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Introduction: Spirometry, a pulmonary function test, is being increasingly applied
across healthcare tiers, particularly in primary care settings. According to the guidelines
set by the American Thoracic Society (ATS) and the European Respiratory Society
(ERS), identifying normal, obstructive, restrictive, and mixed ventilatory patterns requires
spirometry and lung volume assessments. The aim of the present study was to explore
the accuracy of deep learning-based analytic models based on flow–volume curves
in identifying the ventilatory patterns. Further, the performance of the best model was
compared with that of physicians working in lung function laboratories.

Methods: The gold standard for identifying ventilatory patterns was the rules
of ATS/ERS guidelines. One physician chosen from each hospital evaluated the
ventilatory patterns according to the international guidelines. Ten deep learning models
(ResNet18, ResNet34, ResNet18_vd, ResNet34_vd, ResNet50_vd, ResNet50_vc,
SE_ResNet18_vd, VGG11, VGG13, and VGG16) were developed to identify patterns
from the flow–volume curves. The patterns obtained by the best-performing model were
cross-checked with those obtained by the physicians.

Results: A total of 18,909 subjects were used to develop the models. The ratio of
the training, validation, and test sets of the models was 7:2:1. On the test set, the
best-performing model VGG13 exhibited an accuracy of 95.6%. Ninety physicians
independently interpreted 100 other cases. The average accuracy achieved by the
physicians was 76.9 ± 18.4% (interquartile range: 70.5–88.5%) with a moderate
agreement (κ = 0.46), physicians from primary care settings achieved a lower accuracy
(56.2%), while the VGG13 model accurately identified the ventilatory pattern in 92.0%
of the 100 cases (P < 0.0001).

Conclusions: The VGG13 model identified ventilatory patterns with a high accuracy
using the flow–volume curves without requiring any other parameter. The model can
assist physicians, particularly those in primary care settings, in minimizing errors and
variations in ventilatory patterns.

Keywords: artificial intelligence, flow-volume curve, ventilatory pattern, pulmonary function testing, deep
learning

Abbreviations: FEV1, Forced expiratory volume in 1s; FVC, Forced vital capacity; PFT, pulmonary function testing.

Frontiers in Physiology | www.frontiersin.org 1 January 2022 | Volume 13 | Article 824000

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.824000
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2022.824000
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.824000&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/articles/10.3389/fphys.2022.824000/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-824000 January 24, 2022 Time: 14:58 # 2

Wang et al. Deep Learning for Pattern Identification

INTRODUCTION

Pulmonary function tests (PFTs) are integral to the diagnosis
and monitoring of patients with respiratory abnormalities
for pulmonologists, nurses, technicians, physiologists, and
researchers (Liou and Kanner, 2009; Halpin et al., 2021).
According to the guidelines set by the American Thoracic
Society (ATS)/European Respiratory Society (ERS), a trained
technician performs spirometry and a lung volume test to identify
the ventilatory patterns as normal, obstructive, restrictive,
or mixed patterns in consultation with a pulmonologist
(Pellegrino et al., 2005).

Chronic respiratory diseases pose a threat to the Chinese
population. Despite this knowledge, the use of PFTs is limited
(Zhong et al., 2007; Wang et al., 2018; Huang et al., 2019).
For an early and accurate detection of chronic respiratory
disorders, PFTs, particularly spirometry, should be urgently
employed across all levels of healthcare (CPC Central Committee
State Council, 2016). A Belgian multicenter study demonstrated
that pulmonologists could only reach an accuracy of 74.4%
in identifying ventilatory patterns using PFTs according to the
ATS/ERS guidelines (Topalovic et al., 2019). Therefore, fast and
accurate interpretation of spirometry results is crucial in primary
care settings, and novel interpretation approaches for ventilatory
patterns are warranted.

