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The blood flow dynamics in human arteries with hypertension disease is modeled using

fractional calculus. The mathematical model is constructed using five-element lumped

parameter arterial Windkessel representation. Fractional-order capacitors are used to

represent the elastic properties of both proximal large arteries and distal small arteries

measured from the heart aortic root. The proposed fractional model offers high flexibility

in characterizing the arterial complex tree network. The results illustrate the validity of

the new model and the physiological interpretability of the fractional differentiation order

through a set of validation using human hypertensive patients. In addition, the results

show that the fractional-order modeling approach yield a great potential to improve the

understanding of the structural and functional changes in the large and small arteries due

to hypertension disease.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible for more
than 17.9 million deaths in 2019 that representing 32% of global mortality. This number is expected
to reach 23.6 million by 2030 (Mensah et al., 2019). A key risk factor for CVDs is high blood
pressure, known as hypertension. Although the reduction in hypertension can restrain the onset of
CVDs, current treatments techniques are only partially effective. In fact, hypertension is considered
chronic pathology that can only be regulated with medication; however, it cannot be cured
definitely. The primary pathological sign of high blood pressure is reduced vascular compliance
due to structural remodeling and functional modifications in the arteries. In a normotensive
state, any variation of the hemodynamic induces structural and functional adaptations within the
different cell types and layers of the vascular wall. However, in hypertensive states, this adaptive
response does not lead to normal hemodynamic control but instead inducts irregular vascular
changes, defined as, vascular remodeling (Brown et al., 2018). Several clinical studies in-patient
and experimental researches have revealed the marked correlation between vascular remodeling
and the pathophysiology of hypertension. In particular, they observe that the vascular remodeling
in resistive arteries is firmly associated with the progression and severity of hypertension’s disease.
Accordingly, deep understanding and analysis of the pathological mechanisms of hypertension
vascular remodeling hold high significance for diagnosing CVDs and is crucial for the clinical
treatment of hypertension (Li et al., 2017).
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Over the last century, various physics-driven and data-
driven modeling methods and diverse numerical computational
approaches have been developed to characterize vascular
biomechanics and arterial hemodynamics. Commonly, these
approaches involve a compromise between precision and
complexity. In the open literature, the arterial hemodynamics
and mechanic modeling approaches are classified into two
main classes: macro and micro modeling methods. The macro-
scale class is considered a low dimensional strategy that
usually implicates the well-known lumped parametric, the
arterial Windkessel, (Frank, 1899). Typically this class used
ordinary differential equations (ODEs) to describe the arterial
hemodynamic as a function of time only. Accordingly, they
are commonly explored to describe the global cardiovascular
functions and biomechanical properties (Shi et al., 2011; Malatos
et al., 2016). This class is considered computationally simple but
less accurate than the microscale models. In addition, it is less
insightful in terms of physiological interpretability, (Zhou et al.,
2019). On the other hand, the microscale models are generally
considered more insightful as they provide a precise estimate
of cardiovascular function and accurately represent local as
well as global arterial biomechanical properties. These modeling
approaches are considered high-dimensional paradigms [one-
dimensional (1D), two-dimensional (2D), and three-dimensional
(3D)] as they involve more than one dimension along with
the time scale to describe the complex geometries of the
arterial network. Although micro-scale-based models provide
detailed information about the arterial circulatory system, their
complexity is not manageable in practical medical routines,
(Zhou et al., 2019).

In recent decades, fractional-order models have surfaced
as potential techniques that compromise between accuracy
and computational cost for large-scale problems in different
fields (Bahloul and Kirati, 2021). In particular fractional-
order differential equations have been considerably explored in
modeling complex biological systems (Magin, 2006). Basically,
fractional-order approaches allow much modeling flexibility
by extending the concepts of differentiability and integrating
the non-local and memory properties through the fractional
differentiation order. These features enable the characterization
of complex phenomena over various time and space scales
without splitting the problem into smaller sub-compartments.

The versatility and flexibility of fractional-order tools lead
researchers to believe that the future of computational modeling
in bio-engineering and bio-informatics (Magin, 2006). This
paradigm shift extends from bio-engineering in general to
cardiovascular systemmodeling and characterization specifically,
as experimental studies find that fractional-order models are
more suitable and interpretable in describing the arterial
structure and biomechanical response of the heart and systemic
circulation. In-vivo and in-vitro investigations have pointed that
fractional-order calculus-based approaches are more convenient
to precisely represent the viscoelasticity properties of soft
collagenous tissues in the vascular bed. A fractional-order
viscoelastic model in human arterial segments has been tested
and validated in (Craiem et al., 2008). Results show that the extra
fractional-differentiation order parameter (α) allowed predicting

complex and frequency-dependent responses similar to reported
complex elastic moduli in arteries. (Craiem and Armentano,
2007; Craiem et al., 2008; Zerpa et al., 2015) revealed that
fractional models should be acknowledged adequate alternatives
to model arterial viscoelasticity. In addition, the fractional
differentiation order (α) plays a pivotal function, and it is
considered the most valuable parameter to monitor and analyze,
reflecting the structural and functional changes in the arteries.
Most recently, we have used fractional-order derivative to model
the apparent arterial compliance dynamics. The proposed model
employs fractional-order capacitor (FOC) element that combine
the complex and frequency dependence characteristics of arterial
compliance. The FOC modeling approach accounted for both
resistive and capacitive properties allowing a reduced-order
representation of the vascular compliance and stiffness (Bahloul
and Kirati, 2021).

