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Environmental cues synchronize endogenous rhythms of many physiological processes
such as hormone synthesis and secretion. Little is known about the diurnal pattern of
hormones and gene expression of the Callinectes sapidus molt cycle. We aimed to
investigate in the eyestalk and hepatopancreas of premolt and intermolt C. sapidus the
following parameters: 1) the diurnal expression of the ecdysteroid receptor CasEcR
isoforms, and the molt inhibiting hormone CasMIH; 2) the diurnal hemolymph
ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the
above-mentioned genes in intermolt C. sapidus. Ecdysteroid levels were higher in the
premolt than the intermolt animals at all time points evaluated (ZTs). Premolt crabs
displayed a variation of ecdysteroid concentration between time points, with a
reduction at ZT17. No difference in the melatonin level was seen in either molt stage
or between stages. In the eyestalk of intermolt animals,CasEcR expression oscillated, with
a peak at ZT9, and premolt crabs have a reduction at ZT9; CasMIH transcripts did not vary
along 24 h in either molt stage. Moreover, the evaluated eyestalk genes were more
expressed at ZT9 in the intermolt than the premolt crabs. In the hepatopancreas,
CasEcR expression showed a peak at ZT9 in premolt crabs. Exogenous melatonin
(10−7 mol/animal) reduced the expression of both genes in the eyestalk at ZT17. In the
hepatopancreas, melatonin markedly increased the expression of the CasEcR gene at
ZT9. Taken altogether, our results are pioneer in demonstrating the daily oscillation of gene
expression associated to molt cycle stages, as well as the daily ecdysteroid and melatonin
levels and the remarkable influence of melatonin on the molt cycle of C. sapidus.
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1 INTRODUCTION

The crustacean molt cycle is a complex process comprising behavioral, morphological, and
physiological events that ultimately promote differentiation and growth (Lipcius and Herrnkind,
1982; Chang, 1995). The crustaceanmolt cycle may be staged in four phases: premolt (D), ecdysis (E),
post-molt (A-B), and intermolt (C) (or anecdysis) (Spindler et al., 1974; Kuballa and Elizur, 2007).
Every molt cycle stage is subdivided into several sub-stages. These sub-stages are comprised of
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morphological and physiological changes as a consequence of
hormone fluctuations found in each stage (Loeb, 1993; Chang and
Mykles, 2011).

The positive regulation of the cycle is mainly exerted by
cholesterol-derived hormones, the ecdysteroids, which are
synthesized and released by the Y-organ as inactive forms
(Spaziani and Wang, 1993). The ecdysteroids are converted to
molt-inducing factors in the target organs (Böcking et al., 1995;
Spaziani et al., 1997), thus stimulating tissue-specific responses
that culminate with ecdysis. The ecdysteroids bind to a nuclear
receptor (EcR) that forms a heterodimer with the retinoic acid
receptor (RXR) or ultraspiracle protein (USP), to evoke their
responses (Chen et al., 2017). In C. sapidus CasEcR and CasRXR
co-express in the eyestalks and Y-organ, but with different levels,
suggesting response and sensitivity differences to ecdysteroids
(Techa and Chung, 2013). In the insect Rhodnius prolixus, the
ecdysteroid receptor oscillates in some of the hormone targets
exhibiting a robust diurnal rhythm synchronized with the
circulating levels of ecdysteroid, and daily migrating from the
cytoplasm to the nucleus (Vafopoulou and Steel, 2006). In
general, ecdysteroid concentration is low during the intermolt,
peaks in the premolt, followed by a decrease just before the
ecdysis (Chung, 2010).

Ecdysteroid release as well as its action in peripheral tissues are
regulated by X-organ hormones localized in the crustacean
eyestalk (Asazuma et al., 2009). The X-organ is responsible for
producing and releasing many peptide hormones like the
pigment dispersing and concentrating hormones (PDH and
PCH, respectively), and the hyperglycemic hormone (CHH)
superfamily (Hopkins, 2012; Webster et al., 2012; Katayama,
2016). The molt inhibiting hormone (MIH) is a representative
peptide hormone of the CHH-type II family (Nakatsuji et al.,
2009); its receptor is a membrane guanylyl cyclase, also identified
in Callinectes sapidus (Zeng et al., 2008). MIH inhibits
ecdysteroid production and secretion, through receptor
binding on Y-organ (Spaziani et al., 1999). Hemolymph levels
of the two hormones, ecdysteroids and MIH, vary in anti-phase
throughout the cycle, i.e., in the premolt, the ecdysteroid
concentration is high, whereas MIH remains high during
intermolt and post-molt (Lee et al., 1998; Nakatsuji et al.,
2000; Nakatsuji and Sonobe, 2004).

