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A variety of organisms including mammals have evolved a 24h, self-sustained timekeeping
machinery known as the circadian clock (biological clock), which enables to anticipate,
respond, and adapt to environmental influences such as the daily light and dark cycles.
Proper functioning of the clock plays a pivotal role in the temporal regulation of a wide
range of cellular, physiological, and behavioural processes. The disruption of circadian
rhythms was found to be associated with the onset and progression of several pathologies
including sleep andmental disorders, cancer, and neurodegeneration. Thus, the role of the
circadian clock in health and disease, and its clinical applications, have gained increasing
attention, but the exact mechanisms underlying temporal regulation require further work
and the integration of evidence from different research fields. In this review, we address the
current knowledge regarding the functioning of molecular circuits as generators of
circadian rhythms and the essential role of circadian synchrony in a healthy organism.
In particular, we discuss the role of circadian regulation in the context of behaviour and
cognitive functioning, delineating how the loss of this tight interplay is linked to pathological
development with a focus on mental disorders and neurodegeneration. We further
describe emerging new aspects on the link between the circadian clock and physical
exercise-induced cognitive functioning, and its current usage as circadian activator with a
positive impact in delaying the progression of certain pathologies including
neurodegeneration and brain-related disorders. Finally, we discuss recent
epidemiological evidence pointing to an important role of the circadian clock in mental
health.
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INTRODUCTION

Life on earth has evolved around the approximately 24 h solar
day. Accordingly, organisms ranging from plants to mammals,
including humans, have developed an endogenous (internal) time
keeping machinery–the biological (circadian) clock. The term
endogenous here refers to the processes derived from an internal
origin of the system itself i.e., from the organism or cell/tissue.
Hence, endogenous rhythms refer to rhythms which the
organism is able to generate without external input. The clock
enables the timing regulation of physiology and behaviour and
provides an advantage for adaptation, survival, and anticipation
to foreseeable daily changes such as the light and dark cycles
(Astaburuaga et al., 2019). These rhythms are circadian (circa =
about; dies = a day) and show a periodicity of approximately 24 h.
The timing of cellular processes, regulated by the circadian clock,
is crucial for the maintenance of proper organismal homeostasis.

Increased awareness concerning the impact on health caused
by perturbations in our internal time keeping machinery has
strongly contributed to the growing research in the field. In 2017,
discoveries on genetics and molecular mechanisms of the
biological clock made over the past decades led to the award
of the Nobel Prize for Physiology or Medicine to Jeffrey C. Hall,
Michael Rosbash and Michael W. Young (Bargiello et al., 1984;
Zehring et al., 1984; Siwicki et al., 1988; Hardin et al., 1990; Liu
et al., 1992; Vosshall et al., 1994; Price et al., 1998). Although
accumulating evidence points to a crucial role of the biological
clock in temporal regulation and optimal functioning of
physiological and behavioural processes, clinical applications
of this knowledge in the maintenance of health and fighting
disease remains scarce. For numerous reasons, ranging from the
low number of clinical studies on chronobiology and circadian
medicine to the logistic complexity of introducing circadian
consideration in the planning of clinical studies and
subsequent treatment routines, a limited number of clinical
applications has been introduced, one of those rare examples
being the use of circadian lighting solutions implemented at
intensive care units (Luetz et al., 2019). It is thus timely to
better understand the biological clock, as well as the
consequences of its failure on human health, and develop
ways for applying this knowledge in clinical practice.

Circadian rhythms share certain characteristics, as they are: 1)
self-sustained oscillations (~24 h period) present also in the
absence of external cues (defined as free running period, FRP);
2) susceptible to resetting by Zeitgebers (timing cues) as defined
by pioneers in the field (Pittendrigh and Minis, 1964; Aschoff,
1965); and 3) temperature-compensated. The German term
Zeitgeber (literally “time giver”) is defined as any external or
environmental cue that entrains an organism’s biological rhythm
to cyclic, repetitive signals to ensure the temporal regulation,
adaptation and functioning of the organism. These
environmental factors refer to changes in the surrounding
environment such as light exposure, temperature, oxygen or
nutrient availability, mealtimes, physical exercise, work
schedules, and social cues as illustrated in Figure 1. Of note,
although any environmental factor which can enable a 24 h
rhythm may serve as Zeitgeber for other oscillators, light has

been denoted as the primary and the most dominant Zeitgeber to
the circadian clock (Duffy and Czeisler, 2009; Ashton et al., 2022).
The underlying reason being is that light and dark cycles are
responsible for all other environmental rhythms therefore serving
a reliable source of information to adjust the timely regulation of
process across the day (Panda et al., 2002; Roenneberg et al.,
2013a). In addition, several internal signals such as daily
fluctuations of hormones or metabolites in bloodstream,
neurotransmitters or body temperature can also act as
‘internal timing cues’ in mammals (Dibner et al., 2010).

As mentioned above, circadian rhythms are synchronized to
external light signals every day to ensure robust cyclic activity in
molecular and cellular processes, which in turn regulate the
timing of physiology including core body temperature, sleep/
wake cycles, hormonal secretion (e.g., cortisol, melatonin and
dopamine), and behaviour (e.g., physical activity and mood)
(Koronowski and Sassone-Corsi, 2021) (Figure 1). Both
genetic (the alterations in of clock or clock-controlled genes)
and/or environmental factors (e.g., sleep disruption, artificial
light exposure) may disrupt circadian rhythms (Cederroth
et al., 2019; Ruben et al., 2019; Walker et al., 2020). Several
studies have shown that, in the absence of environmental cues,
humans have altered sleep and activity cycles (slightly longer than
24 h), and that genetic variants of certain circadian genes can
affect period length (Toh et al., 2001; Xu et al., 2005; He et al.,
2009) and phase of behavioural outputs (Archer et al., 2003;
Yamaguchi et al., 2015). While homeostatic sleep regulation
refers to the trigger to sleep, which is influenced by the
duration of wakefulness, the circadian sleep regulation
transmits stimulatory signals to circadian networks to promote
awakening in opposition to the homeostatic drive to sleep. Thus,
homeostatic sleep processes have a strong influence on the
maintenance and depth of sleep. According to the well-known
two-process model of sleep regulation, which suggests that, this
regulation is determined based on the interaction of homeostatic
processes (also known as process S), and the prior amount of
sleep and fragmentation (by awakening), which is controlled by
the circadian clock (process C). Sleep occurs when S approaches
its upper boundary, while awakening occurs at its lower boundary
(Borbély, 1982; Daan et al., 1984; Borbély et al., 2016).

Environmental cues can influence not only the period, but also
the phase and amplitude (peak to trough distance) of circadian
oscillations (Roenneberg and Merrow, 2007). The phase of an
oscillation is defined as the timing of maximum expression and/
or activity within a circadian cycle (24 h). The term “chronotype”
on the other hand is used to denominate an individual’s
subjective, internal timing, and provides a classification of
individuals (i.e., morning larks or night owls) based on their
preferred sleep-wake phases (Roenneberg et al., 2003;
Roenneberg et al., 2019; Hesse et al., 2020). As a result of the
different chronotypes, humans show a predisposition to be more
efficient at certain activities (e.g., sports, food intake) at different
times of day, and following one’s chronotype is crucial to
maintain optimal functioning of the circadian system.

Continuous alteration of the timing of daily routines, for
example due to shift work or travel, can result in the
misalignment between internal and external time (Figure 1).
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The term ‘circadian misalignment’ in this context can be described
as a mismatch between an individual’s circadian chronotype and
their physical or social environment (e.g., light-dark cycle, school,
or work times) (Roenneberg and Merrow, 2016). This means that,
if circadian rhythms in all cellular clocks are synchronised to the
daily cycle, as well as to each other, they are aligned. On the other
hand, if throughout the body, they are termed as misaligned. The
resulting disruption of circadian rhythms negatively impacts
human health and has been found to be associated with various
diseases including sleep disorders (Rijo-Ferreira and Takahashi,
2019), mental disorders (Walker et al., 2020), neurodegenerative
diseases (Carter et al., 2021) and cancer (Sulli et al., 2019), as well as
metabolic disorders such as obesity (Baron and Reid, 2015) and
diabetes (Javeed and Matveyenko, 2018). Although a limited
number of interventions are available a few prototypes have
been used to prevent and/or reduce circadian disruption in

daily activities. For example, special bio-lightening in overseas
flights has been implemented to prevent misalignment of the
internal clock and the geophysical time while traveling across
time zones, a concept described as ‘jet lag’. Other examples
include exposure to bright light in seasonal depressive disorder,
a mental condition related to variation of daily light exposure
across different seasons, which has been reported as an effective
treatment equivalent to antidepressants (Campbell et al., 2017).
Disruptions of circadian rhythms in sleep/wake cycles, blood
pressure, and hormonal secretion such as melatonin have been
reported in patients with mood disorders. Clinical studies have
pointed to a direct association between the severity of circadian
rhythm disturbances and mood disorders and further showed a
positive impact on mood disorders when restoring
circadian dynamics with treatments (Ruben et al., 2019; Sato
et al., 2021).

FIGURE 1 | The circadian clock impacts health and disease. In response to environmental cues such as daily light/dark cycles, the master clock in the
suprachiasmatic nucleus (SCN) and peripheral clocks are synchronized through complex routes of neuronal and hormonal networks. Proper functioning of the circadian
clock ensures correct timing of physiology and behaviour (e.g., sleep/wake cycles) and contributes to maintaining a healthy life. Disruptions of circadian rhythms may
occur due to genetic factors or life style determinants such as long-term shift work and are associated with various health complications including mood and sleep
disorders, neurodegenerative diseases and cancer. Clinical interventions aiming at restoring circadian rhythms and minimizing the consequences of circadian disruption
(e.g., bright light therapy, physical exercise), as well as targeting treatment optimization via timing the administration of drug compounds (i.e., chronotherapy) are currently
being evaluated.
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As mentioned above, research in the circadian field has grown
considerably over the past years, but usage of this knowledge in
the maintenance of health and prevention or treatment of disease
remains to be fully explored. Increased awareness of the role of
circadian rhythms in health maintenance, as well as non-invasive
tools to characterize the individual chronotype, also at the
molecular level, are therefore needed.

In this review, we will first provide an overview of the current
knowledge regarding the molecular and neuronal circuits that
drive circadian rhythms in mammals, with a particular focus on
humans, followed by a discussion of recent studies reporting
connections between perturbations of the circadian clock and
pathological development. We will highlight the link between a
dysregulated clock and neurodegenerative diseases including
Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Huntington’s disease (HD), and describe results from recent
studies reporting restoration of circadian rhythms as a means
to improve disease-related symptoms (Section 3.1). We will
further discuss the circadian regulation of behavioural and
cognitive functions, memory consolidation, and implication of
loss of this regulation in mental disorders such as obsessive-
compulsive disorder (OCD), major depressive disorder (MDD),
and schizophrenia (Sections 3.2). We will elaborate on emerging
novel aspects linking the circadian clock to physical exercise and
exercise-induced neurocognitive functioning, as well as its
current usage as circadian activators with a positive influence
on delaying the progression of certain neurodegenerative and
brain disorders (Section 3.3). Finally, in Section 3.4, we will
discuss recent epidemiological studies pointing to the important
role of the circadian clock in mental health with a particular focus
on its link to public mental health and the transition to
parenthood.