This study presents a novel fractional-order modified
Windkessel model to study the blood flow in the arterial
system. Fractional-order tools have been adopted to represent the
dynamic relationship between blood pressure and volume in the
proximal and distal sites of the arterial network. Accordingly, the
model includes two fractional-order capacitors to describe the
apparent vascular compliance of large arteries close to the heart
and one of the resistive arteries further away from the heart as
illustrated in Figure 1C. The proposed model has been applied
and validated using two hypertension datasets acquired from
human subjects. The results show the accuracy and flexibility
of the proposed method in modeling the aortic blood pressure
measurements while maintaining a low model complexity. In
addition, the proposed fractional-order representation draws
a more appropriate framework to analyze and understand
hypertension behavior and its pathophysiology connection with
vascular remodeling.

2. MATERIALS AND METHODS

2.1. Fractional-Order Calculus
In the last decades, non-integer differentiation, the so-
called fractional-order calculus, became a popular tool for
characterizing real-world physical systems and complex
behaviors from various fields such as biology, control,
electronics, and economics (Gutiérrez et al., 2010; Magin,
2010). The long-memory and spatial dependence phenomena
inherent to the fractional-order systems present unique and
attractive peculiarities that raise exciting opportunities to
represent complex phenomena subject to power-law behavior
accurately. For instance, the power-law behavior has been
demonstrated in describing human soft tissues visco-elasticity
and characterizing the elastic vascular arteries. In-vivo and
in-vitro experimental studies have pointed that fractional-
order calculus-based approaches are more decent to precisely
represent the hemodynamic; the viscoelasticity properties of
soft collagenous tissues in the vascular bed; the aortic blood
dynamics (Perdikaris and Karniadakis, 2014; Zerpa et al., 2015);
red blood cell (RBC) membrane mechanical properties (Craiem
and Magin, 2010); and the heart valve cusp (Doehring et al.,
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FIGURE 1 | The figure illustrates the general framework for fractional-order modeling of the arterial system in a schematic manner. (A) Schematic illustrating the artery

along with the equivalent RC tree equivalent circuit of the fractional-order capacitor. (B) Electrical symbols of the standard resistor and capacitor and the

fractional-order capacitor. 0 < α < 1 represents the fractional differentiation order. For α = 0 and α = 1 the fractional-order capacitor is equivalent to the standard

resistor and capacitor, respectively. (C) Schematic that shows simplified left ventricle-aortic-arteries sub-domains. (D) Electrical analog of the proposed

fractional-order modified Windkessel (F-MWK) model.

2005; Craiem and Armentano, 2007; Craiem et al., 2008; Zerpa
et al., 2015).

The continuous fractional integro-differential operator Dα
t is

defined as follows

Dα
t =











dα

dtα
, α > 0,

1, α = 0
∫ t
a (dτ )

α , α < 0

(1)

where α is the fractional differential integral order.
Several definitions for fractional-order derivative exist in the

literature (Podlubny, 1999), (Lorenzo and Hartley, 1998). In

this work, we consider the Grunwald-Letnikov (GL) definition
given as:

Definition 1. (Podlubny, 1999) The Grunwald-Letnikov
derivative of order α of a function f , denoted Dα

t f (t), is given by:

Dα
t f (t) = lim

h→0

1

hα

∞
∑

i=0

c
(α)
i f (t − ih), α > 0, (2)

where h > 0 is the time step, c
(α)
i (i = 0, 1, ...) are the binomial

coefficients recursively computed using the following formula,

c
(α)
0 = 1, c

(α)
i =

(

1−
1+ α

i

)

c
(α)
i−1. (3)
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2.2. Fractional-Order Capacitor
Fractional-order capacitor (FOC) known as the constant phase
element is a fractional-order electrical element representing
the fractional-order derivative through its curent-volatge
characteristic. In fact, the relationship between the current, i(t),
passing through an FOC and the voltage, v(t), across it with
respect to time, t, can be written as follow:

i(t) = Cα

dα

dtα
v(t), (4)

where Cα is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second1−α], (Elwakil,
2010). The conventional capacitance, C, in unit of Farad is
related to Cα as C = Cαωα−1 that is frequency-dependent. The
fractional-order impedance (Zα) is expressed as follow:

Zα(s) =
1

Cαsα
=

1

Cα

ω−α cos(φ)

︸ ︷︷ ︸

Zr

−j
1

Cα

ωα sin(φ)

︸ ︷︷ ︸

Zi

, (5)

where s corresponds to the Laplace variable and φ denotes
the phase shift expressed as: φ = απ/2 [rad] or φ = 90α
[degree or ◦]. Zr and Zi are the real and imaginary parts
of Zα corresponding to the resistive and capacitive portions,
respectively. From (5), it is apparent that the transition between
resistive and capacitive parts is ensured by α. If 0 ≤ α 6 1,
the bounding conditions of α will corresponds to the discrete
conventional elements: the resistor at α = 0 and the ideal
capacitor at α = 1, as illustrated in Figure 1B. As α goes
to 0, (Zi) convergence to 0, and thus the fractional element
looks like that a pure resistor, whereas as α goes to 1, (Zr)
converges to 0 and hence, the fractional element serves as a
pure capacitor, (Oustaloup et al., 2000; Krishna et al., 2011;
Hartley et al., 2015; Trigeassou and Maamri, 2020). Figure 2B
represents the schematic diagram for a FOC along with the
ideal resistor and capacitor. Many studies have shown that FOC
is equivalent to a resistor ladder network (RC tree circuit),
(Carlson and Halijak, 1964; Si et al., 2017). This structure is
similar to the electrical analogy of the generalized Kelvin-Voigt
viscoelastic model. Figure 1A presents the equivalent RC tree
circuit of FOC of any order. Bearing these properties in mind,
the fractional differentiation order α parameter allows extra
versatility in modeling viscoelastic systems (Vastarouchas and
Psychalinos, 2017).