Another hormone, methyl farnesoate, is considered an
accessory hormone of the molt induction, showing higher
concentrations in the premolt stage (Nagaraju et al., 2006;
Nagaraju, 2007; 2011); it is produced by the mandibular
organ, increases ecdysteroid concentration in the Y-organ
cells, and accelerates the molt cycle (Reddy et al., 2004).

In addition to the endocrine organs classically involved in the
molt cycle, like the X-organ and the Y-organ, the hepatopancreas
(midgut gland) also participates in the molt cycle. The
hepatopancreas is an essential metabolic tissue responsible for
the storage and distribution of nutrients, whose demands change
throughout the cycle (Lipcius and Herrnkind, 1982; Huang et al.,
2015). The proteomic analysis of Scylla paramamosain
hepatopancreas demonstrated that 193 proteins responsible for
exoskeleton and cuticle reconstruction, energy reserves, immune
responses, and metabolism were altered between the molt stages

(Liu et al., 2021). During the Eriocheir sinensis vitellogenesis, the
hepatopancreas expresses four EcR isoforms with the same
profile, which play a more important role during the earlier
ovarian development stages (Su et al., 2020). Furthermore, the
organ produces vitellogenin that is stimulated by MIH during the
process of ovarian maturation in C. sapidus (Zmora et al., 2009;
Luo et al., 2015).

Environmental cues, named zeitgebers (time givers in the
German language), comprise physical factors such as light,
temperature, salinity, and tides among others, which may have
been imposed on the organisms since the species origin. These
factors affect the physiological processes by synchronizing their
endogenous rhythms with each other and with the environment
(Stoner et al., 2013; Espinosa-Chaurand et al., 2017). This feature
allows biological processes to occur in an appropriate order,
thereby preventing concurrent activation of potentially
incompatible mechanisms.

Among a variety of biological processes, endocrine signaling is
one of the most integrative diurnal systems. In this sense,
melatonin, the messenger of the darkness, emerges as an
important hormone that contributes to the whole-body
temporal regulation in vertebrates (Reiter et al., 2009; Markus
and Ferreira, 2011; Dardente, 2012; Cipolla-Neto et al., 2014;
Cipolla-Neto and Amaral, 2018). Melatonin is a ubiquitous and
amphiphilic molecule derived from the amino acid tryptophan,
which is converted to the bioactive hormone due to the action of
the enzymes aryl-alkyl aminotransferase (AANAT) and
hydroxymethyl transferase (ASMT) (Axelrod and Weissbach,
1960; Vivien-Roels and Pévet, 1993; Tan et al., 2016). It is
widely accepted that melatonin oscillates in a circadian pattern
in all vertebrates studied to date, peaking in the dark phase,
because the biosynthesis limiting enzyme—AANAT—is
inhibited by light through clock-regulated signaling (Wurtman
et al., 1963; Reiter et al., 2014).

In Crustaceans, on the other hand, there is no consensus as the
time of the day at which melatonin peaks in the various species as
well as if this hormone displays an oscillatory pattern (Agapito
et al., 1995; Tilden et al., 1997; Maciel et al., 2008; Markowska
et al., 2009; Sainath et al., 2013; Han et al., 2018). As to melatonin
actions in crustaceans, it has already been demonstrated that the
indoleamine plays a role in limb regeneration (Tilden et al., 1997),
ecdysteroid production (Sainath S. B. and Reddy P. S., 2010;
Girish et al., 2015), antioxidant defense (Maciel et al., 2010; Geihs
et al., 2016; She et al., 2019), color change (Nery et al., 1999),
locomotor activity (Geihs et al., 2010), and hyperglycemia
(Sainath SB. and Reddy PS., 2010; Maciel et al., 2014; Yang
et al., 2018), among others. Many melatonin functions in
crustaceans are related to the molt cycle, as shown by the
increased levels of ecdysteroids in melatonin-treated Y-organ
cells (Girish et al., 2015).