MAKING BIOLOGICAL TIME: THE
MOLECULAR AND NEURAL CIRCUITS
MEDIATING GENERATION AND
FUNCTIONING OF CIRCADIAN RHYTHMS

The Suprachiasmatic Nucleus as theMaster
Regulator of the Circadian System
In mammals, the circadian system is hierarchically organized.
The central pacemaker of the circadian system is located in the
suprachiasmatic nucleus (SCN), a small bilateral structure in the
anterior part of the hypothalamus positioned above the optic
chiasm. In humans, the core-molecular oscillator is reset with
exposure to light in the early morning. Environmental light
signals are perceived via intrinsic photosensitive ganglion cells
and photic information is transmitted to the SCN via the
retinohypothalamic tract. Via complex routes of neuronal and
hormonal networks, the SCN entrains peripheral oscillators and
modulates the period and phase of all oscillators throughout the
body (Bittman, 2021).

The generation of time in the main pacemaker is ensured by
clusters of coupled oscillators (~20.000 neurons) spread across
two SCN subregions, the core and a shell region surrounding the

core, which differ in their expression of specific secreted
neurochemicals (Hastings et al., 2018) (Figure 2A). The core
region governs vasoactive intestinal peptide (VIP)-, calretinin,
neurotensin (NT)-, and gastrin-releasing peptide (GRP)-expressing
neurons (Slat et al., 2013). VIPs are the most abundant
neurotransmitters and are essential for the transmission of light
signals. Together with their binding partner VIP-receptor 2
(VIPR2; also known as VPAC2), found in both core and shell
regions, VIP neurons regulate the rhythmic expression of other
neuronal circuits and ensure the coupling of SCN neurons, as well
as non-SCN brain clocks. Perturbation of VIP signalling via knockout
(KO) experiments resulted in the disruption of inter-neuronal
coupling and rhythmic expression of core-clock genes, and led to
the dysregulation of activity and entrainment mechanisms in mouse
models, pointing to an essential role of this coupling on physiological
processes (Maywood et al., 2011; Edwards et al., 2016).

The shell region, on the other hand, is composed of arginine
vasopressin (AVP)-expressing neurons that colocalize with
Gamma-Aminobutyric Acid (GABA), a crucial
neurotransmitter, which regulates excitability of neurons in the
central nervous system (CNS), and plays a role in the phase
resetting of other brain (non-SCN) and peripheral clocks
throughout the body (Herzog et al., 2017; Mieda, 2019). AVP
neurons are under direct regulation of the circadian clock and
widely present in the SCN. They can substitute the function of
VIP neurons, in the absence of VIP signalling (Maywood et al.,
2011). The absence of AVP receptors was shown to weaken the
coupling between SCN neurons, and to accelerate re-entrainment
of behavioural rhythms in mice (Yamaguchi et al., 2013; Mieda
et al., 2015).

In addition, the SCN plays an essential role in the entrainment
of peripheral clocks (Figure 2A). It has been suggested that a
bidirectional interactionmay exist between the master pacemaker
and other body clocks pointing to the existence of a feedback
route from peripheral clocks to the SCN. Although the exact
mechanisms underlying this interaction remain to be elucidated,
energy homeostasis via the regulation of the hormones ghrelin
(involved in short-term appetite regulation) and leptin
(considered as a satiety hormone) can modify the activity of
SCN neurons (Grosbellet et al., 2015). Also melatonin, a pineal
gland rhythmically secreted hormone involved in the regulation
of sleep and wake timing, activates its complement receptors
(MT1 and MT2) in the SCN, thereby regulating the robustness of
circadian rhythmic activity (Liu et al., 2016). In turn, melatonin is
also under the direct control of the SCN (Cajochen et al., 2003;
Zisapel, 2018; Arendt, 2019).

Interestingly, recent studies on Bmal1 (brain and muscle
ARNT-like 1) KO mice showed that besides synchronizing the
SCN, light stimuli can synchronize peripheral tissues such as liver
(Koronowski et al., 2019) and epidermis (Welz et al., 2019).
Although peripheral clocks (e.g., liver and kidney) can maintain
endogenous rhythms and be synchronized by other external cues
such as feeding, ablation of the SCN in mice lead to a high
variation of circadian phases among body clocks (Izumo et al.,
2014). Studies on a mouse model with SCN-specific disruption of
Bmal1 have reported intact core-clock oscillations in the liver
under light/dark conditions (LD: 12 h light, 12 h dark), but
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dampened after a few days in dark/dark (DD: 24 h dark)
conditions (Husse et al., 2014). Altogether, these observations
suggest that in the absence of light stimuli, other signals
transmitted by peripheral clocks may contribute to the
maintenance of 24 h rhythms.

The Molecular Clock Network and
Clock-Controlled Cellular Processes
At the cellular level, the mammalian SCN and other peripheral
clocks are molecular oscillators consisting of self-sustained
transcriptional and translational feedback loops (TTFLs). In
humans, the TTFL is composed of genes and proteins, which
form positive and negative feedback loops. At the beginning of

each circadian cycle, circadian locomotor output cycles protein
Kaput (CLOCK) heterodimerizes with brain and muscle ARNT-
like 1 (ARNTL, also known as BMAL1) and the complex binds to
the enhancer regulator sequences (E-boxes) in the promoter
regions of their target genes period (PERs), cryptochrome
(CRYs), nuclear receptor subfamily 1 group D member 1
(REV-ERBα, also known as NR1D1) and nuclear receptor
subfamily 1 group D member 2 (REV-ERBβ, also known as
NR1D2), and retinoid-related orphan receptors (RORs) to
activate their expression. Additional interconnected feedback
loops consist of positive (RORs) and negative (REV-ERBs)
elements and ensure the robustness and precision of the
circadian oscillator (i.e., amplitude and phases) by fine-tuning
the transcriptional activity of BMAL1. RORs and REV-ERBs

FIGURE 2 | The circadian system as a neural and molecular network and implications for circadian medicine. (A) Following light exposure, activated intrinsic
photosensitive ganglion cells transmit photic information to the suprachiasmatic nucleus SCN via the retinohypothalamic tract (RHT). The SCN synchronizes peripheral
clocks throughout the body via endocrine, neuronal routes and behavioural outputs. The SCN is organized in a “core” (with VIP expressing neurons) and a “shell” region
(with AVP expressing neurons), which ensure neuronal coupling. (B) At the molecular level the circadian network is formed by intricated self-sustained feedback
loops of core-clock elements (CLOCK, BMAL, PERs, CRYs, RORs, and REV-ERBs), which drive 24-h rhythmic oscillations at the mRNA and protein level of several
target genes.
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regulate the activation and repression of BMAL1 respectively by
acting on the REV response element (RRE) sequences.

In humans, at dawn, following the accumulation of PER and
CRY, the PER/CRY heterodimer complex forms and suppresses
BMAL1/CLOCK-mediated transcription in the nucleus
(Figure 2B). Once the PER/CRY complexes are degraded, a
new circadian cycle (~24 h) is initiated (Partch et al., 2014).
The molecular clock is also influenced by posttranslational
modifications such as phosphorylation of PER via the casein
kinase 1 (CK1) gene family in order to adjust proper timing of its
activity (Etchegaray et al., 2009; Lee et al., 2011). Altogether, these
interconnected elements drive and ensure the robustness of 24 h
rhythmic oscillations in the expression of various additional
target genes also known as clock-controlled genes (CCGs)
(Figure 2B). CCGs are involved in various cellular
mechanisms, including metabolism (Eckel-Mahan and
Sassone-Corsi, 2013; Fuhr et al., 2018; Reinke and Asher,
2019; Sato et al., 2022), RNA processing (El-Athman et al.,
2018; Yeung et al., 2018; El-Athman et al., 2019), cell cycle
(Shostak et al., 2016; El-Athman et al., 2017; Farshadi et al.,
2020), DNA damage response (Ando et al., 2001; Sancar et al.,
2010; Preußner et al., 2017), and apoptosis (Lee and Sancar,
2011), which are often dysregulated in the context of pathological
development. The circadian clock has also been reported to
directly modulate the cell cycle via regulation of checkpoints
such as Myc (Altman et al., 2015; Shostak et al., 2016), Wee1
(Matsuo et al., 2003), p21 (Gréchez-Cassiau et al., 2008), and p16
(Kowalska et al., 2013; El-Athman et al., 2017).

Alterations in core-clock elements have been reported to
interfere with the clock network and impact its functioning. In
mice, Bmal1 KO led to the disruption of proper circadian clock
functioning and resulted in a shorter lifespan accompanied by an
early aging phenotype (Kondratov et al., 2006). Rhythmic
behavioural activity in mice was abolished by the simultaneous
KO of Per1 and Per2 (Zheng et al., 2001) and Cry1 and Cry2
(Horst et al., 1999). Mice lacking Rev-Erbα continue to exhibit
rhythmic behavioural output when measured via wheel running
activity, but with a shorter period compared to wild type mice
(Preitner et al., 2002), whereas the simultaneous loss of Rev-erbα
and Rev-erbβ led to loss of rhythmicity (Bugge et al., 2012; Cho
et al., 2012), evident by a drastic change in the wheel-running
activity. Altogether, these results highlight the essential role of the
circadian system in the regulation of cellular processes,
physiology, and behaviour in mammals.

The Disruption of Circadian Clock Elements
and its Impact on Disease
Both, genetic (e.g., aberrant activity of clock or clock-controlled
genes) and/or environmental factors (e.g., sleep disruption,
artificial lighting) may result in the disruption of circadian
rhythms and impact human health (Rijo-Ferreira and
Takahashi, 2019). Moreover, the above-described circadian
regulated cellular processes, including DNA repair mechanism,
metabolism, and cell proliferation are frequently altered in several
diseases including sleep disorders, neurodegenerative diseases
(AD and PD) (Hood and Amir, 2017b; Carter et al., 2021),

cardiovascular diseases (Crnko et al., 2019), obesity (Noh,
2018), diabetes (Javeed and Matveyenko, 2018), autoimmune
disorders (Inokawa et al., 2020), and cancer (Hood and Amir,
2017b; Battaglin et al., 2021).

The involvement of the circadian system in the regulation of
cellular pathways, which are frequently altered in
neurodegenerative diseases and cancer, has been proposed
using cancer cellular models (Maiese, 2017; Pacelli et al.,
2019). Recently, a time course analysis using human colorectal
cancer (CRC) cells with distinct clock phenotypes pointed to a
link between cancer and neurodegenerative diseases involving the
circadian system, and suggested the differential enrichment of
genes involved in HD, AD and PD (Yalcin et al., 2020). In a
follow-up study, the KO of core-clock genes in CRC cell lines was
shown to disrupt rhythmic expression of cancer and
neurodegeneration-related genes and led to similar alterations
at the mean gene expression level, as observed in a cohort of PD
patients compared to healthy controls (Yalcin et al., 2021).
Circadian disturbances are among the earliest symptoms of
neurodegenerative diseases such as HD, AD, and PD, and
malfunctioning in the molecular mechanisms of the circadian
system is thought to play a pivotal, and possibly even causal, role
in their pathological development (Hood and Amir, 2017b;
Carter et al., 2021). Interestingly, the usage of Zeitgebers (e.g.,
light) seems to support the treatment of several
neurodegenerative disorders (Maiese, 2017; Carter et al., 2021).

