, 1998), which again
implies the activation of the dorsal pathway. The available
evidence suggests that this ability remains unaltered (Leone
et al., 1995) or may indeed be slightly improved (Matsakis
et al., 1993). Transient microgravity in parabolic flights does
not change mental rotation abilities in an object-based reference
frame (Grabherr et al., 2007; Dalecki et al., 2012), but
inconclusive evidence exists for the egocentric reference frame
(impaired: Grabherr et al., 2007; unchanged: Dalecki et al., 2012;
improved: Meirhaeghe et al., 2020). Such discrepancies may
reflect dynamic adaptation in the dorsal stream upon entering
the microgravity environment.

Data on the egocentric reference frame also suggest the active
adaptation of the dorsal stream to microgravity. When asked to
reproduce a reference line from memory by adjusting a test line’s
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tilt, participants on Earth estimated the vertical and horizontal
lines with greater accuracy than other orientations, but only for
the upright (vs. tilted) body position. In space, the horizontal or
vertical line superiority persisted, but within the egocentric rather
than the allocentric reference frame (Lipshits and McIntyre,
1999; McIntyre and Lipshits, 2008). At the same time, Watt
(1997) showed that maintaining an accurate egocentric spatial
map may be challenging in microgravity. Cheron et al. (2014)
found electrophysiological evidence for the transformation of
top-down signals within the visual system during a navigational
task in virtual reality aboard the ISS, suggesting a reorganization
of the dorsal pathway. Although they are each subtle, dorsal
stream modifications during the flight may become crucial
cumulatively, since astronauts demonstrate a drastic decline
in the ability to drive a vehicle soon after re-entry to Earth
(Moore et al., 2019).

DISCUSSION

The available evidence from numerous studies on visuomotor
coordination in space hardly leads to a systematic inference
about the functioning of the ventral and dorsal streams
during spaceflight. The active use of the egocentric frame of
reference in microgravity suggests an increased role of the
dorsal visual stream. This hypothesis is in general agreement
with other suggestions, but to test it directly, access to
dissociable measures of the two streams’ functioning is needed.
The most straightforward approach requires neurophysiological
equipment. For instance, EEG-based ERPs may be used to
describe the complex dynamics of parietal cortex adaptation
to ground-based microgravity models (Wang et al., 2017).
Robust behavioral measures have been developed within the
perception-action framework. Dissociation may be observed
through a comparison of the drawing of an actual object
(model) vs. copying the object from another drawing or
reproducing it from memory (Milner and Goodale, 1995).
Another technique involves a comparison of the ventral-
originated representation (accessed through verbal report) and
the dorsal-originated representation (accessed through motor
output) of geometric properties such as size, distance and tilt.
Dissociation between the two types of estimations may be
reliably found for geometrical-optical illusions. The between-
finger distance in a hand about to grasp an object may
accurately reflect its size (dorsal-stream estimation), while
verbal judgments of the same object’s size (ventral-stream
estimation) may be prone to illusions (Aglioti et al., 1995).
The same logic may be used for pointing and tracking
(Bruno et al., 2008; Stöttinger et al., 2012) to estimate the
activation of the two visual subsystems and their balance

in microgravity.
Drawings and geometrical illusions have already

been evaluated in microgravity conditions, but only as
representational drawings (i.e., with eyes closed) for the
former and only with verbal estimations for the latter. Villard
et al. (2005) showed that the strength of illusions that involve a
misinterpretation of depth (the inverted-T; horizontal Muller-
Lyer; Ponzo; and Hering illusions) significantly decreased during
a parabolic flight. Only the inverted-T illusion, but not the Ponzo
or vertical Muller-Lyer illusion, decreased in strength during a
long-term space flight aboard the ISS (Clément et al., 2012). In
line with these findings, the ambiguity of perceptions of depth-
reversible drawings, such as the Necker cube, gradually increased
in a long-term space flight, while in terrestrial conditions the
same observers tended to have a preferred interpretation that
they saw more often than the other interpretation (Clement
et al., 2015). However, these results provide no information on
the interplay of the two visual subsystems since the dissociation
requirement was not met and only the ventral stream output
was tested.

A dissociation between the verbal and motor estimations of
the Ponzo and Muller-Lyer illusions was tested in dry immersion
conditions, and both were found to be sensitive to the absence
of support afference (Sosnina et al., 2019; Sosnina I. et al., 2021;
Sosnina I. S. et al., 2021). In the proposed paradigm, participants
are presented with the illusions or a neutral pair of lines of the
same length on a touch screen; they are asked either to give a
verbal estimation of which line section is longer and by what
percentage, or to provide a motor estimation by sliding their
finger over each line (Karpinskaia et al., 2016; Lyakhovetskii
and Karpinskaia, 2017). We believe that the further development
of this line of research, beginning with a careful analysis of
the illusions and the different estimation tasks in ground-based
models and further bringing the ventral vs. dorsal visual stream
dissociation experiments to space, will significantly contribute to
our knowledge on perception and action in space travelers.
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