Several software applications and algorithms established
for interpreting PFTs have been investigated in healthcare
research (Giri et al., 2021). A stacked autoencoder-based neural
network has been used to detect abnormalities using spirometric
parameters such as the forced expiratory volume in the first
second (FEV1), forced vital capacity (FVC), FEV1/FVC, and
flow–volume curves (Trivedy et al., 2019). Ventilatory patterns
have a characteristic configuration in the flow–volume curves
(Pellegrino et al., 2005). A study showed an accuracy of
97.6% when using flow–volume curves and artificial intelligence
algorithms to identify normal and abnormal ventilatory patterns
(Jafari et al., 2010). Moreover, some studies involving small
sample size explored algorithms for PFT signal processing
and classification (Veezhinathan and Ramakrishnan, 2007;
Sahin et al., 2010; Nandakumar and Nandakumar, 2013).
Topalovic et al. (2019) developed a model to recognize normal,
obstructive, restrictive, and mixed ventilatory patterns based
on spirometry and lung volume test results according to the
ATS/ERS guideline. However, some algorithms failed to capture
all the patterns and, therefore, could not be applied in clinical
practice. Some modalities for ventilatory pattern identification
required both spirometry and lung volume data; thus, they are
limited by the fact that most primary care settings can only
carry out spirometry.

The aim of the present study was to determine whether
or not the deep learning-based analytic models could facilitate
ventilatory pattern identification using flow–volume curves and
outperform physicians. Another aim was to assess the accuracy
and interrater variability of physicians in interpreting ventilatory
patterns and to compare the accuracy of test reading by
physicians at different levels of healthcare settings as well as with
different work experiences and training.

MATERIALS AND METHODS

Pulmonary Function Tests
Spirometry and lung volume tests were performed using
the MasterScreen-Pneumo PC spirometer (Jaeger, Hochberg,
Germany) and whole-body plethysmography (Jaeger, Hochberg,
Germany), respectively. Trained technicians performed all the
procedures, interpreted the results based on the ATS/ERS
guidelines, and validated the results through expert opinion
in daily work (Pellegrino et al., 2005; Graham et al., 2019).
At least three acceptable maneuvers were needed. Spirometry
parameters, flow–volume curves, and volume–time curves were
obtained from the devices and converted to a fixed PDF format.
Figure 1 illustrates a representative spirometry record. Flow–
volume curves were displayed with 5 mm/L/s of flow and
2 L/s-to-1 L of the flow-to-volume ratio according to the ATS
guidelines (Culver et al., 2017).

All the flow–volume curves without lung function parameters
extracted from baseline spirometry records used for training,
validating, and testing the deep learning-based models were
acquired from the lung function laboratory of the First Affiliated
Hospital of Guangzhou Medical University from October 2017
to October 2020. Further, 100 cases were achieved from the
same laboratory in September 2017 to assess and compare
the performance of the best-performing model with that of
physicians. The inclusion criterion for spirometry records was the
presence of at least one acceptable flow–volume curve, regardless
of the patient’s age, sex, or ventilatory pattern.

Physicians’ Selection
The physicians who participate in this study were from healthcare
settings equipped with lung function laboratories and had
routinely performed PFTs. The inclusion criterion was daily
involvement in the operation and interpretation of PFTs. One
physician, willing to participate in the current study, was
randomly selected from each hospital regardless of the work
experience, presence/absence of training, or hospital level.

Study Design
Ten deep learning-based models were developed using
only spirometric flow–volume curves. Figure 2 illustrates
representative examples of ventilatory patterns identified
using spirometry. The performance of the best-performing
model was compared with that of physicians, who independently
interpreted 100 PFT records, including lung function parameters,
flow–volume curves, and volume-time curves, and answered
a questionnaire at the online WenJuanXing platform (China)1

within 3 weeks. The flow–volume curves of the same cases were
evaluated by the best-performing model.

Model Development
The deep learning-based models for automated interpretations
were developed using Python version 3.7.6, combined with
deep learning framework PaddlePaddle version 1.82 and

1https://www.wjx.cn
2https://gitee.com/paddlepaddle
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FIGURE 1 | A typical example of a spirometry record. A typical spirometry record in a pdf includes parameters, flow–volume curves, and volume-time curves, which
were obtained from devices. Example in the Chinese language.

its image recognition toolset PaddleClas.3 PaddleClas is
used in industries and academia and contains various
mature deep learning algorithm models. Ten classic image

3https://gitee.com/paddlepaddle/PaddleClas

recognition models, including ResNet18 (He et al., 2016),
ResNet34 (He et al., 2016), ResNet18_vd (He et al., 2019),
ResNet34_vd (He et al., 2019), ResNet50_vd (He et al., 2019),
ResNet50_vc (He et al., 2019), SE_ResNet18_vd (Jie et al.,
2018), VGG11 (Simonyan and Zisserman, 2014), VGG13
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FIGURE 2 | Typical examples of ventilatory patterns of spirometry. (A) Example of a normal pattern. (B) Example of an obstructive pattern that shows a concave
shape on the expiratory flow. (C) Example of a restrictive pattern that shows a convex shape on the expiratory flow. (D) Example of a mixed pattern that shows
characteristics of coexistence of obstruction and restriction.