Neurodegeneration is typically characterized by the loss of
proper neuronal functioning due to excessive neuronal cell death
and structural aberrations in protein configuration, such as
amyloid formation as a result of accumulated alpha-synuclein
in genetic forms of PD. Consequently, patients with
neurodegenerative diseases show a variety of symptoms
including deficits in motor control and cognition, mood
disorders, or sleep dependent symptoms. A well-known
example pointing to the dysregulation of the circadian system
in neurodegenerative diseases is the worsening of symptoms such
as increased cognitive malfunctioning, disruption of sleep
profiles, failure in thermal regulation, and mental breakdowns
leading to psychotic symptoms such as confusion and
hallucinations in some patients during early evening hours,
also known as ‘Sundown Syndrome’ (Bliwise et al., 1995;
Volicer et al., 2001; Canevelli et al., 2016).

Genetic polymorphisms in clock genes have been linked to
certain disease phenotypes, in particular in PD. A study by Gu
and colleagues in which samples from 1394 PD patients and 1342
controls were genotyped reported thatARNTL (rs900147 variant)
polymorphism was associated with tremor-dominant phenotype,
and PER1 (rs2253820 variant) polymorphism was linked to
postural instability (Gu et al., 2015). In another large cohort
study with 646 PD patients, CLOCK (3111T/C variant) was found
to be associated with sleep disorders and deficits in motor
functioning (Lou et al., 2018). In addition, the loss of
circadian rhythmicity in ARNTL can play a role in Aβ
production and plaque accumulation, an event observed in
AD progression (Ma et al., 2016). In samples derived from
brain tissues of post-mortem AD patients, alteration in
rhythmic ARNTL methylation activity was reported, suggesting
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that perturbations in ARNTL functioning may contribute to
behavioural and cognitive deficits in affected individuals
(Cronin et al., 2017). Other studies have also pointed to the
existence of a bidirectional interaction between Aβ and the clock
machinery in which Aβ can cause alteration of ARNTL
degradation, thereby disrupting clock functioning and
suggesting a complex interaction between AD and the
dysregulation of the circadian system (Song et al., 2015; Kress
et al., 2018).

The use of interventions to revert perturbations of the
circadian system was reported to ameliorate symptoms and
diminish the progression of various neurodegenerative
diseases. For example, exposure to bright light has been used
to reverse the effect of circadian disruption in individuals with PD
and AD, as well as in patients with dementia (Hood and Amir,
2017b). In a pilot study, 12 PD patients exhibiting, non-motor
symptoms (insomnia and/or depression) in addition to motor PD
symptoms received bright light therapy (BLT) (Willis and
Turner, 2007). Patients were exposed to BLT at 1,000–1,500
Lux for 60–90 min before their usual sleep time (around 22 h
for most patients) over a two-to five-week period. The results
suggested an improvement of non-motor symptoms such as sleep
onset and fragmentation, as well as an anti-depressant like effect
improving their mood. In some patients, additional benefits were
observed regarding primary PD symptoms such as slowness of
movement (e.g., bradykinesia) and structural rigidity. The
enhancement in psychological effects and motor symptoms
was confirmed in a longitudinal follow up study, in which a
larger number of patients was recruited (120 PD patients; BLT for
1 h between 20 and 22 h) (Willis et al., 2012). Motor symptoms
were assessed based on three different coordination tasks and
performed during daytime. Yet, an improvement was observed
only in patients undergoing the light exposure protocol, and in
case of withdrawal of the treatment, no improvement was
observed in the test results. Another clinical study investigated
the effect of BLT in a PD cohort consisting of 31 patients
-receiving dopaminergic treatment (DT). Over a 2-week
period, participants received 1 h BLT twice a day (morning
and afternoon light exposure scheduled between 9-11h and
17–19 h) or dim-red light therapy as a control condition. Sleep
quality was assessed via self-report questionnaires (Epworth
Sleepiness Scale score; Pittsburgh Sleep Quality Index; the PD
Sleep Scale score) (Videnovic et al., 2017). Results showed
improved sleep quality metrics such as sleep fragmentation
and daytime sleepiness for patients subjected to BLT.
Although results from the above-mentioned studies point to a
positive effect in PD symptoms resulting from circadian
restoration, a characterization of the circadian clock at the
gene expression level is less explored.

In a recent clinical study assessing potential alterations in
circadian gene expression, hair follicles were collected from a
cohort of PD patients (N = 16). The study evaluated the
expression of three core-clock genes NR1D1, NR1D2, and
PER3 in comparison to a control group. Patients received BLT
once a day in the evening (19–21 h) for approximately 3 months
and hair samples were collected prior to and following the BLT
protocol with a sampling interval of 6 h during one circadian day

(Endo et al., 2020). A significant correlation between the peak
expression time of PER3 before and after BLT was documented,
which revealed a significant phase delay in most patients
following the BLT treatment (Endo et al., 2020). In addition,
while no significant association was found between sleep related
parameters using the Epworth Sleepiness Scale (ESS) (Johns,
1991), a self-report measure to assess daytime sleepiness, a
correlation of sleep improvement with the delayed phase of
PER3 was reported in PD Sleep Scale 2 scores (PDSS-2), a
metric to quantify the level of sleep disturbance (Endo et al.,
2020).

One potential explanation concerning the role of circadian
disruption in neurodegenerative diseases could relate to the
change in circadian rhythms phenotype across the life span,
which is mirrored in changes in individual chronotypes.
Although circadian rhythms are established during early age,
changes occur throughout the lifespan (Logan and Colleen, 2019).
While the circadian clock of the fetus is synchronized to maternal
rhythms until birth, following birth this synchrony is lost and
only later re-established (within 3–5 months), once the SCN has
synchronized to external light stimuli (Hood and Amir, 2017a;
Logan and Colleen, 2019). Children have an early chronotype, but
following puberty onset, the circadian rhythms shift.
Consequently, “eveningness” tends to peak during late teens or
young adulthood. With age, circadian rhythms shift back to an
earlier phase, ultimately leading to the “morningness” phenotype
commonly observed in healthy adults.

Aging is associated with detrimental changes in the circadian
time keeping machinery (Panagiotou et al., 2021), and linked to
the pathologies mentioned above. Elucidating the mechanisms
underlying aging-induced circadian dysfunction is thus extremely
important. In the elderly, functioning and robustness of circadian
rhythms is altered, which can be partially explained by reduced
sensitivity to light stimuli (Hood and Amir, 2017a), leading to a
misalignment of circadian rhythms to environmental day/night
cycles and subsequently to circadian disruptions in physiological
and cellular processes such as poor sleep, mistiming of
biochemical events such as hormonal release (e.g., melatonin),
or antioxidant production which is commonly observed in the
elderly, as well as in patients with neurodegenerative disorders
(Musiek et al., 2013; Singh et al., 2017; Wang et al., 2018; Carter
et al., 2021). Moreover, clinical studies describe 24 h rhythmic
fluctuation of symptoms, particularly as PD progresses: some
patients report more troublesome motor symptoms in the
evening (Parkes et al., 1981; Lees, 1989); decreased response to
evening doses of levodopa, a commonly prescribed anti-
parkinsonian drug (Bonuccelli et al., 2000); around 70%
complain of night time akinesia (Bhidayasiri and Trenkwalder,
2018); and some describe morning improvement in motor or
non-motor symptoms, the so called “sleep-benefit” (van Gilst
et al., 2013). It is therefore essential to characterize the
individual’s internal circadian rhythm and to adjust external/
internal factors in order to avoid or overcome circadian rhythm
disorders. In addition, the time for certain activities (taking
medication) can be optimized based on the internal timing.

In a recent bioinformatics study pointing to molecular clock
dysfunction in PD (Yalçin et al., 2021), PD patients exhibited
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weaker correlations in the expression of clock genes than in age
and sex matched controls. In a normally functioning cell or
organism, expression of clock genes is tightly ruled by
intricated feedback loops and entrained by the master clock in
the SCN. The reduced correlation seen in PD thus supports a
dysfunction in these regulatory mechanisms. To further illustrate
the potential impact of circadian disruption on
neurodegeneration-related genes, we analysed the expression
profile of the dopaminergic receptor DRD1 (Dopamine
Receptor D1) and Huntingtin (HTT) upon perturbation of
core clock genes using a recently published transcriptomics
time series RNAseq data (ArrayExpress: E-MTAB-9701;
(Yalçin et al., 2020)) obtained from HCT116 wild type and
core-clock KO human colorectal cancer cells. DRD1 showed a
differential rhythmic expression upon perturbation of the core-
clock (Figure 3A). DRD1 is tightly linked to PD, as aberrant
interactions between different dopamine receptors including
DRD1 in the brain were shown to be involved in L-dopa-
induced dyskinesia (Lanza et al., 2021) and risk of
hallucination, and circadian factors might also be involved in
this interplay. Notably, HTT, whose mutation leads to HD (Li
et al., 2003), also exhibited differential rhythmicity (Figure 3A).
These two examples show that alterations of specific core-clock

genes can indeed lead to the disruption of the normal circadian
profile in relevant neurodegeneration-related genes.

The therapeutic potential of the circadian clock, also referred
to as chronomedicine, gained increasing attention in recent years.
Chronomedicine aims at using alternative routes for prevention,
drug development, diagnostics, and treatment with a particular
focus on the biological clock. A broad range of therapies and their
link to circadian rhythms have been investigated mostly in animal
models, including therapies against allergies, arthritis, asthma,
hyperlipidemia, hypertension, cancer, and neurodegeneration.
Yet, clinical studies using and aiming at validating such
knowledge remain insufficient (Zhang et al., 2014). Measuring
the expression of core-clock and/or clock-controlled genes
involved in drug metabolism is thus extremely relevant and
can be used to identify novel drug targets and to time drug
administration.

To illustrate the discrepancy between basic circadian
medicine-related research and published clinical studies
involving circadian considerations, we carried out a PubMed
search and retrieved all publications between 1 Jan 2011 and 31
Dec 2021 using the search terms: “circadian clock”;
“chronobiology""; “biological clock”; “circadian rhythm”;
“chronomedicine”; “chronotherapy”; “circadian medicine”;

FIGURE 3 | Emerging role of the circadian clock in regulation of disease associated mechanisms and its applications in basic vs. clinical research. (A) Perturbation
of core-clock genes in an in vitro CRC model (HCT116 wild type (WT) and their derived PER2 and REV-ERBα knockout (KO) cells, ArrayExpress: E-MTAB-9701 (Yalcin
et al., 2021)) may result in complete abolishment of circadian rhythmicity and/or alteration of oscillatory properties (amplitudes or phases), as observed for DRD1, and
HTT. (B) Number of PubMed publications in last 10 years. Studies were categorized based on research type: circadian (studies with basic research) and clinical
(studies including circadian biology in a clinical study setup).
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“chronotherapies”. We selected publications in English, with a
full-text link available for further analysis. We first focused only
on original research articles including all PubMed references
published in circadian research based on human studies
(including in vitro evidence) and excluded review papers, as
well as clinical studies. Subsequently, by including only clinical
studies, we identified the number of publications in which
“circadian medicine” had been used as an intervention. Our
analysis is in line with a previous report by Ruben and
colleagues (Ruben et al., 2019) and highlights the fact that the
lack of circadian considerations in study protocols remains, while
it is urgently needed to allow for circadian medicine to be
integrate into clinical practice (Figure 3B). For the future
implementation of chronotherapy, the integration of genomics
and physiological data will be necessary to understand healthy
and pathological dynamics at a temporal level. In the following
(Sections 3.2), we will focus on the circadian regulation of
cognitive functioning in health and provide a summary of the
latest evidence from mammals and how the loss of this tight
regulation is implicated in mental disorders.