2.3. Apparent Arterial Compliance
Arterial compliance stands for the ability of the vessel to
store the blood. Functionally, it is defined as the ratio of the
incremental variation in the blood volume (dV) due to an
incremental variation in distending pressure (dP). Accordingly,
mathematically it is expressed as: C = dV/dP, (Quick et al.,
1998). Over the last decades, several analytical and experimental
studies have focused on modeling and characterizing vascular
compliance, (Chemla et al., 1998; de Simone et al., 1999;
Segers et al., 1999; Stergiopulos et al., 1999; Mackenzie et al.,
2002; Westerhof et al., 2009; Haluska et al., 2010; Ge, 2018;

Kaya et al., 2018). With the introduction of the well-known
linear Windkessel representation of the arterial system, arterial
compliance was assumed to have a single constant value for the
entire cardiac cycle. Hence, the transfer function relating the
blood volume variation to the blood pressure input changes was
also considered constant. Accordingly, the arterial compliance
was modeled within the arterial lumped parameter circuit’s
Windkessel as an ideal capacitor whose capacitance is constant
(Westerhof et al., 2009). However, this assumption was not
realistic, and its drawbacks were reflected essentially in the
estimation of the hemodynamic determinants (Quick et al.,
2000). In fact, it does not lead to the correct evaluation of the
true value of arterial compliance (Craiem and Armentano, 2003).
Besides, by analyzing the transfer function blood volume/input
pressure, experimental studies have shown that this relationship
is frequency-dependent, and a time delay between the arterial
blood volume and the input blood pressure is observed. Hence
a variation in the arterial compliance along the cardiac cycle
coexists (Burattini and Natalucci, 1998; Quick et al., 1998, 2000).

In order to take into account this frequency dependence,
some research investigations have promoted a new configuration
where they considered the viscoelastic properties of the arterial
vessel and represented the arterial compliance using the so-
called Voigt-cell configuration (Burattini and Natalucci, 1998;
Aboelkassem and Virag, 2019). This type of arterial model was
known as viscoelastic Windkessel. Although the viscoelastic
Voigt-cell has resolved some contradictions of the standard elastic
lumped parameter Windkessel, this configuration does also
present some limitations as it does not account for the so-called
stress-relaxation experiment (Burattini and Natalucci, 1998). To
overcome this restriction, high-order viscoelastic configurations
have been proposed by connecting many Voigt-cells as shown in
Figure 1A. This solution might lead to an accurate estimation
of arterial compliance and its feature; however, it is deemed
a very complex alternative that poses extra challenges. Indeed,
the number of parameters to estimate is more significant for
higher-order models, while the obtained experimental data is
habitually small and insufficient to identify all the parameters.
It is also known that reduced-order models are more desirable
for their uniformity and simplicity of investigation (Burattini and
Natalucci, 1998; Bahloul and Kirati, 2019).

Bearing this in mind, recently, an alternative modeling
approach of the apparent compliance was proposed in (Bahloul
and Kirati, 2021) where fractional-order tools were investigated
to represent the complex phenomena underlying the apparent
arterial compliance. In (Bahloul and Kirati, 2021), the authors
presented fractional-order models to describe the dynamic
relationship between aortic blood pressure and volume,
describing the apparent vascular compliance. The proposed
model employs fractional-order capacitor elements to lump
the complex and frequency dependence characteristics of
arterial compliance. FOC combines both resistive and capacitive
properties, which the fractional differentiation order, α, can
control. The validations results find that the fractional-order
scheme can reconstruct the overall dynamic of the complex and
frequency-dependent apparent compliance dynamic and reduce
the complexity.
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FIGURE 2 | Estimated proximal blood pressure using the proposed fractional-order modified Windkessel model along with the experimental in-vivo

human-hypertension. (A,C,E) Represent the model input aortic-valve blood flow rate for each validation case of study, Pre-hypertension, Mild-hypertension, and

Sever-hypertension, respectively. (B,D,F) Represent the pressure waveform validation results.

The vascular apparent compliance in the fractional-order
domain is defined as follows:

Qstored(t) =
dαV

dtα
=

dαV(t)

dαPin(t)
︸ ︷︷ ︸

Cα
app

dαPin(t)

dtα
, (6)

where Qstored is the blood stored in the arterial tree, V
corresponds to the blood volume, and Pin is the input
blood pressure.

The FOC can be an inherent lumped element that
can catch vascular compliance’s complex and frequency-
dependent behavior. In fact, as expressed in (6), the
pseudo compliance, Cαapp , should be expressed in the

unit of [ml/mmHg.sec1−α] that makes, naturally, the

standard compliance (CC), in the unit of [ml/mmHg],
frequency-dependent as:

CC = Cα
app(jω)

α−1. (7)

Hence, the fractional-order capacitor presents physical bases
in portraying the complex and frequency dependency of the
apparent vascular compliance. Besides, based on the variation of
the fractional differentiation order α, the real and imaginary parts
of the resultant FOC’s impedance can possess various levels, so
by analogy, α can control dissipative and storage mechanisms
and hence the viscous and elastic component of the arterial
wall. Furthermore, it is worth remarking that the equivalent
circuit representation of FOC can be seen as an infinity Voigt
cells branches joined in parallel. Consequently, FOC simplifies
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the representation of the complex arterial network’s mechanical
properties by employing only two parameters (α and Cα).

2.4. Fractional-Order Modified Windkessel
Model
The modified Windkessel model (MWK) is one of the simplest
arterial representation that lumps the arterial network into two
main compartments, proximal and distal, (Goldwyn and Watt,
1967). Taking into account that the proximal arteries close to
the heart have different properties in comparison to the distal
ones, MWK splits the total arterial compliance used in the
original arterial Windkessel into two capacitances: Cp represents
the compliance of the large arteries which are commonly elastic
and Cd depicts the compliance of muscular arteries that are
more stiffer. Clinical studies demonstrated that Cd is very
sensitive to vasodilatory experiments, a property apparent in
distal arteries. Other investigations have also shown that Cd

is reduced with aging and hypertension. The latest properties
make these capacitance as potential indicators of cardiovascular
risk, (Francis, 2007). MWK comprises an inductor, L, between
the two capacitance accounting for the inertance of the flowing
blood. Also, it lumps the peripheral resistance into a resistor
Rp and the venous pressure into a constant Pv. Based on the
electrical analogy, the pumping heart is modeled as a pulsating
current source.