(Simonyan and Zisserman, 2014), and VGG16 (Simonyan and
Zisserman, 2014) were developed to complete the classification
tasks from the model library in PaddleClas.

A total of 18,909 baseline spirometry records, including 9,598
normal, 4,420 obstructive, 2,704 restrictive, and 2,187 mixed
patterns, were used to develop the models. A stratified random
sampling method was used, and each pattern was distributed
among the training, validation, and test sets at the ratio of 7:2:1.
Table 1 shows the details of the datasets.

The original spirometry records were stored in the PDF
format in color. For subsequent data processing, the original
spirometry records were converted to the PNG format in
color. Subsequently, the flow–volume curve images including
the predicted and measured curves were extracted from the
spirometry records with a pixel size of 328 × 244 using PyMuPDF
version 1.18.15. Figure 2 shows the extracted flow-volume curves
with the red, green, and blue channels.

The order of the training, validation, and test sets with the
labels was randomized and then arranged in separate lists. The
parameters in each selected PaddleClas model configuration file
were customized. The shape of image was set to (3, 224, 224). The
number of classes was set to four. The appropriate training batch
size was selected according to the size of the graphics processing
unit (GPU) memory. The number of training epochs was set to
90. Finally, the other settings were set to default. The lists of the
training and validation sets were used for model training using
the Nvidia RTX 2060 super GPU workstation. After the training

TABLE 1 | The distribution of datasets to develop deep learning models.

Patterns Training set Validation set Test set Total

Normal 6,720 1,919 959 9,598

Obstruction 3,094 884 442 4,420

Restriction 1,894 540 270 2,704

Mixed 1,532 437 218 2,187

Total 13,240 3,780 1,889 18,909

process, the optimal model was selected according to the best
average accuracy on the test set.

Statistical Analysis
The gold standard for pattern classifications followed the
ATS/ERS guidelines (Pellegrino et al., 2005). The Kruskal-Wallis
test was performed for inter-group comparisons. The one-
sample t-test was performed to identify the difference between
the selected model and physicians’ performances. Fleiss’ Kappa
was used to measure inter-observer agreements in pattern
identification. The performance of models was tested using the
confusion matrixes in Scikit-learn version 0.22.14 of Python
version 3.7.4. The receiver operating characteristic curve was
analyzed using Scikit-learn and Matplotlib version 3.1.3,5 with
the “micro” and “macro” parameters (Fawcett, 2006) were set
by One-vs-one algorithm (Hand and Till, 2001) and One-vs-
rest algorithm (Provost and Domingos, 2001), respectively. Other
statistical analyses were performed with SPSS version 26.0.

RESULTS

Study Population
Ninety physicians interpreted the 100 PFT records and produced
9,000 evaluations for ventilatory pattern identification. They
came from tertiary hospitals (n = 43), secondary hospitals
(n = 25), and primary care settings (n = 22) of 18 Chinese
provinces (or equivalent) around mainland China. Among
them, 30.0% (n = 27), 24.4% (n = 22), and 45.6% (n = 41)
had <1, 1–3, and >3 years of work experience, respectively. In
addition, previously trained physicians (n = 63) who had attended
standardized PFT training sponsored by the Chinese Thoracic
Society were significantly more in number than those who had
not been trained (n = 27). Regarding the characteristics of the 100

4https://scikit-learn.org/
5https://matplotlib.org/
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TABLE 2 | Characteristics of the 100 cases at study baseline.