CIRCADIAN REGULATION OF BEHAVIOUR
AND COGNITIVE FUNCTIONING

As mentioned above, biological (circadian) clocks regulate the
timing of many different physiological processes including
immune responses, feeding, sleep/wake cycle, reproduction,
and the release of hormones such as glucocorticoids. In
addition, the circadian clock is also involved in mental
processes such as memory consolidation, mood, and reward
(McClung, 2013; Logan and Colleen, 2019). In Section 3.1,
different genetic and environmental factors influencing the
circadian timekeeping system such as daylight, food intake,
and social interaction are discussed. These influences might
then alter certain circadian rhythms, which in turn are
associated with dysfunction of cognitive processes. In this
section, different behaviours and cognitive processes will be
discussed in the context of circadian regulation and circadian
implications associated with mental disorders.

A review of existing literature showed that in evening types,
aggression and antisocial behaviour were increased compared to
morning persons (Schlarb et al., 2014). Similar results were found
in adults (Hood and Amir, 2018). A study involving 1,000 adult
participants documented that adults identifying as evening types
showed higher levels of self-reported impulsivity and anger than
morning types (Hwang et al., 2016). Similarly, a study including
641 adult participants reported an association between evening
type and higher levels of depressive, irritable, anxious, and
cyclothymic (instable mood) behaviour, while morningness
was associated with a hyperthymic (e.g., increased energy)
temperament (Park et al., 2015). In a web-based study, in
which participants were recruited and participated
anonymously and online without any interaction with the
researchers, multiple questionnaires were used to assess
chronotype and temperament (Chrobak et al., 2017). A total
of 618 subjects completed the Composite Scale of Morningness

(CSM) (Horne and Östberg, 1976), the 72-item Sleep Wake
Pattern Assessment Questionnaire (SWPAQ) (Putilov et al.,
1990; Putilov and Putilov, 2006) for chronotype and the
temperament evaluation of Memphis, Pisa and San Diego-
Autoquestionnaire (TEMPS-A) (Akiskal et al., 2005).
Interestingly, only an association between hyperthymic
temperament and morningness was found, indicating that
people with an earlier wake up time showed higher vigilance
and wakeability (Chrobak et al., 2017).

Evidence for circadian fluctuations in aggressive behaviour has
also been found in clinical populations. For instance, aggressive
behaviour reported in some patients suffering from
neurodegenerative disorders, such as AD and PD, shows a
daily pattern: aggressive verbal or physical outburst and
agitated motor behaviours were found to be increased in late
afternoon and early evening (Bachman and Rabins, 2006).

However, it has to be noted that observational studies with
human subjects, either in clinical or healthy samples, only provide
correlational insights, whereas causal relationships between
temperament or aggression and chronotype or seasonal period
cannot be established. Nevertheless, the stable association
reported by studies with sufficiently big sample sizes is
intriguing and warrants further systematic investigation.

Interactions of Circadian Rhythms and
Food-Related Behaviours
Extensive research has been dedicated to elucidating interactions
of circadian rhythms and food-related behaviour. Of note, in this
line of research, food intake can be either the dependent variable,
e.g., the effect of sleep deprivation on food consumption may be
assessed, or an influencing factor. Studies on the latter have used
different approaches to investigate the impact of food intake on
sleep/wake patterns, activity levels, and more, e.g., by restricting
the time periods in which food is available, or by assessing how
the timing of food intake affects activity.

Scheer and colleagues investigated whether hunger exhibits a
circadian rhythm in healthy participants (Scheer et al., 2013).
They monitored 12 participants (6 male and 6 female) over
13 days regarding hunger and appetite ratings while
controlling for sleep periods, and most of the potentially
influencing environmental factors. Specifically, they controlled
for meals (eucaloric, and subjects were required to consume all
their food), sleep, activity, posture, room temperature, and light
(by subjecting participants to a ‘forced desynchrony’ protocol).
Subjects were also asked to rate their hunger, appetite, and food
preferences via computerized visual analogue scales at 5 fixed
times within each of the wake periods. The study revealed that
hunger followed an endogenous circadian rhythm with less
hunger in the morning and the greatest hunger in the evening.
Similar rhythms were also revealed for appetite (Scheer et al.,
2013).

Given the endogenous rhythm of hunger, the question arises
whether insufficient sleepmight affect hunger or eating behaviour
and thereby, desynchronize this rhythm. Along these lines,
Brondel and colleagues analysed whether sleep deprivation
affects food consumption and physical activity (Brondel et al.,
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2010). A total of 12 healthy young adult men were subjected to
one night of sleep deprivation and an 8 h sleep period in two
different sessions and under two different conditions (sleeping at
home or in the laboratory). On the following day, standardized
meals were served and physical activity was measured throughout
the day. After one-night of sleep deprivation, subjects consumed
22% more energy (kcal), reported greater levels of hunger before
breakfast and dinner, and showedmore physical activity (Brondel
et al., 2010). Pleasantness of food or desire to eat were not affected
by sleep deprivation (Brondel et al., 2010). Similarly, Markwald
and colleagues investigated the effects of 5 days of insufficient
sleep on energy intake in 16 adults (Markwald et al., 2013).
Insufficient sleep increased energy needs, physical exhaustion,
and food intake above the needed energy levels, and led to weight
gain in women as it reduced dietary restraints (Markwald et al.,
2013). Furthermore, in this study, participants ate less for
breakfast but more throughout the day and after dinner. Thus,
the results underline that insufficient sleep is a risk factor for
weight gain and obesity. Given the increasing prevalence of
insufficient sleep and obesity in modern society, researchers
seek to further disentangle the impact of chronic insufficient
sleep on the circadian rhythm of subjective hunger and
physiological metabolites. McHill and colleagues assigned 15
young adult participants to either control (1:2 sleep:wake
ratio) or chronic sleep restriction (1:3.3 sleep:wake ratio) in a
20h/day design for 6 consecutive days over 32 days (McHill et al.,
2018). Subjective ratings of hunger were assessed before and after
eating, and fasting hormone concentrations were measured after
awakening (McHill et al., 2018). Interestingly, hunger and
hormone concentration showed a circadian rhythm but did
not differ between the two conditions, indicating a limited
effect on the rhythmicity (McHill et al., 2018).

It must be noted that all studies mentioned above had small
samples sizes and thus, the reported results should be interpreted
with caution. Nevertheless, their findings underscore a circadian
rhythmicity in hunger and food intake in humans, with sleep
deprivation causing potential alterations in this rhythm. The
influence of the sleep/wake rhythm on food intake has also
been studied extensively in rats and mice (Escobar et al., 2011;
DePoy et al., 2017). Studies in wildtype mice have revealed that
altered food intake during normally inactive phases (in rodents
during the day) shifts the body’s circadian rhythm towards meal
time, leading to asynchrony between internal and external (light/
dark) cycles (Escobar et al., 2011).

Generally, some organs are more sensitive to food-induced
signals than others. In rats, for example, the pineal gland reacts to
the LD cycle as well as to feeding schedules (Feillet et al., 2008;
Wu et al., 2008) whereas the liver is only activated by feeding
schedules, and the heart and the adrenal gland, in turn, respond to
signals from the SCN (Kornmann et al., 2007) (see Figure 2).
Timing of food intake is thus a relevant zeitgeber, and impacts the
regulating gene expression (Escobar et al., 2011). When rats are
subjected to restricted feeding schedules, the daily rhythm of
vasopressin release is shifted in the SCN (Kalsbeek et al., 1998)
and neuropeptide Y (NPY) release in the paraventricular nucleus
peaks in anticipation of food (Yoshihara et al., 1996). Moreover,
studies have revealed that when rodents demonstrate food

anticipatory behaviour a few hours before mealtime,
hypothalamic and brain stem nuclei relevant for energy
balance regulation increase their neuronal activity (measured
as an increased c-Fos expression) (Angeles-Castellanos et al.,
2004; Angeles-Castellanos et al., 2005). Interestingly, in the
restricted feeding paradigm, food anticipatory activity in rats
also leads to a peak in c-Fos expression in corticolimbic structures
associated with motivation and reward (Angeles-Castellanos
et al., 2007). Besides c-Fos expression, the expression of Per1
and Per2 was also altered by restricted feeding in these brain
regions therewith detaching them from the SCN input signal
reward (Angeles-Castellanos et al., 2007). Dysregulating effects of
restricted feeding during daytime on the rhythmic expression of
clock-genes have been found in several additional brain regions
such as the hippocampus, prefrontal cortex, striatum, nucleus
accumbens, olfactory bulb, and several forebrain structures
involved in stress regulation, motivation, emotion, and
ingestive behaviours. Notably, differential effects (i.e., increased
or decreased and shifted rhythmicity in gene expression) have
been found depending on brain region (see Figure 4) (Escobar
et al., 2011). Studies in mice have shown that independent of
caloric restriction, locomotor rhythms shift towards the time of
day a highly palatable snack (meaning highly pleasant-tasting) is
provided (Escobar et al., 2011; DePoy et al., 2017). For example,
presenting male CBA/CaJ mice with chocolate every day at noon
led to increased daytime activity, measured as running wheel
activity highlighting timing of food as a factor that can alter the
daily allocation of rest and activity (van der Vinne et al., 2015).
This notion is particularly interesting as it might relate to our
own, human, cravings for rewarding snacks that vary throughout
the day and in line with our cognitive performance (Albrecht,
2011). Along these lines, a specific snack consumed at a fixed time
in the afternoon might alter activity and/or performance levels.
An early review article (Kanarek, 1997) shed some light on the
psychological effects of snacks and meal frequency, for example
concluding that nutrient intake later in the afternoon appears to
facilitate subsequent performance on tasks involving sustained
attention or memory. However, a number of factors have to be
considered when assessing the effect of meal intake on behaviour,
e.g., objective parameters such as nutrient composition or meal
size, as well as individual factors such as age and gender, general
activity level, or personality factors and subjective (snack)
preferences (Kanarek, 1997).