In this study, we propose a general version of the MWK
using fractional-order framework. We present the fractional-
order modified Windkessel (F-MWK) representation as shown
in Figure 1D. The proposed model comprises two fractional-

order capacitor Cα
p and C

β

d
to take into account the apparent

vascular compliance of the large and small arteries, respectively.
Figure 1D shows the schematic of F-MWK. As the proposed
model contains two fractional-order storage elements and one
integer-order one, three states are needed to describe the dynamic
of the system. The aortic blood flow Q(t) ejected from the
left ventricle is considered the input to the system. Pp denotes
the aortic proximal pressure and Pd represents the distal blood
pressure. Q1 represents the blood flow throughout the inertia L.
Applying the Kirchhoff’s voltage and current laws to the circuit
shown in Figure 1D. We obtain the following equations:

















Cα
p ·

dα

dtα
Pp(t)+ Q1(t) = Q(t)

Pp(t)

L
−

Pd(t)

L
=

dQ1(t)

dt

C
β

d
·
dβ

dtβ
Pd(t)+

Pd(t)− Pv

Rp
= Q1(t)

(8)

The resulting pseudo-state space representation is then:

D
q
t x(t) = Ax(t)+ B(x), (9)

where D
q
t = [Dα

t ,D
γ
t ,D

β
t ]

tr is the fractional-order derivative
operator for all the states. (·)tr denotes the transpose of the
row vector. In this study γ = 1 as we used an integer-order
inductor to connect the proximal and distal compartments. xx =

[Pp,Q1, Pd]
tr denotes the pseudo-states vector representing the

aortic proximal, the blood flow throughout the inductor, and
the distal pressure, respectively. The matrix A representing the
lumped parameters is expressed as:

A =













0 −
1

Cα
p

0

1

L
0 −

1

L

0
1

C
β

d

−
1

RpC
β

d













(10)

B is written as:

[

Q(t)

Cα
p

0
Pd(t)− Pv

Rp

]tr

(11)

Remark 1. If we were to assume that the pressure’s drop across the
blood inductor, L, is negligible, in this case, the proximal pressure
is equal to the distal one. In addition, the F-MWK reduces to
the simplest fractional-order two-element Windkessel model as
proposed in (Bahloul and Laleg-Kirati, 2020) with an equivalent

arterial compliance C
q
a = Cα

p + C
β

d
.

3. DATA AND ANALYSIS

3.1. In-vivo Human Hypertension Datasets
The proposed model was applied and validated using two real
clinical datasets for human hypertension (Nichols et al., 1993;
Li et al., 2017). The first in-vivo dataset (n = 3) was extracted
and digitized from aging, and hypertensive studies (Nichols
et al., 1993; Aboelkassem and Virag, 2019)). The data consists
of measured aortic blood flow rate and aortic blood pressure for
three human subjects suffering from three different hypertension
stages, particularly Pre-hypertension, mild-hypertension, and
severe hypertension. Their cardiac cycle is T = 0.92 s. The
second clinical dataset was obtained from data supplement
publicly available at in (Mariscal-Harana et al., 2021). The dataset
was originally used in a study about forward and backward
pressure waveform morphology analysis in hypertension, (Li
et al., 2017). The dataset consists of 158 subjects assessed for
hypertension (n = 158, 81 male, aged 46 ± 17 years, mean
± SD). Based on (Li et al., 2017) the patients were recruited
from those who were diagnosed with hypertension at Guy’s and
St Thomas’ Hypertension Clinic. 48% of the subject were on
treatment and hence their blood pressure were settled to the
normal values (normotensive). More details about the collection
of this data such as the consent approval and the measurement
tools can be fount in (Mariscal-Harana et al., 2021). In addition
to the aortic waveforms the dataset contains extra chracteristic
of the subjects such as the height, weight, measurements of
systolic (SBP) and diastolic (DBP) blood pressure, cardiac output,
stroke volume and heart rate. As in this study we focus on the
investigation of fractional-order framework for the assessment
of hypertension, we divided the patients of this dataset into 4
groups corresponding to the range of SBP and DBP of the central
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blood pressure pulse: Group 1, normotension (DBP < 80 AND
SBP < 120); Group 2, pre-hypertesion (80 ≤ DBP ≤ 85 OR
120 ≤ SBP ≤ 130); Group 3, hypertension (85 ≤ DBP ≤ 90 OR
130 < SBP ≤ 140) and Group 4, severe-hypertension (DBP > 90
OR SBP > 140). The characteristics of each group are listed
in Table 1.

3.2. Parameters Identification of the
Models
For the numerical implementation of the F-MWK the definition
ofGrunwald-Letnikov (GL) given in definition 1 is used Podlubny
(1999). The time validation of the proximal pressure waveforms
(Pp) was performed using two clinical hypertension real datasets.
The cost function we used to calculate signal dissimilarity is the
L2-norm of the difference between the two signals. It can be
formally described as follows:

Minimize
2

∥
∥
∥Pp − P̂p(2)

∥
∥
∥
2
, (12)

The optimizer algorithm uses the measured aortic root flow rate
as an input and compute the required model parameters, 2 =

{Cα
p , L,C

β

d
,Rp, Pv,α,β}, which minimize the pressure root mean

square error (RMSE), i.e., the difference between measured and
calculated aortic root pressure as:

RMSE =

√
√
√
√

1

N

n
∑

i=1

(Pp[i] − P̂p[i] )
2. (13)

where N denotes the number of samples per Pp pressure
signal. The estimation process was based on a non-linear
least square minimization routine applying the well-known

TABLE 1 | Characteristics of the hypertensive clinical dataset 2.