Parameters Normal Obstruction Restriction Mixed

Reports, N 44 18 23 15

Sex, M/F 21/23 13/5 14/9 13/2

Age, years 59.5
(51.3–63.0)

55.0
(37.0–62.3)

49.0
(31.0–65.0)

67.0
(63.0–70.0)

FEV1% pred, % 98.9
(89.6–109.1)

75.9
(63.6–88.1)

74.0
(56.4–77.5)

41.3
(29.8–49.3)

FVC% pred, % 102.1
(94.2–111.3)

92.6
(87.2–113.4)

73.7
(53.9–77.8)

68.2
(44.8–72.8)

FEV1/FVC ratio 0.79
(0.75–0.82)

0.67
(0.57–0.71)

0.86
(0.79–0.89)

0.54
(0.46–0.60)

FEF50% % pred, % 77.6
(59.9–94.3)

34.9
(23.1–56.5)

60.0
(49.5–80.9)

12.9 (9.7–16.6)

FEF75% % pred, % 57.2
(40.1–72.5)

26.6
(17.1–39.9)

48.1
(36.8–71.4)

13.9
(11.2–19.2)

MMEF% pred, % 68.0
(54.0–82.0)

31.3
(20.0–50.0)

57.4
(40.7–72.2)

12.3 (9.1–15.6)

Data were shown in Median (interquartile range).
FEV1, forced expiratory volume in one second; FVC, forced vital capacity; FEFx%,
flow at x% FVC; MMEF, maximal mid expiratory flow; % pred, % predicted.

TABLE 3 | The performance of 10 deep learning-based models in the test set.

Accuracy of pattern classifications

Models Normal
(%)

Obstruction
(%)

Restriction
(%)

Mixed
(%)

Average
accuracy

(%)

ResNet18 98.3 88.2 94.8 97.3 94.7

ResNet34 97.0 87.1 94.8 91.7 92.7

ResNet18_vd 98.03 88.9 94.1 95.4 94.2

ResNet34_vd 98.5 90.3 95.2 95.9 95.0

ResNet50_vd 98.8 87.3 94.8 95.4 94.1

ResNet50_vc 98.1 86.2 93.0 96.3 93.4

SE_ResNet18_vd 97.7 86.9 96.3 93.6 93.6

VGG11 98.2 91.0 96.7 94.5 95.1

VGG13 97.7 91.0 96.7 97.3 95.6

VGG16 98.4 92.3 95.9 95.0 95.4

PFT records, there were 44 normal, 18 obstructive, 23 restrictive,
and 15 mixed patterns (Table 2).

Model Performances
On the test set, the 10 deep learning-based analytic models
based on the flow–volume curves identified ventilatory patterns
with an average accuracy ranging from 92.7 to 95.6%. The
models identified the obstructive ventilatory pattern with a
lower accuracy between 86.2 and 92.3%. Further analysis of the
degree of severity of these incorrectly identified obstructive cases,
the mild cases were the most difficult to identify, which were
incorrectly identified as normal cases (80.3–91.8%). The best-
performing model was VGG13 with the highest average accuracy.
Table 3 and Figure 3 show the details of the model performance.
The model required <1 s to assess the ventilatory pattern from
each spirometry record.

When evaluating the 100 cases, the VGG13 model classified
ventilatory patterns with an average accuracy of 92.0%. The
restrictive pattern was more difficult (sensitivity: 87%) to identify
compared to other patterns but was identified with a perfect
specificity of 100%. Moreover, the model incorrectly classified
three normal patterns as obstructive patterns and one obstructive
pattern as a normal pattern. Table 4 shows performance of
VGG13 in identifying the ventilatory pattern of 100 cases
according to the confusion matrix.

Physicians’ Performances
The ventilatory pattern evaluated by physicians accurately
followed the guidelines in 76.9 ± 18.4% cases (interquartile range:
70.5–88.5%). The physicians from primary care settings achieved
an accuracy of 56.2 ± 21.6% (interquartile range: 34.0–76.3%).
The most difficult pattern to identify was the restrictive pattern
(sensitivity: 70.0%), which was mostly incorrectly classified as the
mixed pattern (n = 329). In addition, 724 normal patterns were
incorrectly classified as obstructive pattern, and 304 obstructive
patterns were incorrectly classified as normal patterns. Table 5
demonstrates the performance of physicians according to the
confusion matrix. The interrater disagreement among physicians
identifying the ventilatory patterns was a κ of 0.46.

Regarding the performance of pulmonologists compared
across hospital levels, years of work experience, and
presence/absence of training, significant differences were found
between tertiary hospitals and community settings (P < 0.0001),
work experience of >3 years and <1 year (P < 0.05), and
presence and absence of training (P < 0.0001; Figure 4).