Of note, the impact of subjective preferences for snack rewards on
neural reward processing has recently been investigated in a series of
studies with electroencephalography (EEG). These studies found
that subjective preferences are complementarily represented in
subjective reward valuation and in motivational value
representations as reflected by distinct components of the event-
related potential (ERP) (Peterburs et al., 2019b; Huvermann et al.,
2021). Importantly, reward processing was not only modulated by
individual factors such as subjective preferences for snacks (e.g., if
one prefers salty or sweet snacks), but also by the current
motivational state (e.g., the individual craving for snacks), since
selective devaluation of a high preference snack by consumption to
satiety decreased reward-related ERP activity (Peterburs et al., 2019b;
Huvermann et al., 2021). Unfortunately, these studies did not assess
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circadian influences in reward processing as a function of meal
intake or food preferences, nor did they acquire any measure of
(cognitive) performance. However, other work has hypothesized a
connection on the molecular level between circadian clock, reward
system, and cognitive performance, here specifically memory
(Albrecht, 2011). Circadian clock genes regulate the synthesis,
function, and degradation of dopamine via specific processes
(thus directly influencing monoaminergic signalling in areas of
reward processing), and might thereby affect reward and reward-
related behaviour (DePoy et al., 2017).

Circadian Rhythm and Cognitive
Performance
As above-mentioned, cognition is also affected by circadian
rhythmicity, with effects found e.g., for attention, working
memory, and executive functions, showing that performance
is typically increasing during the day and decreasing during
night (reviewed by (Valdez et al., 2012; Valdez, 2019)). For
example, in humans, attention reaches the lowest level during

night time and the early morning hours, shows better levels
around noon, and the highest levels in the afternoon and
evening (Valdez, 2019). Accordingly, cognitive performance
can be influenced by chronotype, age, and sleep deprivation
(Valdez, 2019).

On the hormonal level, melatonin might act as modulator of
cognitive functioning and memory processing. Animal studies
have provided evidence that melatonin decreases or inhibits long-
term potentiation in the hippocampus (Wang et al., 2005; Bob
and Fedor-Freybergh, 2008; Rawashdeh and Maronde, 2012).
Findings is humans are less clear (Killgore et al., 2018; Rawashdeh
et al., 2018). A neuroimaging study in healthy subjects did point
to an effect of morning melatonin on working memory processes
(Killgore et al., 2018). A decline in melatonin in the morning was
associated with increased prefrontal cortex functioning. However,
this effect concerned vigilance performance rather than cognitive
load-dependent working memory performance. Gorfine et al.
(Gorfine et al., 2007) investigated performance in a verbal
memory task performed 2 hours after melatonin or placebo
intake and failed to find differences.

FIGURE 4 | Schematic representation of the impact of altered food schedules on the circadian clock. Restricted feeding during daytime leads to a shifted,
attenuated or increased clock gene expression depending on brain region. Furthermore, restricted feeding during daytime results in higher daytime activity compared to
the normally low daytime activity.
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Of note, clinical research in humans mainly focuses on
potentially beneficial effects of melatonin treatment on
cognitive and/or memory function. For instance, a recent
systematic review and meta-analysis found that melatonin
treatment significantly improved cognitive scores in mild levels
of AD (Sumsuzzman et al., 2021). Again, effects on healthy
individuals were less clear.

Cerebellum and Circadian Rhythm
Besides brain areas underlying reward processing or memory
formation and consolidation, another interesting brain structure
in the context of circadian rhythms is the cerebellum. The
cerebellum has traditionally been thought to primarily
orchestrate motor learning and the coordination of
movements as well as the timing of muscle groups to assure
fluid movements (Manto et al., 2012). However, a paradigm shift
has led to emphasis also on cerebellar involvement in non-motor,
cognitive functions such as working memory (Desmond et al.,
1997; Peterburs et al., 2019a; Peterburs et al., 2021), language and
verbal fluency (Ackermann et al., 2007; Peterburs et al., 2010),
error and feedback processing (Peterburs et al., 2012; Peterburs
et al., 2015; Peterburs et al., 2018), and performance monitoring
in general (Peterburs and Desmond, 2016).

Studies in mice have revealed that the cerebellum, like other
brain regions, has a circadian oscillator relevant for the
anticipation of food (Mendoza et al., 2010). The researchers
analysed the effects of food restriction on the expression of
clock genes in the cerebellum as well as food-anticipatory
behaviours in mice with impaired cerebellar functioning
(Mendoza et al., 2010). First, restricting access to food resulted
in phase-shifting effects on clock gene expression in healthy mice.
Second, the group investigated whether impaired cerebellar
circuitry, resulting from either intracerebroventricular injection
of an immunotoxin depleting Purkinje cells or from a genetic
mutation (leading to impaired cerebellar circuitry and mild
ataxia) changed food-anticipatory behaviours. Interestingly,
mice with impaired cerebellar circuity showed reduced to no
regular food-anticipatory behaviour and altered clock gene
expression (Mendoza et al., 2010). These findings point
towards a functional cerebellar oscillator as part of the
circadian network that is crucial for mealtime anticipation
(Mendoza et al., 2010). To strengthen the circadian function
of the cerebellum, researchers analysed the cerebellar proteome of
mice regarding rhythmic expression patterns and revealed that
most proteins in the cerebellum show a rhythmical expression
leading to a bimodal distribution (midday and midnight) (Plumel
et al., 2019).

Another relevant aspect in the context of circadian
rhythmicity is the connection between the cerebellum and the
sleep-wake cycle. The cerebellum shows sleep stage-dependent
activity, with disruptions changing the sleep-wake cycle (Canto
et al., 2017). These changes thus can result in sleep disorders such
as chronic insomnia, fatal familial insomnia, or obstructive sleep
apnoea or REM sleep behaviour disorder. In line with this, sleep
disorders have been associated with reduced cerebellar volume,
and patients with cerebellar dysfunctions frequently suffer from
sleep problems (Canto et al., 2017).

Circadian Clock Disruption and Mental
Disorders

Generally, mental disorders have been associated with a variety of
alterations on the neuronal level such as volumetric reductions
and neuronal structural properties (Bas-Hoogendam et al., 2020;
Mundorf et al., 2021d), atypical hemispheric asymmetries
(Mundorf et al., 2021c), atypical regional morphometry (Bas-
Hoogendam et al., 2017), and altered neuronal gene expression in
rodent animal models of mental disorders such as addiction,
schizophrenia and mood disorders (Mundorf et al., 2020;
Mundorf et al., 2021a; Mundorf et al., 2021b). Another aspect
common to most mental disorders is a disruption of circadian
rhythms, which has been investigated extensively in both animal
models and clinical samples. The following paragraphs will focus
on clinical research in circadian disruptions.

Individuals suffering from depression, OCD, attention deficit
hyperactivity disorder (ADHD), or dementia show pronounced
alterations in circadian rhythmicity in the sleep/wake cycle (also
insomnia), reduced melatonin concentrations, and associated
impairments in cognitive performance (Valdez et al., 2012;
Valdez, 2019). Moreover, most of the prescribed medications
for the respective disorders not only improve cognitive
performance and affect but also influence circadian rhythms
(e.g., by suppressing circadian rhythms of sleep/wake cycle, or
increasing sleepiness) (Valdez et al., 2012).

In MDD and Bipolar Disorder (BD), circadian clock
alterations are indicated by sleep disruptions, which represent
a core/cardinal symptom and diagnostic criterion (Joel et al.,
2015). In MDD, circadian clock disruptions have been studied at
the molecular, cellular, physiological, and behavioural level. For
example, post-mortem studies provide preliminary evidence
that–in comparison to healthy control subjects–melatonin 1
receptors in the SCN and SCN GABA expression (Figure 2A)
are heightened, and further that expression patterns of circadian
genes in limbic and cortical brain regions are weakened in
depressed patients (Li et al., 2013; Wu et al., 2013; Wu et al.,
2017).

Circadian rhythms have also been investigated in the context
of management of disorder management. Common treatments
include total sleep deprivation, a protocol in which the patients
spend 1 day (or more) without sleep to reset their sleep schedules.
Results were further improved when combined with a follow-up
treatment using BLT or a short phase advance protocol in several
disorders (Echizenya et al., 2013), including MDD (Wirz-Justice,
2006; McClung, 2007; Kundermann et al., 2008) and Seasonal
Affective Disorder (SAD) (Lam et al., 2006; Campbell et al., 2017).
In meta-analyses on genetic studies, however, associations
between clock genes including CLOCK, CRY1, CRY2, PER2,
NPAS2 in MDD could not be confirmed (Kishi et al., 2011;
Melhuish Beaupre et al., 2020). Moreover, patients with MDD
show disrupted sleep wake cycles (Germain and Kupfer, 2008),
altered melatonin secretion patterns (De Berardis et al., 2015),
higher nocturnal body temperatures, and decreased 24 h body
temperature amplitudes when compared to healthy control
subjects (Avery et al., 1982; Avery et al., 1986; Avery et al.,
1999; Lorenz et al., 2019). Findings on physical activity are
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controversial. While some studies report preliminary evidence for
lower physical activity (Difrancesco et al., 2019) and a negative
correlation between depressive symptom severity and physical
activity in depressed individuals (Difrancesco et al., 2021),
another study found no such effects (Lorenz et al., 2019).

Like in MDD, circadian clock disruptions have been widely
studied in BD. Genetic studies suggest associations between
certain core clock genes such as CLOCK, ARNTL, NPAS2,
PER3 and NR1D1 and BD–however, findings still require
replication (Etain et al., 2011). Beyond that, there is
preliminary evidence that melatonin profiles and PER1 and
NR1D1 expression profiles of manic patients with BD differ
from those of depressed BD patients and healthy controls
(Nováková et al., 2015). Meta-analyses on circadian
physiological and behavioural processes show differences
between (remitted) patients with BD and healthy control
subjects in total sleep time and time in bed, sleep latency,
wake after sleep onset and motor activity (Geoffroy et al.,
2015; Ng et al., 2015; Nováková et al., 2015; De Crescenzo
et al., 2017; Meyer et al., 2020).

While most of the literature has focused on affective disorders,
there is also some evidence for sleep disruptions in OCD (Coles
and Stewart, 2019; Sevilla-Cermeño et al., 2019; Coles et al., 2020).
To our knowledge, however, there are currently no existing
studies investigating circadian clock disruptions in OCD at the
molecular or cellular level. Only recently, one genetic study found
an association between certain clock-controlled genes, e.g.
ARNTL rs2278749 polymorphism, with obsessive-compulsive
symptoms in a healthy control sample (Jeong et al., 2019).
Moreover, findings from studies on circadian hormonal
rhythms (cortisol and melatonin secretion) in OCD are still
controversial regarding differences between patients and
healthy control subjects (Catapano et al., 1992; Millet et al.,
1999; Kluge et al., 2007). However, several meta-analyses show
differences between patients with OCD and healthy control
subjects in total sleep time, time awake, sleep efficiency, sleep
latency, and variability in REM sleep parameters (Díaz-Román
et al., 2015; Nota et al., 2015; Cox and Olatunji, 2020), strongly
suggesting that circadian rhythms should be further studied
in OCD.