Pulse pressure groups

Subjects Group 1 Group 2 Group 3 Group 4

(n = 55) (n = 41) (n = 36) (n = 26)

Sex, male,

[%]

45.45 58.53 50 50

DBP < 80 80 ≤ DBP ≤ 85 85 ≤ DBP ≤ 90 DBP > 90

Characteristic AND OR OR OR

SBP < 120 120 ≤ SBP ≤ 130 130 < SBP ≤ 140 SBP > 140

Age (years) 45.34 ± 16.7 43.63 ± 17.52 47.88 ± 17.33 49.92 ± 14.28

Height (m) 1.68 ± 0.10 1.72 ± 0.09 1.69 ± 0.07 1.68 ± 0.07

Weight

(Kg)

74.76 ± 15.68 79.69 ± 13.75 77.81 ± 14.50 80.18 ± 17.16

DBP

(mmHg)

70.40 ± 6.24 82.65 ± 7.03 88.36 ± 7.29 95.53 ± 15.76

SBP

(mmHg)

105.23 ± 10.10 124.88 ± 8.02 136.71 ± 11.52 159.03 ± 18.05

MBP

(mmHg)

86.38 ± 7.29 102.02 ± 5.46 110.30 ± 6.58 123.70 ± 15.02

HR

(beats/min)

57.68 ± 13.62 65.14 ± 17.06 60.98 ± 14.47 64.09 ± 12.01

PWV (m/s) 3.42 ± 01.03 3.99 ± 1.09 4.77 ± 01.57 5.46 ± 1.50

MATLAB− R2020b, function fmincon. The estimate of 2 is
2̂ were found via the solution of the inverse problem of the
estimated proximal blood pressure (P̂p) and the real one (Pp).
Initialized by 20 and using a nonlinear programming solver,
the inverse algorithm iteratively predicts the set of parameters
2̂ which minimizes the objective function. In this process, we
constrained all the parameters to be positive to guarantee physical
properties (Lower_bounds = [0], Upper_bounds = [∞] and.
Once a tolerance of error was reached, the convergence of the
method is confirmed, the fmincon function exits and yields an
output of the optimal set of model parameters estimates 2̂∗.

In addition, to evaluate the performance of the estimation,
we calculate the relative error, R.E.(%) and the correlation
coefficient, ρ defined as:















R.E.(%) =
||Pp − P̂p||2

||Pp||2
× 100%

ρ =

∑n
i=1(Pp − P̄p)(P̂p −

¯̂Pp)
√

∑n
i=1(Pp − P̄p)2

√
∑n

i=1(P̂p −
¯̂Pp)2

,
(14)

where .̄ represents the average operator.

3.3. Sensitivity Analysis for the Apparent
Compliance
In order to study how the variation in the apparent arterial
compliance modulus and phase is associated with the variations
of the different input parameters factors, a global sensitivity
analysis based on variance method has been performed. Variance-
Based Sensitivity Analysis (VBSA) is a valuable step in the model
calibration process, estimating the model parameters. In fact, it
provides a relevant insight on how changes in the estimates of
the parameters (the inputs of the model) map into variations of
the performance metric that evaluates the model fit. A detailed
review with practical workflow about the sensitivity analysis
literature can be found in (Pianosi et al., 2015, 2016; Wagener
and Pianosi, 2019).

In this study, we evaluate the VBSA of the fractional-order
arterial compliance using First-order indices known also as “main
effect” and the total-order indices so-called “total effect.” The
“main effect” indices measure the direct contribution of the
output variation from individual input factor or, equivalently, the
expected reduction in output variance that can be obtained when
fixing a specific input (Pianosi et al., 2016). The First-order indices
is defined as:

VBSAF =
Vx∼i[Ex∼i(y|xi)]

V(y)
=

V(y)− [Ex∼i(y|xi)]

V(y)
(15)

where E denotes expected value, V denotes the variance, x
denotes the input, y denotes the output, and x ∼ i denotes “all
input factors but the ith.”

VBSAT =
Ex∼i[Vxi (y|x ∼ i)]

V(y)
= 1−

Vx∼i[Exi (y|x ∼ i)]

V(y)
(16)
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4. RESULTS

In this section, we show the results of applying the proposed
model for both subjects of the clinical dataset 1 and the groups
of the clinical dataset 2 as described in Table 1. To fully identify
the proposed fractional-order model the parameters and the
fractional differentiation orders have to be estimated using
the measured flow and pressure waveforms. In addition, we
present the result of applying the variance-based global sensitivity
analysis technique to the proposed arterial representation and
the analysis of ranking the lumped parameters in order of
importance based on VBSAF and VBSAT.

4.1. Model Calibration
The list of the optimized F-MWKparameters and their numerical
values are shown in Table 2. For clinical dataset 2, the parameter
estimates’ mean value and standard deviation (mean ± SD)
are presented per group. The optimized parameters for each
subject are then used to reconstruct the aortic proximal blood
pressure waveform (Pp). The pressure root mean square error
RMSE and the percentage relative error [R.E. (%)] along with the
correlation coefficient (ρ) between the real aortic pressures and
the reconstructed ones are also listen in Table 2 as performances.
In the following we present the detailed analysis of the proposed
fractional-order model and its validation against each in-human
hypertension clinical datasets.