Comparison of VGG13 With Physicians
The VGG13 model correctly identified the ventilatory pattern
using flow–volume curves at a significantly higher accuracy
compared to the physicians (92.0 vs. 76.9%) who had identified
patterns according to the ATS/ERS guidelines (P < 0.0001,
Figure 5), although the sensitivity and the positive predictive
value showed the same trends (Tables 4, 5).

DISCUSSION

In the current study, the 10 deep learning-based analytic
models based on flow-volume curves were developed to identify
ventilatory patterns. The best-performing model, VGG13,
showed an average accuracy of 95.6% on the test set. The
accuracy and consistency in performance of the VGG13 model
and physicians were compared for the ventilatory pattern
identification of 100 other cases. The VGG13 model identified
ventilatory patterns with high accuracy (92.0%) and efficiency
(<1 s/record), while physicians accurately identified ventilatory
patterns according to the guidelines with a relatively low accuracy
(76.0%) and a κ of 0.46. Further, primary care physicians achieved
an even lower accuracy (56.2%).

Automated algorithms to detect spirometric abnormalities
have been studied previously. These algorithms exploited
features extracted from spirometric parameters and spirogram
(Asaithambi et al., 2012; Ioachimescu and Stoller, 2020).
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FIGURE 3 | ROC curves of ten deep learning-based models. (A–J) ROC curves of ResNet18, ResNet34, ResNet18_vd, ResNet34_vd, ResNet50_vd, ResNet50_vc,
SE_ResNet18_vd, VGG11, VGG13, and VGG16 models to classify types of ventilatory patterns, respectively. Class 0 = normal; Class 1 = obstruction; Class
2 = restriction; Class 3 = mixed; ROC = receiver operating characteristic.

Ioachimescu and Stoller (2020) used an alternative parameter
(area under the expiratory flow–volume curve) to differentiate
normal, obstructive, restrictive, and mixed patterns. When
a machine learning algorithm used this novel parameter in
combination with FEV1, FVC, and FEV1/FVC z-scores, the
patterns could be differentiated appropriately. Conversely, our
proposed model used only flow–volume curves based on display
characteristics of patterns instead of parameters to classify the
pattern. Asaithambi et al. (2012) classified normal and abnormal
respiratory functions using a neuro-fuzzy based on spirometry

TABLE 4 | Confusion matrix shows the performance of the VGG13 model at
interpreting ventilatory patterns in 100 cases.

VGG13 model’ evaluation

Normal Obstruction Restriction Mixed Total

Normal 41 3 0 0 44

Obstruction 1 17 0 0 18

Restriction 2 0 20 1 23

Mixed 0 1 0 14 15

Total 44 21 20 15 100

Sensitivity,% 93.2 94.4 87.0 93.3

Specificity,% 94.6 95.1 100.0 98.8

PPV,% 93.2 81.0 100.0 93.3

NPV,% 94.6 98.7 96.3 98.8

Data are presented as n, unless otherwise stated. The bold values mean the true
positive for each pattern.
PPV, positive predictive value; NPV, negative predictive value.

parameters, such as FEV1, FVC, and peak expiratory flow,
obtained from 250 subjects at an accuracy of 97.5%. The
models developed in the present study were based on a larger
study population, identified all four patterns, and provided
stable performances while processing large spirometry datasets.
Therefore, these models could not only be used in routine clinical
practice but also help deal with large spirometric data in research.

PFTs are routinely interpreted by physicians to diagnose
respiratory abnormalities. Interpretive strategies require both
spirometry and lung volume assessments. In our study,

TABLE 5 | Confusion matrix shows the performance of 90 physicians at
interpreting ventilatory patterns in 100 cases.