Little is known about the diurnal oscillation of molting
hormones, and their role in the daily regulation of the molt
cycle. In this study, we aimed to evaluate whether the gene
expression of the ecdysteroid receptor (CasEcR) and the molt-
inhibiting hormone (CasMIH) and the secretion of
ecdysteroids and melatonin displayed a diurnal profile in
intermolt and premolt animals. These molt stages were
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selected because they show the most striking hormone anti-
phase peaks, which may be related to the parameters we chose
to measure. Here we report a diurnal pattern of molt cycle-
related genes and ecdysteroid and melatonin levels, suggesting
melatonin as a positive modulator of the molt cycle in C.
sapidus.

2 MATERIAL AND METHODS

2.1 Animals
Males and females (average weight: 55.64 ± 10.7 g, and average
carapace width: 9.5 ± 0.58 cm) of Callinectes sapidus were
purchased from fishermen in Iguape city, state of São Paulo,
Brazil, between March and May of 2017. The animals were
transported to the University of São Paulo and kept for at
least 3 days in an open water system with constant aeration,
10 ppm salinity, 22°C, under light/dark cycles of 12:12 LD (white
light, 420–750 nm, 400 lux, 58 μW/cm2), lights on 7 a.m. (ZT0)
and off 7 p.m. (ZT12) (zeitgeber time - ZT). For all experiments,
the animals’ molt cycle stages were determined according to the
absence (intermolt) or presence (premolt) of the line on the 5th
pereiopod (Figure 1) and the ecdysteroid levels (intermolt =
<60 ng/ml; premolt = >60 ng/ml, according to Techa and Chung,
2013 and Roegner et al., 2019). Both sexes were used since there
were no sex-related differences in the chosen outputs. Animal
maintenance and experimentation were authorized by the
Brazilian Ministry of the Environment (license SISBIO number
67295–3).

2.2 Experimental Design
2.2.1 Hormone Concentrations and Gene Transcript
Levels in Premolt and Intermolt C. sapidus
Premolt and intermolt animals previously identified and
acclimated for at least 3 days under the conditions

mentioned above were single housed in a closed circulation
system for three more days. Samples were obtained every 8 h,
at ZT1 (8 a.m.), ZT9 (4 p.m.), and ZT17 (midnight)
(Figure 2A). Animals were cryo-anesthetized, the
hemolymph (300 µL) was collected, centrifuged at 4,000 x g,
at 4°C for 10 min, and the supernatant was stored at −80°C for
later melatonin and ecdysteroid measurements;
hepatopancreas and eyestalk were excised and stored at
−80°C for qPCR analysis.

2.2.2 Melatonin Effects on the Hormone
Concentrations and Gene Transcript Levels in
Intermolt C. sapidus
Melatonin (Sigma-Aldrich, St. Louis, MO, United States) was
dissolved in 100% ethanol for a stock solution of 10−3 M,
which was further diluted in 100 µL of Pantin solution
(400 mM NaCl; 10 mM KCl; 27 mM anhydrous Na2SO4;
2.4 mM NaHCO3; 52.13 mM MgCl2.6H2O; 7.6 mM
anhydrous CaCl2), pH 7.6, to obtain 10−7 mol/100 µL
(Girish et al., 2015). This volume was daily injected at 1
p.m. (ZT6), into the arthrodial membrane of the 5th
pereopod of intermolt crabs for 7 days. Control animals
received the same volume of the eluent containing 1%
ethanol. After that, the animals were processed as described
above for hemolymph and organs collection (Figure 2B).

2.3 Measurement of Hormone
Concentrations
Hemolymph ecdysteroid levels were determined by Enzyme-
Linked Immunosorbent Assay (ELISA) adapted from
McKinney et al. (2017). Melatonin quantification was also
determined by ELISA according to the kit manufacturer’s
instruction (IBL International, Flughafenstr, Hamburg,
Germany).