4.1.1. Human Hypertension Dataset 1

In order to validate and check the ability of the F-MWK in
reconstructing the proximal blood pressure at various levels of
hypertension conditions, namely the Pre-hypertension, Mild-
hypertension, and severe hypertension in this part, we use human
data from the hypertensive study, (Nichols et al., 1993). The
lumped model parameters are identified using the aortic blood
flow (Q) as an input. The reconstructed proximal blood pressures
after applying F-MWKusing the identified parameters along with
the experimental in-vivo waveform are shown in Figures 2A,C,E

represent the model input aortic-valve blood flow rate (Q) for
each hypertension condition level and Figures 2B,D,F represent
the pressure waveform validation results. Based on this result, it is
clear that the proposed fractional-order model captured the main
features of the proximal aortic pressure waveform, including the
maximum value (peak systolic value) and the dicrotic notch. The
model conforms better in detecting these features in the cases
of Mild-hypertension and Severe-hypertensive level, where the
percentage relative errors were 1.9 and 2.19%, respectively. The
correlation coefficients for all the studied cases are around 0.99,
which confirms the model’s capability to catch the explicit details
of the arterial blood pressure morphology.

In addition, the model presents a better performance in
terms of RMSE than the models presented in Aboelkassem and
Virag (2019) namely the hybrid Windkessl-Womersley (WK-
W) model. for instance, the RMSE value was around 3.02 in
the case of F-MWK; however, it is equal to 4.12 in the case
of (WK-W). It is worth noting that WK-W is a hybrid model
that consists of the proximal and distal compartments similar
to F-MWK; however, these two compartments are connected by T
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a tube to represent the aorta where the blood flow is expressed
by the Womersley solution of the Navier-Stokes equations.
Accordingly, the fractional-order framework can reproduce an
accurate performance similarly to more complex systems. By
interpreting the numerical values of the proximal and distal

pseudocapacitances (Cα
p , C

β

d
) and the corresponding fractional

differentiation-orders (α, β), we notice a clear decrease of
these parameters from Pre-hypertension level to the Sever-
hypertension level.

On one side, this result demonstrates the fractional-order
behavior within the distal arterial network. In fact, β is less
than the integer-order and takes values between 0 and 1. In
addition, as the level of hypertension increases, the fractional
differentiation order decreases. Furthermore, from equation (7),
it is obvious that as β alters from 1 to 0, the FOC’s resistive part
increases. Accordingly, the results of the identified fractional-
order parameters are consistent with the clinical investigations,
which have revealed that the vascular remodeling in resistive
arteries is strongly associated with the progression and severity
of hypertension’s disease.

4.1.2. Human Hypertension Dataset 2

To further validate and interpret the efficiency of the developed
model, we explore the second clinical dataset that consists of 158
human subjects examined as hypertensive patients. A portion of
the studied population is under treatment, and their high blood
pressures were controlled and regulated to be within the normal
values. The main objective of investigating this type of data is to
keep the generality of the proposed model and demonstrate that
this model can be employed in different physiological conditions.
In fact, the dataset presents patients of different ages, gender,
weight, and hemodynamic characteristics as listen in Table 1.

Basically, we divided this data into four classes based on the
peak systolic blood pressure and diastolic values, SBP and DBP,
respectively. The thresholds of SBP andDBPwere set in amanner
that: Group 1 consists of patients with regulated blood pressure
levels that can be considered as a normotensive subset, Group
2 consists of patients with a bit high SBP and DBP, which some
studies consider it as Pre-hypertension stage, Group 3 consist of
patients with high-level blood pressure values which is indeed
thought as hypertension subset, and Group 4 with the highest
SBP and DBP is supposed to present the severe-hypertensive
samples. Figure 3 summarizes the result of the proximal aortic
blood pressure reconstruction of a representative patient from
each group. The proposed model can capture all the waveforms
details, including the dicrotic notch and the peak systolic value. It
is worth noting that the selected patients present different aortic
input blood flow profiles.

As shown in Table 2 the values of the performance indexes,
namely RMSE, R.E.(%) and ρ, indicate that the proposed model
was able to reconstruct the proximal blood pressure using the
optimized lumped parameters. The RMSE values do not exceed
3 in all cases, and the smallest value is around 1.48 ± 0.50 for
group 1, and the largest one is 2.34 ± 0.62 for group 4. Also the
smallest R.E. is around 1.62% ± 0.44% obtained for group 2 and
the largest one is 1.70% ± 0.59% for group 1. The correlation
coefficient is around 0.99 for all the groups.

By checking the optimized values of the fractional-order

parameter, namely the pseudocapacitance (Cα
p , C

β
p ) and their

corresponding fractional differentiation orders (α, β), we noticed

that Cα
p and C

β
p decrease from group 1, which considered

representative of the normotensive population to group 4 that
corresponds to the subset with severe-hypertensive level based
on the value of SBP and DBP. However, α and β slightly
increase from groups 1 to 4. This result is different from the
one found with the clinical subset 1. This can be explained by
the fact that the presented model is not globally identifiable.
It is very challenging to find unique values for the pairs (Cα

p ,

α) and C
β

d
, β . Accordingly, it is more pertinent to evaluate the

complex and frequency-dependent compliance CC that conveys
the relationship between the fractional differentiation order and
the pseudocapacitance via the expression (9). The following
section focuses on the evaluation and analysis of CCh

at the
cardiac frequency for both proximal and distal compliances.

4.2. Variance Based Sensitivity Analysis
Generally, to simulate the proximal blood pressure waveform,
we feed F-MWK with the identified set of the values of the
lumped parameters, which can be regarded as a scalar input of
the proposed model. In order to test and understand the effect of
varying one of the inputs at a time on the output signal dynamic
and morphology and study the interactive effect between the
inputs and the output, we conduct a variance-based sensitivity
analysis (VBSA) as explained in the method section.