90 physicians’ evaluation

Normal Obstruction Restriction Mixed Total N subjects

Normal 3,115 724 73 48 3,960 44

Obstruction 304 1,203 42 71 1,620 18

Restriction 202 90 1,449 329 2,070 23

Mixed 68 166 41 1,075 1,350 15

Total 3,689 2,183 1,605 1,523 9,000

Sensitivity% 78.7 74.3 70.0 79.6

Specificity% 88.6 86.7 97.7 94.1

PPV% 84.4 55.1 90.3 70.6

NPV% 84.1 93.9 91.6 96.3

Data are presented as n, unless otherwise stated. The bold values mean the true
positive for each pattern. Abbreviations see in Table 4.
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FIGURE 4 | Accuracy (%) of ventilatory pattern evaluations of physicians. Accuracy (%) of pattern evaluations of physicians belong to different grades of hospitals;
different years of work experience, and presence/absence training. Box-and-whisker plots show median with interquartile range (box) and range (whiskers); the
mean is indicated by “+”; *P < 0.05, **P < 0.001, ***P < 0.0001.

physicians from tertiary hospitals, who worked in the typical
university centers responsible for teaching medical students,
could not reach perfect accuracy in pattern identification.
Primary care physicians performed with a lower accuracy
probably because most primary care centers do not have lung

FIGURE 5 | Comparison in the VGG13 model and physicians. An average
accuracy (%) of pattern identification between the VGG13 model and 90
physicians. ***P < 0.0001.

volume measurement devices and are equipped only with
spirometers. The lack of lung volume measurement devices may
impede the use of PFTs in primary care settings. Furthermore,
physicians with >3 years of work experience outperformed
those with <1 year of work experience, thus suggesting that
the performance of physicians was associated with their work
experience. Our study further compared the correct identification
of patterns between previously trained and untrained physicians.
Those who had been trained performed significantly better
than those who had not been trained. In summary, the
performance of physicians interpreting spirometry depends on
the working experience, prior training, and good platforms
(Represas-Represas et al., 2013; Charron et al., 2018). In contrast,
our model exhibited fast and stable performance that did not
require much experience or training.

Compared to other patterns, the restrictive pattern was more
difficult to identify for both the VGG13 model and physicians,
which may be due to the fact that the flow–volume curves
of this pattern are similar to those of the normal pattern.
However, on the test set, the mild obstructive pattern was
the most difficult to identify by any deep learning model and
was incorrectly identified as a normal pattern. The obstructive
pattern was also not easy for the physicians to identify. In
contrast, the model obtained a much higher accuracy of 94.4%
in identifying this pattern.

Despite the model showing good efficiency and accuracy,
it had some limitations. It could handle large datasets but
failed to identify the quality of spirometry. All test cases had
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acceptable curves, but in clinical settings, technicians perform
quality control through visual inspection of curves and also in
combined with measured values (Miller et al., 2005; Graham
et al., 2019). Moreover, the spirometry records we used to
develop the model were obtained exclusively from the Chinese
population. Considering that normal spirometric values and
curves differ among Asian, Caucasian, and African populations,
our model may be not applicable to other ethnicities. However,
we speculate that it could perform similarly if trained with
datasets of other ethnicities, since the displays of flow–volume
curves from ventilatory patterns are similar across ethnicities.
Additionally, we only explored the conventional patterns. Specific
patterns, such as upper airway obstruction (Fiorelli et al., 2019),
“saw-tooth sign” (Bourne et al., 2017), and the “small-plateau
sign” (Wang et al., 2021), require the recognition of flow–volume
curves, including inspiratory and expiratory phases.

The best model VGG 13 completed the pattern identification
task significantly better than the physicians from primary care
settings. The model performed the task using only flow–
volume curves obtained from the spirometry, whereas physicians
needed to perform lung volume tests in addition. For clinical
applications in the future, the model could be embedded
into the software of different devices to help physicians in
their routine work. Further, a cloud-based artificial intelligence
system could be established to connect the devices from
primary care settings to help general practitioners identify
the ventilatory patterns from spirometry records in real time.
However, the model was not trained to identify the quality of the
spirometry. Therefore, a prerequisite for the correct functioning
of the model is the need to ensure that spirometry respects
internationally accepted quality criteria, which means that its use
does not dispense that a trained technician performs spirometry
with good quality.

CONCLUSION

The proposed deep learning-based analytic model using flow–
volume curves improved the detection accuracy of ventilatory
patterns obtained from spirometry with high coherence and
efficiency. In comparison, physicians, particularly those from
primary care settings, were insufficiently trained in interpreting
PFTs to identify ventilatory patterns. The deep learning model

may serve as a supporting tool to assist physicians in identifying
ventilatory patterns.
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