Circadian clock disruption is also common to psychotic
conditions such as schizophrenia and schizophrenia-spectrum
disorders (Ashton and Jagannath, 2020). In a small sample of
eleven patients with chronic schizophrenia, the expression of the
clock genes CRY1 and PER2 has been shown to differ in
comparison to healthy control subjects (Johansson et al.,
2016). Beyond that, circadian gene expression appeared to be
less rhythmic in patients with schizophrenia compared to healthy
control subjects (Seney et al., 2019). Further, a recent meta-
analysis, reported that non-acute patients with schizophrenia-
spectrum disorders differ from healthy control subjects in total
sleep time, time in bed, sleep latency, wake after sleep onset, and
motor activity (Meyer et al., 2020).

Circadian abnormalities in schizophrenia have been
hypothesized to be related to dysregulations in multiple
neurotransmitter systems including hyperactivity of the
dopaminergic and dysfunction of the GABAergic system (for a

comprehensive review, see Monti et al., 2013). Dopaminergic
dysregulation has also been linked to acceleration of the internal
clock even outside of circadian effects (Davis et al., 1991), as
evidenced by alterations of interval timing and duration
estimation (e.g., Meck, 1996). In a study by Peterburs et al.
(2013), administration of the Positive and Negative Syndrome
Scale (PANSS) (Kay et al., 1987) allowed assessment of individual
levels of positive and negative symptoms. When asked to estimate
the time needed for a moving visual stimulus to reach a specific
target position, patients underestimated movement time. This
was especially prominent in patients with high PANSS positive
symptoms (Peterburs et al., 2013).

It must be noted that time processing anomalies in
schizophrenia such as altered interval timing or duration
estimation have been investigated mostly independently from
circadian rhythms. However, some researchers have argued that it
is reasonable to assume that these processes may share some of
their underlying mechanisms. For instance, clock genes may
affect interval timing via neural oscillator networks which are
mediated by dopaminergic signalling or alterations of neuronal
architecture or excitability (Nicholas, 2015).

Taken together, evidence of disturbances of the circadian clock
appear to occur in many mental disorders, yet the precise
understanding of these alterations is currently missing, which
precludes informing treatment strategies. Notably, some
conditions (e.g., OCD) have been studied less extensively than
others (e.g., MDD, BD). Possibly, this is due to the fact that
circadian disturbances are closely linked to core symptoms only
in the latter (i.e., sleep disturbances). Yet consistent evidence of
sleep disturbances in conditions such as OCD indicates that a
clear characterization of circadian clock alterations could also
prove to be beneficial for treatment strategies in disorders in
which the link between circadian clock disruption and clinical
symptoms is less obvious. A goal for future research is thus to
close gaps in knowledge on circadian clock disruptions in mental
disorders on the molecular, cellular, physiological and
behavioural level and to unravel the associated aetiology, in
order to identify new starting points for prevention and early
intervention.

CIRCADIAN RHYTHMS, PHYSICAL
EXERCISE AND COGNITIVE PROCESSES

The human brain remains in constant change, altering its
functional and structural properties to adapt to changing
demands (Budde et al., 2016b). This intrinsic characteristic of
our brain is called neuroplasticity and allows the nervous system
to adapt to environmental pressures, physiologic changes, and
experiences by escaping the restrictions of its own genome
(Pascual-Leone et al., 2005). Findings have shown a dynamic
remodelling of grey matter throughout life characterized by the
continuous creation and growth of neurons, dendrites, and new
synapses as well as their elimination (Killgore et al., 2013). This
plastic capacity of the brain represents the normal constant state
of the nervous system through the life cycle, and is understood as
a human mechanism for learning (e.g., the asset of new skills
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(Hötting and Röder, 2013)) growth, and general development but
it could also be a cause of pathology (Pascual-Leone et al., 2005).

The natural process of aging is known to lead to functional
changes in our brain that usually translates to functional and
social impairments and a general cognitive decline (Bettio et al.,
2017). At a cellular level, our brain plasticity is reduced as we age.
There is a decrease in the creation of new synapses (Heine et al.,
2004), and on average, synapses make fewer contacts, with less
strength than in previous stages of life (van Praag et al., 2005).
Neurobiological alterations like an increase of oxidative stress and
neuroinflammation, as well as distorted intracellular signalling
and gene expression, have also been associated with age-related
cognitive decline (Bettio et al., 2017). However, the number of
synapses, as well as the changes in their morphology, seem to
oscillate not only on a long-term basis, but also on a daily cycle
basis. These approximately 24 h cyclic changes in the nervous
system are attributed to the circadian clock and referred to as
circadian plasticity (Krzeptowski et al., 2018). Dysregulation of
this system seems to affect major brain functions and may cause
nervous system disorders (Logan and Colleen, 2019).

It is known that developmental changes are highly influenced
by genetic factors. Over the last decades, interest in the study of
the circadian typology has grown notably. Findings have pointed
to individual differences on circadian rhythmic expression (of
genes, hormones or biological processes such sleep or body
temperature variations) affecting biological and psychological
functioning in health and disease (Adan et al., 2012). Time-of-
day fluctuations seem to play a role not only in cognitive
functioning (Schmidt et al., 2007), but also in more specific
areas such as physical performance (Drust et al., 2005).

As described in detail in Sections 3.2, in addition to governing
sleep-wake cycles, circadian rhythms govern rhythms in cognitive
processes like subjective alertness, mathematical ability, memory
processes, and attention (Benca et al., 2009; Valdez, 2019).
Executive functions (EF) are high-level cognitive processes with an
essential role in the regulation of information traffic (Diamond, 2013).
These functions enable us to generate the necessary sequences of
actions needed to elicit the correct response to specific internal and
external stimuli demands (Amatriain-Fernández et al., 2021) allowing,
for example, to mentally play with ideas, to be adaptable to changing
circumstances, to think before acting, to resist temptations, to stay
focused or to be able to face newandunforeseen challenges (Diamond,
2013). There is general agreement that there are three core EF:
inhibition, working memory, and cognitive flexibility (Diamond,
2013). It is known that EF suffer a decrease in their capacity to
function due to developmental changes and ageing (Ferguson et al.,
2021). However, external circumstances like stress, lack of sleep,
loneliness, or lack of exercise seem to also affect these functions
(Diamond, 2013).

Findings have shown that people with decreased circadian
activity rhythm amplitude (peak activity) and robustness, as well
as people with delayed rhythms have higher probabilities of
developing dementia and mild cognitive impairment (Tranah
et al., 2011). Along these lines, proper maintenance of the 24 h
clock seems highly relevant for regulating processes such as
neural activity, or hormonal (like the cortisol awakening
response) signalling that may influence the development of

disorders of the central nervous system (Logan and Colleen,
2019), as well as metabolic health (van Moorsel et al., 2016).
Besides, disruptions of sleep and circadian rhythms are among
the most debilitating symptoms in patients that already have
neurodegenerative diseases (Fifel and Videnovic, 2021).

Aside from genetic influences, non-genetic factors such as
physical exercise seem to also benefit the organization and
development of some cerebral systems (Killgore et al., 2013),
and even to adjust the circadian rhythm to external time cues
(Yamanaka et al., 2006).

The terms physical exercise and physical activity are often
used interchangeably. Nevertheless, while physical activity is
defined as any bodily movement produced by the contraction
of skeletal muscles that results in a substantial increase in caloric
requirements over resting energy expenditure (American College
of Sports Medicine, 2013), physical exercise is defined as a
planned, structured, repetitive, and purposeful training exercise
intervention that leads to a change in fitness (Budde et al., 2016a).
Therefore, physical exercise is always a physical activity, but
physical activity is not necessarily always physical exercise
(Wegner et al., 2020). Exercise interventions are usually
differentiated based on parameters like length, intensity, or
type of exercise. While chronic interventions contain several
bouts of exercise over a long period of time, acute
interventions include a single bout of exercise, performed only
once (Amatriain-Fernández et al., 2021). Consequently, chronic
interventions can be used to evaluate the long-term effects of an
exercise intervention and acute interventions are implemented to
assess the immediate effects of an exercise intervention
(Amatriain-Fernández et al., 2021).

Physical Exercise and Cognitive Processes
Evidence from both animal and human studies indicates that
physical exercise facilitates neuroplasticity of certain brain
structures (Budde et al., 2016b). Studies with animals models
(mice and rats) identified several neural mechanisms that might
mediate the beneficial cognitive effects of physical exercise: the
enhancement of neurogenesis, synaptogenesis, angiogenesis, and
the release of neurotrophins (Hötting and Röder, 2013), like the
brain-derived neurotrophic factor (BDNF), with an crucial role for
synaptic plasticity, learning and memory (Vaynman et al., 2004).
Besides, in the dentate gyrus of the hippocampal formation,
increased blood flow and oxygenation seem to correlate with
exercise-induced neurogenesis (Pereira et al., 2007). Following
voluntary wheel running, increased neurogenesis in the dentate
gyrus has been detected in adultmice (van Praag et al., 1999; Brown
et al., 2003; van Praag et al., 2005; Kronenberg et al., 2006).
Neurons generated under the running condition, were found to
be functionally integrated into the hippocampal circuitry and
indistinguishable from mature cells in their electrophysiological
properties (van Praag et al., 2002). Following different exercise
interventions that included running, adult mice showed an
enhanced memory consolidation (Kohman et al., 2012) and
adult rats showed a better memory abilities like learning and
recalling the location of a specific platform (Vaynman et al.,
2004). In adolescent rats, regular moderate aerobic treadmill
exercise resulted in improvements in spatial learning abilities

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 87323714

Yalçin et al. Circadian Regulation and Mental Health

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


and an exercise-induced increase of cell density in the
hippocampus and dentate gyrus (Uysal et al., 2005).

In humans, findings appear to have a similar trajectory. It has
been suggested that physical exercise may trigger several processes
facilitating neuroplasticity, increasing the human capacity to respond
to new demands with behavioural adaptations (e.g., the allocation of
greater attentional resources, the ability to process information quicker
or an enhanced memory performance) (Hötting and Röder, 2013).
Even though the underlying mechanisms associated with exercise-
induced in the human brain remain to be elucidated (Killgore et al.,
2013), some advances have been made in recent years. Exercise is
thought to activate the necessary transcriptional machinery to
modulate the expression of genes related to the regulation of
synaptic plasticity, learning and memory using epigenetic
mechanisms (Fernandes et al., 2017). This is not only relevant for
neural cell differentiation, but also for experience-induced changes in
human brain function and behaviour (high-order cognitive functions)
(Feng et al., 2007). Physical exercise seems to modulate several factors
relevant for the connection between skeletal muscle and the brain,
such as neurotrophins (e.g., BDNF and plasma Cathepsin B (CTSB)
levels) and oxidative stress parameters (e.g., lipid oxidation markers)
that help to mitigate cognitive decline (De la Rosa et al., 2019). In this
regard, recent research situates physical exercise as a mediator of
neurogenesis in the hippocampus via BDNF (Liu andNusslock, 2018).
Exercise interventions have also shown to produce benefits in the
physical functioning, health-related quality of life, strength, balance,
and gait speed of PD patients (Goodwin et al., 2008). Recent findings
have suggested that exercise improves sleep quality in people with
Parkinson (Amara et al., 2020), situating it as an effective
nonpharmacological intervention to improve this disabling
nonmotor symptom that normally comes with the disorder.