FIGURE 1 | Illustration of molt cycle of the blue crab,Callinectes sapidus. The diagram shows the hemolymph ecdysteroid titer pattern (upper panel), morphological
signals of the leg (black arrows), and duration of each stage during the molt cycle (bottom panel). Modified from Blue Crab. Info (https://www.bluecrab.info/redsign.htm).
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2.4 Total Ribonucleic Acid Extraction and
Reverse Transcriptase Reaction
(Polymerase Chain Reaction)
The eyestalk and hepatopancreas were homogenized in Trizol
(Ambion, Carlsbad, CA, United States), and after the extraction
of total RNA, the samples were treated with DNAse I (turbo-
DNase, Life Technologies, Carlsbad, CA, United States)
following the manufacturer’s instructions. RNA concentration
was determined in a Nanodrop spectrophotometer
(Wilmington, DE, United States), and 1 μg of RNA was
reverse transcribed in a reaction containing random hexamer
primers, Superscript III (Life Technologies, Carlsbad, CA,
United States), and other reagents, according to the
manufacturer’s instructions.

2.5 Quantitative Polymerase Chain Reaction
Specific primers for the molt inhibiting hormone (CasMIH) and
ecdysteroid receptor isoform (CasEcR) genes and ribosomal

RPL12 (CasRPL12, utilized as normalizer), based on the
GenBank sequences (http://www.ncbi.nlm.nih.gov/genbank),
were designed with PrimerBlast (Table 1) and synthesized by
IDT (Coralville, IA, United States). The single gene PCR
reactions contained 300 nM of each primer, KAPA SYBR®
Fast qPCR Mix 2x (KapaBiosystems, Wilmington, MA,
United States), and DNase/RNase free water (Ambion,
Carlsbad, CA, EUA). The assay was performed in the iQ5
thermocycler (Bio-Rad Laboratories, Hercules, CA,
United States) as follows: 10 min at 95°C, followed by 45
cycles of 15 s at 95°C, 1 min at 60°C, and then 80 cycles of
10 s at 55°C, with a gradual increase of 0.5°C (melting curve to
validate the specificity of the primers). For each gene, two
replicates of each sample were used. Negative controls were
routinely included with no template.

2.6 Statistical Analysis
ThemRNA levels were calculated according to the 2-ΔΔCTmethod
(Livak and Schimittgen, 2001). The CT (amplification cycle) of
each qPCR reaction was determined where the threshold crosses
the geometrical portion of the amplification curves. ΔCT was
found by subtracting CasRPL12 CT from each gene CT. The
minimal mean value was then subtracted from each ΔCT sample
value to obtain ΔΔCT, placed as the negative exponential in
base 2.

The optical density (OD) values in the ELISA assays were
interpolated in a 4 parameters standard curve for melatonin and
semilog line standard curve for ecdysteroid, to obtain the
concentration values which were expressed in pg/mL and ng/
mL, respectively.

Outliers of the gene expression and hormone levels were
identified using the ROUT method with Q = 10%, the

FIGURE 2 | Experimental designs. (A) Timeline of the experiment to determine hemolymph ecdysteroids and gene expression of the intermolt and premolt crabs.
(B) Timeline of the experiment to determine melatonin-injection effect on the hemolymph ecdysteroids and gene expression of the intermolt crabs.

TABLE 1 | Primers’ sequences and access numbers for the qPCR assays.

Templates Sequences

CasMIH For.:5′-CAGCTTACAAGAGCACCGGA-3′
KJ813010.1 Rev.: 5′-TTTCTGACTGACCGTTGCGT-3′

CasECR
HQ630857.1 For.: 5′-CACGTGTGACAGTCAGTGGA-3′
HQ630859.1 Rev.: 5′-ACCAGAGCCCAACACAAACA-3′
HQ630858.1
JQ771939.1

CasRPL12 For.: 5′-AATCGCAGTTCATCCTCCAC-3′
Yednock et al. (2015) Rev.: 5′-GAGGCATGGTGCTGAATTTG-3′
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Shapiro-Wilk test was used to check the normality, and the data
were compared by Two-way ANOVA. To evaluate the influence
of variables or the interaction between them, the F value was
analyzed [F (DFn, DFd), p < 0.05], followed by Bonferroni’s post-
test to compare the time points within a group, or the same time
point among groups. Results are shown as median, quantiles,
maximum, and minimum expression values of genes of interest,

and p < 0.05 was established to reject the null hypothesis. All
analyses were done in GraphPad Prism 8.0.