Two indices based on VBSA were evaluated in this study:
the first-order index (VBSAF), which reflects the main effect
contribution of each input factor to the variance of the output
and ranks the importance of this input; the second one is the total
effect index (VBSAT) which accounts for the total contribution
to the output variation due to factor input evaluated by the
first-order effect in addition to all higher-order effects due to
interactions. In this study both indices were evaluated at each
sample of the proximal aortic blood pressure waveform for the
three hypertensive subject of the clinical dataset 1.

We consider a normal distribution variation of each input
parameter X ∼ N (µ, σ 2) where X corresponds to the
input, µ is the mean value of the distribution that is equal
to the optimized value of the parameter shown in Table 2.
(Dataset 1) and σ denotes the standard deviation that is
taken to be 15% of the value of µ. Figures 4A,C,E show the
evaluated VBSAF(t) for the Pre-hypertension, Mild-hypertensive
and Severe-hypertensive patients, respectively. Figures 4B,D,F
displays the evaluated VBSAT(t) for the Pre-hypertension, Mild-
hypertensive and Severe-hypertensive patients, respectively. For
all cases the indices were computed over one cardiac cycle.

For visualization purposes of each subject, all the parameters
are listed in y-axis, whereas the x-axis represents the time
samples. In addition, the normalized blood pressure waveform
was plotted in the same plot. It is very clear from these results
that F-MWK is very sensitive to the variation of the fractional
differentiation order (α) over the whole cardiac cycle for all
the hypertension levels. The rest of the parameters are less
influential on the output dynamic, though their effect varies
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FIGURE 3 | Estimated proximal blood pressure using the proposed fractional-order modified Windkessel model along with the experimental in-vivo

human-hypertension for samples from the different groups of the dataset 2. (A,C,E,G) Represent the model input aortic-valve blood flow rate for each group’s sample

study, Group 1, Group 2, Group 3 and Group 4, respectively. (B,D,F,H) Represent the pressure waveform validation results.

from one hypertension level to another. In fact, this effect is
more considerable in the Mild-hypertensive case, as shown in
subplot D. Generally, the difference between VBSAT(t) and
VBSAF(t) measures how much the parameter is involved in the
interaction with other input factors. Accordingly, the parameters
are very affected by any interaction between the input factor
in the case of Mild-hypertension. Based on these observations,
the fractional differentiation orders might have central control
in the variation of the aortic blood pressure. Accordingly,
this parameter might play an important position as a bio-
marker assessing the transition between viscosity and elasticity,
a potential arterial stiffness index.

5. DISCUSSION

The fractional-order capacitor represented by its
pseudocapacitance and the fractional differentiation order
can be an inherent component in F-MWK by lumping the
complex and frequency-dependent behavior of the vascular
compliance as well as characterizing the hemodynamic. The
sensitivity analysis and the model calibration show that the
fractional-order pairs may entail valuable structural and
functional physiological insight. Based on the validation results

using clinical dataset 1 a clear, direct correlation between the
fractional differentiation orders and the level of hypertension
was found in agreement with the clinical analysis. Indeed, as
the level of hypertension increases, a decrease in the numerical
values of the fractional differentiation orders (α and β), as well

as the pseudocapacitances (Cα
p and C

β

d
), was reflected.

The concurrent decrease of the fractional-order parameters
of FOC yields to the predominance of the resistive (dissipative)
part on account of the capacitive (storage) part in this element.
This fact is a potential representative of vascular remodeling
associated with the severity of hypertension. Analyzing the
fractional differentiation orders independently from the pseudo-
capacitance might lead to misinterpretation. In fact, based on
expression (5), these two parameters might have a compensatory
inter dynamic mechanism. Accordingly, it is more appropriate
to evaluate the complex fractional-order compliance that relates
both parameters via expression (7) at the heart pulsation (ωh),
reflecting the so-called true arterial compliance. It is defined as
follow:

CCh
= CC(ωh) = Cα

app(jωh)
α−1. (17)

Figure 5 shows the fractional-order compliance evaluated at
the heart pulsation: Figure 5A represents the bar plot of the
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FIGURE 4 | Variance-based sensitivity analysis of the proposed fractional-order model. (A,C,E) Represent the first-order indices (VBSAF) of the model’s parameters

for a Pre-hypertensive, Mild-hypertensive and Severe-hypertensive subject, respectively. (B,D,F) Represent the total-order indices (VBSAT ) of the model’s parameters

for a Pre-hypertensive, Mild-hypertensive and Severe-hypertensive subject, respectively. The variance based sensitivity indices were evaluated for each sample of the

aortic proximal blood pressure over one cardiac cycle.

proximal (C
p
Ch
) and distal (Cd

Ch
) fractional-order compliance

for the in-human hypertensive subjects of dataset 1; Figure 5B
represents the error bars plot of the proximal (C

p
Ch
) and distal

(Cd
Ch
) fractional-order compliance for the in-human hypertensive

groups of dataset 2. The error in this plot corresponds to the
standard error of the mean. From this figure, in all cases,
C
p
Ch
, which characterizes the large elastic arteries, is larger

than Cd
Ch
, which characterizes the small resistive vessels. In

addition for both datasets, as the hypertensive increases both

compliances decreases. From Figure 5B, the gradient from

group 1 representing a normotensive population to group 2 (Pre-

hypertensive) is more acute than the slopes between groups 2

and 3 and groups 3 and 4, which are approximately equal. CCh

is substantially decreased from normal blood pulse pressure to
the higher one.

This result is very important and demonstrates the reliability
of CCh

in characterizing stiffness as an important risk factor for
the progression of high blood pressure. As the clinical dataset 2
provides the aortic pulse wave velocity (PWV) of each patient,
in Figure 6. we plotted the mean values for both CP

Ch
and Cd

Ch
for

each group vs. themean values of PWV for each group. The result
shows the strong negative correlation between the PWV and CCh

which is in agreement with the clinical standard that shows that
PWV values substantially increase with the hypertensive level as
a consequence of arterial stiffness.