Results from longitudinal studies have also shown that long-
term physical exercise interventions (35 ± 15 years) promoted
memory maintenance in middle-aged men and showed a
connection between delay of age-related neurodegeneration
and the neurotrophic and redox peripheral modulation
produced by the physical exercise intervention (De la Rosa
et al., 2019). Lower cerebral blood flow was associated with
poorer memory and processing speed abilities in older adults
with type 2 diabetes (Bangen et al., 2018) as well as with poorer
attentional and memory capacities in adults with cardiovascular
disease (Alosco et al., 2013).

Exercise has been situated as a preventive factor for age-related
cognitive decline (Kronenberg et al., 2006), but the positive effects
of exercise interventions on cognition are not limited to elderlies
with preconditions. Findings showed that, in general, older adults
who exercised throughout life exhibited less brain tissue loss than
their sedentary peers (Colcombe and Kramer, 2003). Aerobic
exercise interventions have produced increased hippocampal
volume and enhanced cognitive functioning in different age-
samples (Killgore et al., 2013). A study with overweight children
found that increased cardiorespiratory fitness and speed-agility
may have a positive impact on the development of different
regions in the brain as well as on academic indicators and might
neutralize the harmful effect caused by obesity and overweight on
brain structures (Esteban-Cornejo et al., 2017). Additionally, a
study with pre-adolescents showed that those with higher

physical fitness levels presented greater grey matter volume in
the hippocampus and performed better on cognitive tests than
peers with lower fitness level (Chaddock et al., 2010). Similar
results were obtained for healthy adults (Killgore et al., 2013).
Further, effects of exercise seem to be longer lasting than
previously thought which situates exercise as an epigenetic
modulator of brain plasticity and cognition (Fernandes et al.,
2017).

Physical Exercise and Circadian Rhythms
Both, animal (Yamanaka et al., 2008; Wolff and Esser, 2012) and
human studies (Yamanaka et al., 2006; Okamoto et al., 2013; Basti
et al., 2021) have also found that exercise can alter circadian
rhythms in behaviour and gene expression. In addition, the
circadian clock seems to also have an influence on the benefits
of exercise interventions pertaining to cognitive and physical
performance (Atkinson and Reilly, 1996; Drust et al., 2005;
Waterhouse et al., 2005; Facer-Childs and Brandstaetter,
2015b; a; Facer-Childs et al., 2018).

Studies on this topic have reported that circadian fluctuations
in molecular (gene expression) and physiological (biomechanical
muscle properties) parameters correlated with exercise performance
(Basti et al., 2021). In a study comparing rugby players with sedentary
subjects, it was found that genes related to circadian rhythms (BMAL1,
ROR-α, CRY1, PER2 (p < 0.001), PER1 (p < 0.01, and NR1D1 (p <
0.05) were higher in rugby players, indicating that long-term exercise
can increase the expression of genes related to the circadian clock.
Further, exercise performance has shown peaks in the late afternoon
(15–18 h) for healthy men and women (Basti et al., 2021). These
authors reported that the daily fluctuations exhibited different patterns
depending on the type of exercise (endurance vs. strength) and were
also accompanied by fluctuation on the expression of core-clock genes
and muscle tone (Basti et al., 2021).

Differences in performance have also been investigated in
relation to the individual chronotype. A study by Facer-Childs and
colleagues reported that cognitive and physical performance showed a
significant diurnal variation when comparing early and late
chronotypes. In this study 56 healthy individuals were categorized
as early or late chronotypes based on the Munich Chronotype
Questionnaire (MCTQ), and their performance in tasks related to
psychomotor vigilance, executive functions, and isometric grip
strength showed significant variations along the day. Late
chronotypes performed significantly poorer, during the morning,
than early chronotypes (Facer-Childs et al., 2018). In line with
these results, evening-type swimmers swam 6% slower in the
morning than in the evening trial, while morning-type swimmers
required 5–7 times more effort to achieve the same performance
results in an evening trial as obtained in a morning trial (Anderson
et al., 2018). These authors established the chronotype based on the
MCTQ. Their diurnal preference was assessed by the self-reported
Hornestberg Morningness-Eveningness Questionnaire (MEQ) and
strands of hair were collected to characterize the genotype of each
participant for PER3 SNP rs228697 and PER3 VNTR rs57875989.

In sum, despite the need for more research to deep into the
connections between physical exercise and circadian rhythms, the
literature points to a bidirectional relation between circadian
rhythms and exercise. Exercise may help to ameliorate circadian
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dysregulations and circadian rhythms seem to affect physical
performance.

EPIDEMIOLOGICAL EVIDENCE TOWARDS
CIRCADIAN REGULATION OF MENTAL
HEALTH
Epidemiological studies have established the role of the circadian
clock and circadian misalignment as a factor in physical and
mental health. The term circadianmisalignment traditionally refers to
a mismatch between an individual’s circadian chronotype and the
physical or social environment (e.g., light-dark cycle, school, or work
times) (Roenneberg and Merrow, 2016). In the general population,
“social jet lag” represents a proposed cause of circadian misalignment.
Social jet lag refers to the discrepancy between the duration of sleep
during work days and non-work days (e.g., weekends) (Wittmann
et al., 2006). The social Zeitgeber Theory associated with mental
disorders posits that stressful life events may give rise to alterations of
circadian dynamics at the cellular and physiological levels (e.g.,
disrupted sleep-wake cycles). As a result, affected individuals are
more prone to mood-related incidents (Ehlers et al., 1988;
McClung, 2013). Epidemiological studies further highlighted the
common nature of social jet lag, indicating that most individuals
demonstrate variations in wake-sleep times between workdays and
free days, with up to 87% of the day-working population suffering
from social jet lag (Roenneberg et al., 2003; Roenneberg et al., 2007;
Roenneberg et al., 2012). For instance, discrepancies between the
circadian chronotype and the socially determined opportunity for
sleep can arise when ‘normal’ chronotypes are employed in shift work
schedules or when extreme chronotypes have to comply with
conventional work hours. Extreme chronotypes (i.e., preference for
either early or late sleep/activity) may evolve from a combination of
genetic predisposition, age, and Zeitgeber conditions (Carskadon et al.,
2004; Roenneberg et al., 2004; Roenneberg et al., 2013b; Hsu et al.,
2015). The need to conform to conventional work times makes
evening chronotypes (i.e., preference for later sleep/activity) more
susceptible to social jet lag (Duffy et al., 2001; Mongrain et al., 2006).

Besides the immediate repercussions, which pertain to sleep
disturbance and/or daytime sleepiness, social jet lag has been
linked to metabolic functioning, smoking, alcohol and caffeine
consumption (Wittmann et al., 2010; Roenneberg et al., 2012), as
well as an increased risk for depression (Drennan et al., 1991;
Chelminski et al., 1999; Gaspar-Barba et al., 2009; Kim et al., 2010;
Kitamura et al., 2010; Levandovski et al., 2011; Merikanto et al., 2013).
Although epidemiological research has demonstrated that in the
general population, chronotype follows a normal distribution
varying by gender and age, societal changes such as the increase in
shift work contribute to circadianmisalignment and sleep disruptions.
To this end, the majority of studies has incorporated methodologies
focused on shift work and jet lag, utilizing questionnaire (i.e., self-
report) data rather than genetic or molecular profiling to determine
chronotypes.

Over the last decades, societal changes have sparked an
increase in shift work with currently at least 20% of the
population’s employment based on shift work schedules
(Baron and Reid, 2014). Shift work typically refers to work

schedules that greatly overlap with primary sleep times,
i.e., where at least 50% of work falls between 10 p.m. and 6 a.m.
(Baron and Reid, 2014). Compared to non-shift workers, night and
early morning workers (i.e., start before 6 a.m.) experience significant
sleep time reductions of between 1 and 4 h per day (Knauth et al.,
1980; Åkerstedt, 1998). As a consequence, shift work is linked to
reduced sleep duration and sleep quality (Drake et al., 2004). Further,
associations between shift work and various negative physical and
mental health outcomes, such as cancer, cardiovascular disease,
obesity, diabetes, reproductive health complications, and memory
difficulties have been established (Nurminen, 1998; Labyak et al.,
2002; Knutsson, 2003; Drake et al., 2004; Gumenyuk et al., 2010;
Esquirol et al., 2011; Gumenyuk et al., 2014; Ohlander et al., 2015;
Reutrakul and Knutson, 2015; Wong et al., 2015). These adverse
health outcomes may be attributed to a complex combination of
maladaptive health behaviours (e.g., smoking, alcohol consumption,
healthy food restrictions, feeding patterns), chronic sleep deprivation,
circadian misalignment, and increased nocturnal light exposure
(Baron and Reid, 2014; Abbott et al., 2015).

A hypothesized mechanism behind the link between shift
work and cancer in particular has been exposure to light at
night (LAN). According to the LAN hypothesis, reduced levels
of the endogenous hormone melatonin may be at the centre of
this link. Because melatonin is primarily produced at night and
sensitive to light suppression, the LAN hypothesis proposes that
the transformation of normal cells into cancer cells
(i.e., carcinogenesis, oncogenesis) is reinforced by exposure to
light at night. Although a clear dissection of cause and effect is
difficult given the complex impact of modern lifestyles and the
fact that circadian misalignment is associated with many
pathologies unrelated to melatonin, epidemiological evidence
for the link between LAN and cancer is strong (Hansen, 2001;
Schernhammer et al., 2001; Schernhammer et al., 2006; Flynn-
Evans et al., 2009; Grundy et al., 2013; Hurley et al., 2014). In fact,
evidence in this area provoked the World Health Organization
(WHO) to include shift work as a potential carcinogen in 2007
(WHO, 2011).

Given the aforementioned impact of the circadian rhythm and
misalignment thereof on mood and interpersonal behaviours, it is
almost surprising that only a limited amount of research has
focused on the role of circadian rhythm during the transition to
parenthood. It is by now well recognized that the perinatal period
(i.e., from pregnancy to around 12 months following birth) marks
a time of high vulnerability for mental health complications for
(expectant) parents, with adverse outcomes for mothers, fathers,
and their offspring (Thiel et al., 2021b; Knappe et al., 2021). In the
first weeks following birth, for instance, up to 85% of women will
experience deteriorations in mood. This so-called “postpartum
blues” has been identified as a predictor of postpartum depression
(Beck, 1996), which affects around 13–19% of women (O’Hara
and Swain, 1996; Gavin et al., 2005) and has been documented as
the most frequent complication of childbirth (Moses-Kolko and
Roth, 2004; Moore Simas et al., 2019). Themajority of research on
parental perinatal mental health has focused on symptoms of
depression (O’Hara and Swain, 1996; Eberhard-Gran et al., 2003;
Paulson and Bazemore, 2010; Junge et al., 2017; Garthus-Niegel
et al., 2020; Thiel et al., 2020b), anxiety (Eberhard-Gran et al.,
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2003; Polte et al., 2019; Thiel et al., 2020a), and post-traumatic
stress disorder (Garthus-Niegel et al., 2013; Garthus-Niegel et al.,
2017; Garthus-Niegel et al., 2018; Thiel et al., 2018; Dekel et al.,
2019; Thiel and Dekel, 2020; Thiel et al., 2021a; Kress et al., 2021).
Whereas initially, maternal mental health was at the core of this
research area, increasing attention has been paid to fathers’/
partners’ perinatal mental health as well (Kress et al., 2019;
Thiel et al., 2020b; Garthus-Niegel et al., 2020; Kress et al.,
2021; Asselmann et al., 2022a; Asselmann et al., 2022b).