3 RESULTS

3.1 Circulating Hormone Levels
Aiming to determine if ecdysteroid levels display a rhythm along
the day, hemolymph of intermolt and premolt C. sapidus was
collected and analyzed at three-time points (ZTs). We found a
significant interaction between factors (molt stage and time) on
the ecdysteroid levels (Table 2). As expected, ecdysteroids
showed remarkably higher levels in premolt than intermolt
animals, at all evaluated time points. Additionally, in the
premolt crabs, the ecdysteroids showed a decrease at ZT17 in
comparison to ZT1 (p = 0.0072) (Figure 3A).

Melatonin shows a daily rhythm in most species. However, in
C. sapidus our results showed no statistical differences between
time points or molt stages (Table 2) where the circulating levels of
melatonin were evaluated (Figure 3B).

3.2 Relative Gene Expression of CasEcR
and CasMIH
Besides analyzing the daily temporal expression of the
ecdysteroid receptor and MIH genes at three-time points over
24 h, the study enabled the comparison of two molt stages,
intermolt and premolt.

The relative CasMIH expression in the eyestalk did not
vary among time points in any molt stage. The F value from
ANOVA indicates a significant impact of the molt stage
(Table 2) and was confirmed by the post-test (p = 0.0288)
at ZT9 (Figure 4A).

We found a significant interaction between time and molt
stage (Table 2) in CasEcR expression in the eyestalk. This gene
exhibited a rhythm in both stages, with different patterns.
Significant difference was observed at ZT9 between molt
stages, with higher expression in the intermolt compared to
premolt crabs (p = 0.079) (Figure 4B).

The hepatopancreas CasEcR showed a significant influence of
the molt stage on its expression (Table 2). No variation among
the time points was observed, however, a significant increase of
CasEcR transcripts was seen at ZT9 in premolt compared to
intermolt animals (p = 0.0124) (Figure 4C).

TABLE 2 | ANOVA parameters related to gene expression and hormone concentrations.

Time Molt stage Interaction

F (DFn,DFd) p Value F (DFn,DFd) p Value F (DFn,DFd) p Value

Ecdysteroids Hemolymph (2, 27) = 4.037 p = 0.292 (1, 27) = 102.5 p < 0.0001 (2, 27) = 5.020 p = 0.0140
Melatonin (2, 27) = 1.202 p = 0.3161 (1, 27) = 0.3474 p = 0.5605 (2, 27) = 0.009 p = 0.9901
CasMIH Eyestalk (2, 31) = 0.9044 p = 0.4152 (1, 31) = 13.41 p = 0.0009 (2, 31) = 0.4307 p = 0.6539
CasECRI Eyestalk (2, 25) = 0.8656 p = 0.4330 (1, 25) = 0.0758 p = 0.7853 (2, 25) = 8.296 p = 0.0017

Hepatopancreas (2, 17) = 0.5085 p = 0.6102 (1, 17) = 6.217 p = 0.0233 (2, 17) = 2.470 p = 0.1143

Cells in bold represent statistically significant differences.

FIGURE 3 | Concentration of ecdysteroids and melatonin in C. sapidus
hemolymph. (A) Ecdysteroids (n = 4–7) and (B) melatonin (n = 4–7) were
extracted 1, 9 and 17 h after lights on. The values are expressed as median,
quantiles, maximum, and minimum concentration. p values refer to the
differences between molt stages, or temporal points within a single molt
group, as determined by Two-way ANOVA, followed by Bonferroni post-test.
In this and the following figures, the gray rectangle represents the scotophase,
and n is the animal number.
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3.3 Effects of Exogenous Melatonin on the
Gene Expression and Ecdysteroid Levels
Considering the possible effect of melatonin on the molt cycle, we
analyzed the ecdysteroid levels and the relative expression of CasEcR
and CasMIH genes in daily melatonin-injected intermolt crabs.