The correlation with PWV (a well-established biomarker of
along with the level of hypertensive reveals the potential of
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FIGURE 5 | The fractional-order compliance evaluated at the heart pulsation. (A) Represents bar plot of the proximal (C
p

Ch
) and distal (Cd

Ch
) fractional order compliance

for the in-human hypertensive subjects of dataset 1. (B) Represents error bars plot of the proximal (C
p

Ch
) and distal (Cd

Ch
) fractional order compliance for the in-human

hypertensive groups of dataset 2. Each bar in this plot represent the mean value of the evaluated fractional-order compliances per group and the error corresponds to

the standard error of the mean per group.

FIGURE 6 | The fractional-order compliance evaluated at the heart pulsation (CCh ) vs. the arterial pulse wave velocity (PWV) for the different hypertensive groups of

dataset 2. (A) PWV vs. the proximal fractional-order compliance (C
p

Ch
) and (B) PWV vs. the distal fractional-order compliance (Cd

Ch
).

the fractional-order parameters to improve our understanding
of the structural development of vascular remodeling due to
hypertension. Indeed, fractional-order parameters are considered
a prospective new tool in capturing irregular vascular changes.
Stress-relaxation-based viscoelastic experiments on arterial
segment have reported that the fractional differentiation order

parameter could be associated with vascular smoothmuscles cells
(VSMCs) activity, contributing to the viscoelasticity modulation
in the vessels (Craiem and Armentano, 2007; Craiem et al., 2008).

In arteries, VSMCs induce the stretching of collagenous fibers,
and vascular activation can modify the local viscoelastic response
of the arterial wall (Armentano et al., 2006). Vascular smooth
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muscle cells (VSMCs) represent an important part of blood
vessels and are placed in themedium portion of the arterial vessel,
known as tunica media. They are located circularly around the
vascular lumen and other vascular layers. VSMCs play a crucial
role in the remodeling processes of the vascular wall due to
certain diseases.

In hypertension, the vascular remodeling induces different
changes in the VSMCs of large and resistive small arteries:
with regards to larger vessels, VSMCs experience hypertrophy
remodeling, an expansion in the cellular vessel material, which
results in an enlarged intima-media thickness, raised vascular
stiffness, and so high blood pressure (increased pulse pressure).
In the small arteries, the vascular remodeling manifests as a
eutrophic phenomenon, which results in an increase in wall
thickness and a reduction in lumen diameter. It can represent
hypertrophic reconstruction as well.

Several clinical studies in-patient and experimental researches
have revealed the marked correlation between vascular
remodeling and the pathophysiology of hypertension. Low
dimensional models (lumped parameters models) are quite
limited in the vascular remodeling structural analysis contest,
which requires an extremely complex interplay of deeply coupled
multi-scale and multi-physics mechanisms. The fractional-
order framework offers much promise in understanding
key physiological mechanisms while reducing the order of
complexity. Due to the extra fractional-order parameters, more
flexibility is added to capture structural artery characteristics.

6. MODEL DEVELOPMENT AND FUTURE
APPLICATIONS

Fractional order modeling (FOM) approach can be viewed as
a natural generalized of the well-known blood flow arterial
Windkessel model. The proposed model can be easily integrated
within a closed-loop whole heart lumped parameter model
representation for better understanding of the blood flow
dynamics in the cardiovascular system. In this part, we list a
couple of applications where the present model can be useful and
is expected to perform well.

The first application is related to using the present model as a
surrogate measure of arterial stiffness prediction. For example, it
is commonly known that probing arterial stiffness at the arterial
locations provides valuable information about the physiological
state of the cardiovascular system. An increase in arterial
stiffness plays a critical role in the pathogenesis of cardiovascular
disorders and is identified as a major risk factor for many
cardiovascular pathologies such as hypertension and coronary
heart diseases. Accordingly, the present model can be used within
a larger integrative computational platform for assessing arterial
stiffening at different distal locations. Hence, it can be used
for better understanding arterial blood flow, predicting, and
diagnosing many stiffness related cardiovascular diseases.

The second application is related to the use of the pulsed
wave velocity (PWV) as a standard method for assessing arterial
stiffness. The PWV is functionally assessed by evaluating the
time it takes for the pressure waveform to travel two known

arterial sites. Despite its wider adoption in the clinical routine,
the measurement process of PWV is considered a demanding
task for both clinicians and patients. Since the present model
have the capability of estimating the PWV. Therefore, it can be
used toward developing a full scale non-invasive and easy-to-
use computational tool that can overcome the challenges of the
classical assessment stiffness process and hence it can be used to
improve the quality of patient care.

In summary, the present model is an initial step toward
developing an integrative non-invasive surrogate markers of local
and global arterial stiffness. The marker is based on the fractional
differentiation order that controls the transition between the
resistive and capacitive parts of the fractional-order element
and, by analogy, represents the viscoelastic properties of the
vasculatures.

7. CONCLUSION

A novel fractional-order lumped model of the arterial system
is proposed to study hypertension. The model has shown the
feasibility of characterizing the proximal and distal arterial
compliances using fractional-order capacitors. The in-vivo
human validation demonstrates the ability of the proposed
model in reconstructing the central blood pressure and
capturing specific details of different waveforms morphology.
The variation of the complex and frequency-dependent apparent
arterial compliance evaluated at the heart pulsation vs.
different hypertensive levels shows consistency with the clinical
observations. Moreover, the correlation with the pulse wave
velocity (a well-established biomarker of arterial stiffness)
demonstrates the capabilities of this model, namely the
fractional-order parameters. The model results are expected to
improve our understanding of the structural and functional
characteristics of the resulting vascular remodeling of large and
small arteries in different hypertensive conditions.
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