During pregnancy, alterations in women’s sleep patterns and
quality with adverse impacts on mood have been documented to
begin as early as during the first trimester (Ross et al., 2005; Bei
et al., 2015). Over the course of pregnancy, sleep duration and
efficiency decrease and sleep quality is further reduced (Hedman
et al., 2002; Adler et al., 2021). Further, over 40% of women
experience insomnia during the first trimester of pregnancy,
increasing to over 60% by the third trimester (Román-Gálvez
et al., 2018). Following birth, self-reported deteriorations in sleep
quality, efficiency, and duration continue for both, mothers and
fathers (Lee et al., 2000; Kang et al., 2002; Montgomery-Downs
et al., 2013; Obeysekare et al., 2020). Compared to the time before
pregnancy, daily sleep duration has been found to be reduced by
62 min for women and 13 min for men during the first 3 months
following birth (Richter et al., 2019). Importantly, deteriorations
in sleep quality and duration with onset during the transition to
parenthood may not fully recover for years following birth (Lee
et al., 2000; Richter et al., 2019).

The potentially crucial role of sleep disruptions during the
transition to parenthood in mental health may be of interest for
instance with regards to postpartum psychosis, which affects 0.1–0.2%
of women following childbirth. Because around 20% of women with a
history of bipolar disorder experience manic episodes, which often
characterize postpartum psychosis, and because those experiencing
postpartum psychosis frequently continue to report symptoms of
bipolar disorder later on, it has been proposed that postpartum
psychosis may be a manifestation of bipolar disorder triggered by
childbirth (Ross et al., 2005; Lewis et al., 2016). Postpartum psychosis
may be triggered by factors also related to mania, with disruptions of
sleep and the circadian rhythm as the most common triggers being
(Jackson et al., 2003; Lewis et al., 2016). Because symptoms of
postpartum psychosis typically begin in the immediate perinatal
period (Heron et al., 2008), the period with the greatest sleep
disruption (Beebe and Lee, 2007), sleep and circadian rhythm
disruptions may represent risk factors for the development of
postpartum psychosis in those at risk (Lewis et al., 2016).
Although the link between disruptions in sleep and circadian
rhythm and postpartum psychosis is often hypothesized, empirical
evidence is still limited. Nonetheless, a study frequently cited in this
context by Sharma and colleagues documented that postpartum
psychosis was linked to night deliveries and longer labor duration,
pointing towards the crucial role of sleep disruption in the
development of postpartum psychosis (Sharma et al., 2004).

Despite extensive investigation of parental sleep patterns and
quality during pregnancy and following childbirth as well as its
relationship with mental health complications (Deforges et al.,
2021), only little is known about parental circadian rhythm
during this time. Initial evidence suggests that parenthood is

linked with an early chronotype (Sládek et al., 2020). Further,
parental circadian rhythm amplitude may be decreased following
birth (Wulff and Siegmund, 2000), which can be observed as a
result of irregular sleep-wake patterns or disturbance and may
accumulate to circadian rhythm sleep disorder (Zee and Vitiello,
2009). The primary decline in amplitude ensues immediately
following birth as a result of infant care during the night.
Longitudinal studies of women following birth document
worsening of amplitude reduction during the first postpartum
weeks (Nishihara et al., 2002; Matsumoto et al., 2003). Although
research pertaining to circadian rhythm chronotypes in relation
tomental health vulnerability during the transition to parenthood
is scarce, initial evidence suggests that evening chronotypes may
be at an increased risk for psychiatric symptoms (Obeysekare
et al., 2020).

Given the toll of pregnancy and the transition to parenthood
on sleep-wake patterns, sleep quality, and efficiency resulting
from infant and child care needs, the perinatal period offers a
wide range of avenues for future research pertaining to the role
of the circadian rhythm in mental health. Besides the
vulnerability for mental health complications, the transition
to parenthood is characterized by changes regarding
employment, work schedules, as well as work division among
couples. Large epidemiological studies have been implemented
to address these issues (e.g., Kress et al., 2019). Longitudinal,
epidemiological investigations following couples and children
from pregnancy throughout the years following birth will offer
the opportunity to gain new insights into the link between the
circadian rhythm and long-term mental health in both women
and men, as well as into early mechanisms involved in the
development and manifestation of the human circadian rhythm
from the time of birth.

CONCLUSION AND PERSPECTIVES

Timely regulation of cellular, physiological and behavioural
processes plays a fundamental role in the, often subtle, border
between health and disease. In this review, we focused on the
current knowledge regarding proper functioning of the circadian
system in healthy individuals and the disruption of circadian
regulation observed in numerous neurodegenerative and mental
disorders.

Given the broad influence of circadian rhythmicity and
circadian clock genes on multiple cognitive domains such as
attention, memory, or reward processing, as well as natural
factors affecting daily rhythms such as dietary schedule and
the sleep/wake cycle, it is not surprising that disruptions in
our internal clock can result in mental health problems.
Indeed, epidemiological studies have established circadian
misalignment as a prominent risk factor in physical and
mental health, and highlight the risks associated to social jet
lag, which affects the vast majority of the day-working
population. Aside from the immediate repercussions,
pertaining to sleep disturbance and/or daytime sleepiness,
social jet lag has been linked to adverse health behaviours and
other mental health complications. Societal changes such as the
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increase in shift work appear to exacerbate circadian
misalignment and sleep disruptions.

Given these increasing environmental risk factors such as shift
work, circadian misalignment, and personal meal schedules (e.g.,
eating high caloric meals late in the evening), the impact on
mental health can no longer be disregarded. This is particularly
relevant given the growing body of research, linking several
mental disorders to disrupted circadian rhythmicity. On the
genetic level, several studies have found altered gene
expression of clock related genes in patients suffering from
mental disorders, further underlining the important role of the
internal clock for mental health. However, is has to be noted that
even though the association between disrupted circadian rhythms
and some mental disorders, especially mood disorders, is well
investigated (Walker et al., 2020), this association remains to be
disentangled for many other disorders. The usage of external
zeitgebers (e.g., light or physical exercise) are a promising
approach for enhancing and/or re-setting circadian rhythms.
This seems to efficiently contribute to diminish deterioration
of neurocognitive functioning.

Circadian rhythms have been shown to influence both
cognitive and physical performance. Performing an analysis of
circadian rhythms in the health domain could facilitate the design
of highly personalized exercise interventions. These interventions
could act as preventive mechanisms to delay the onset of
disorders related to circadian disruption. This combined effort
between research on exercise and circadian rhythms could have a
positive impact on the benefits of exercise in the prevention and
treatment of several mental disorders. However, a crucial point in
administering the “exercise polypill” is the dosing and, in turn,
the prescription of the physical intervention (Herold et al., 2020).
The answer to questions like what type of exercise is the most
influenced by circadian rhythms or what type of exercise is the
best intervention for preventing or treating a determined
pathology needs to be established (Gronwald et al., 2018;
Gronwald and Budde, 2019; Gronwald et al., 2019; Gronwald
et al., 2020; Herold et al., 2020). In future studies, the inclusion of
a sham condition might help to elucidate some of these open
questions (Budde et al., 2018).

Although the impact of circadian rhythm and its
misalignment on mood and behaviour is well known, it is
surprising that only a limited amount of research has focused
on the role of circadian rhythm alterations during the transition
to parenthood. For (expectant) parents, the perinatal period
marks a time of, high vulnerability to mental health
complications, as well as severe sleep disruptions. Despite
extensive investigation of perinatal parental sleep patterns and
quality and its relationship with mental health complications,
only little is known about disrupted parental circadian rhythm
during this time, with initial evidence suggesting that evening
chronotypes may be at an increased risk for psychiatric symptoms
(Obeysekare et al., 2020). The perinatal period thus offers a wide
range of avenues for future research. Longitudinal,
epidemiological investigations following couples from
pregnancy throughout the years following birth will offer the

opportunity to gain new insights into the link between the
circadian rhythm and long-term mental health, as well as into
early prenatal mechanisms involved in the development and
manifestation of the human circadian rhythm.

Thus, a new area in the medical field, circadian medicine, is
slowly emerging and time-of-day adapted therapies personalized
to the patient’s circadian rhythmmight provide better therapeutic
outcomes than commonly applied therapies. However, clinical
applications of circadian intervention remain limited due to
obstacles such as a current lack of a sufficient number of
studies, logistic difficulties in implementing circadian
treatment regimens into clinical routines, and variations of
results pertaining to the desired effect of chronotherapy in
comparison to standard treatment due to demographic factors
such as age or gender. To overcome these obstacles, larger cohorts
and a more precise stratification of patients are needed before
circadian medicine can be used in clinical practice. In this regard,
the combination of genomics and physiological data holds great
potential for the future direction of circadian medicine.

Investigating not only disorder-specific, but also symptom-
specific alterations in the circadian clock might render new
insights into the aetiology and implications of mental (and
other) disorders and could set the grounds to improve mental
health by considering the circadian rhythm. Although research in
the circadian field has grown considerably over the past years, as
pointed out in our review a discrepancy between basic
chronobiology research and the usage of this knowledge in
clinical practice, for maintenance of health and prevention and
treatment of disease is obvious. By now we know that time
matters, and it is about time that we use this knowledge.
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GLOSSARY

AD Alzheimer’s disease

ATHD Attention deficit Hyperactivity disorder

AMT Anticipation of movement task

AVP Arginine vasopressin

BD Bipolar disorder

BDNF Brain-derived neurotrophic factor

BLT Bright light therapy

BMAL1 Brain and muscle ARNT-like 1

CNS Central nervous system

CSM Composite scale of morningness

CLOCK Circadian locomotor output cycles protein Kaput

CRC Colorectal cancer

CTSB Plasma Cathepsin-B

DD Dark/Dark

DRD1 Dopamine receptor D1

EEG Electroencephalography

ERP Event-related potential

ESS Epworth sleepiness scale

FRP Free running period

HD Huntington’s disease

HTT Huntingtin

KO Knockout

LAN Light at night

LD Light/dark

MDD Major depressive disorder

NPY Neuropeptide Y

NR1D1 Nuclear receptor subfamily 1 group D member 1

NR1D2 Nuclear receptor subfamily 1 group D member 2

OCD Obsessive compulsive disorder

PANSS Positive and negative syndrome scale

PD Parkinson’s disease

PDSS-2 Parkinson’s disease sleep scale 2 scores

REV-ERB α nuclear receptor subfamily 1 group D
member 1

REV-ERBβ nuclear receptor subfamily 1 group D
member 2

ROR Retinoid-related orphan receptors (RORs)

SAD Seasonal affective disorder

SCN Suprachiasmatic nucleus

SWPAQ Sleep wake pattern assessment questionnaire

TEMPS-A Temperament evaluation of Memphis, Pisa and San Diego-
autoquestionnaire

TTFL Transcriptional and translational feedback loops

VIP Vasoactive intestinal peptide
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