No statistical differences were observed in the ecdysteroids
levels between control and melatonin-treated animals (Figure 5).

At ZT17 the ecdysteroid levels tend to decrease in the hormone-
treated crabs, however, this reduction was not statistically
significant (Table 3).

In the eyestalk, the melatonin injection elicited a significant
decrease in CasMIH expression (Table 3). This reduction was
confirmed by the post-test at ZT17 (p = 0.0045) (Figure 6A). No
oscillation in either molt group was found.

The F value indicates a significant impact of both factors, time
and treatment in the eyestalk CasEcR expression (Table 3).
Control animals showed an oscillatory profile with a peak of
expression at ZT17, which was abolished in the melatonin-
injected animals. At the same time point, the gene expression
was reduced in melatonin-treated animals compared to the
control crabs (p = 0.0027) (Figure 6B).

An interaction between time and melatonin treatment was
observed in the hepatopancreas showing a significant influence
on the CasEcR transcripts (Table 3). The treated group displayed
an oscillation with a peak at ZT9 in comparison to ZT1 and ZT17.
In addition, a significantly higher CasEcR expression at ZT9 in
melatonin-treated animals than in the control group was
observed (p < 0.0001) (Figure 6C).

4 DISCUSSION

Reports about diurnal oscillation of molt cycle-related genes are
extremely rare in decapod crustaceans. Because this is an overly
complex physiological process, which comprises several stages
and phases with a variety of hormones (Lipcius and Herrnkind,
1982; Lachaise et al., 1993; Chang, 1995; Nakatsuji et al., 2009;
Chang and Mykles, 2011; Mykles, 2011; Webster et al., 2012), a
thorough comprehensive analysis becomes exceedingly difficult.
In addition, many environmental factors affect hormone
synthesis and secretion, and gene expression, thus strongly
influencing the molt cycle (Guo et al., 2013; Stoner et al.,
2013; Gong et al., 2015).

Ecdysteroids, the main hormones responsible for ecdysis, are
synthesized and secreted by the Y-organ, under the molt-
inhibiting hormone negative regulation. The first aim
addressed in this study was to evaluate ecdysteroid levels,
ecdysteroid receptors, and the molt-inhibiting hormone
expression, in two molt stages and at three time-points of the
day, events not yet reported for Callinectes sapidus.

Due to the ecdysteroid ecdysis-inducing action, higher
hormone levels are expected in premolt animals. Our data
confirm the literature studies, which report that premolt
animals have a higher concentration in comparison to
intermolt animals at all evaluated ZTs (Lee et al., 1998;
Nakatsuji et al., 2000; Nakatsuji and Sonobe, 2004; Techa and
Chung, 2013). Moreover, a temporal variation in premolt crabs
was noted with a reduction of the ecdysteroid levels at ZT17.

For gene expression, molt stage (eyestalk CasMIH and
hepatopancreas CasEcR) or their interaction (eyestalk CasEcR)
showed significant results. Eyestalk holds the visual ganglia and is
responsible for the synthesis of circadian molecules such as
melatonin in many crustaceans, for example, Eriocheir sinensis
and Palaemonetes sinensis (Han et al., 2018), and Neohelice

FIGURE 4 | Temporal gene expression in intermolt and premolt C.
sapidus. (A) CasMIH (n = 4–8) and (B) CasEcR (n = 4–8) in the eyestalks, and
(C) CasEcR (n = 3–4) in the hepatopancreas. Total RNA was extracted 1, 9,
and 17 h after lights on. Gene expression was normalized by CasRPL12
and the values of CasEcR and CasMIH were expressed relative to the minimal
mean of CasEcR in premolt hepatopancreas and of CasMIH in intermolt
eyestalk, respectively. p values refer to the differences between molt stages,
or temporal points within a single molt group, as determined by Two-way
ANOVA, followed by Bonferroni post-test.
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granulata (Maciel et al., 2008). The X-organ-sinus gland complex
seems to be the master of this rhythmicity (Aréchiga et al., 1985;
1993) and it is under the direct influence of light (Glantz et al.,
1983), which would impact the daily variation of the hormones
and gene expression evaluated in this work. In fact, our results
showed that CasEcR oscillates along the time in the eyestalk of
intermolt and premolt animals, although with different patterns.
On the other hand, CasMIH did not display the same profile.
Bearing that in mind, one may suggest that the synthesis and
release of some hormones exhibit a diurnal profile in the eyestalk,
but not necessarily the expression of CasMIH. Besides that, the
variation among individuals may mask a possible oscillatory
profile.

The relative expression of CasEcR and CasMIH in the eyestalk
shows a similar profile: Both genes displayed higher expression at
ZT9 in the intermolt than in premolt crabs. Previous studies
showed that ecdysteroid receptors and CasMIH gene are related
in the eyestalk since EcR is a nuclear receptor, that possesses a
binding site in the MIH promoter and then influences its
expression.

The hepatopancreas is one of the main targets of ecdysteroids,
whose levels are high in the premolt stage, preceding the ecdysis.
This organ plays a particularly important role in metabolic
regulation, and it is responsible for calcium storage, which is
fundamental for a successful molt cycle (Becker et al., 1974;
Zanotto and Wheatly, 2002). As feeding behavior changes along
the molt cycle, it is expected that the organ’s cell composition

undergoes modifications to meet the nutritional demand during
the cycle (Lipcius and Herrnkind, 1982; Ortega et al., 2011).
Increased CasEcR expression in the hepatopancreas has been
reported in response to ecdysis induction (Girish et al., 2015).

In our results, there was an increase of hepatopancreas CasEcR
transcripts in the premolt animals, which may be related to the
receptor function as ecdysis comes closer and ecdysteroid
concentration rises in the hemolymph. However, this increase
was statistically significantly only at ZT9, suggesting a possible
rhythm of the CasEcR. In Rhodnius prolixus, ecdysone receptors
exhibit a circadian rhythm in specific tissues in response or
anticipation of the daily peaks of the hormone (Vafopoulou
and Steel, 2006). In C. sapidus, we demonstrated that the
ecdysteroid levels were higher at ZT1 and ZT9, and the
increase of CasEcR transcripts at ZT9 may be in response to
an increase of circulating ecdysteroids.

Ecdysteroids, MIH, methyl farnesoate, and its inhibitor are
classic regulators of the molt cycle (Borst et al., 2001; Nagaraju,
2007; 2011). A strong candidate as a positive factor is melatonin,
whose functions in the vertebrates are linked to its pattern of
synthesis and release in the dark (Carrilo-Vico et al., 2005;
Markus and Ferreira, 2011; Cipolla-Neto et al., 2014) since the
synthesis key enzyme is inhibited by light, even in nocturnal
species (Reiter et al., 2014).

One point to highlight is that, unlike the majority of
vertebrates, melatonin concentration peak in crustaceans may
vary according to the species: during the photophase, as in

FIGURE 5 | Concentration of ecdysteroids in intermolt C. sapidus hemolymph after daily injections of 10−7 mol melatonin/animal for 7 days. Ecdysteroids (n = 3–4)
were extracted 1, 9 and 17 h after lights on. The values are expressed as median, quantiles, maximum, and minimum concentration.

TABLE 3 | ANOVA parameters related to gene expression and hormone concentrations in melatonin-injected crabs.

Time Melatonin treatment Interaction

F (DFn,DFd) p Value F (DFn,DFd) p Value F (DFn,DFd) p Value

Ecdysteroids Hemolymph (2, 15) = 2.466 p = 0.1186 (1, 15) = 1.862 p = 0.1925 (2, 15) = 0.4931 p = 0.6527
CasMIH Eyestalk (2, 19) = 2.250 p = 0.1327 (1, 19) = 16.40 p = 0.0007 (2, 19) = 1.132 p = 0.3431
CasECRI Hepatopancreas (2, 23) = 5.190 p = 0.0138 (1, 23) = 15.78 p = 0.0006 (2, 23) = 2.483 p = 0.1055

(2, 16) = 7.190 p = 0.0059 (1, 16) = 2.209 p = 0.1566 (2, 16) = 19.53 p < 0.0001

Cells in bold represents statistically differences.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9030607

David et al. Diurnal Rhythms of Callinectes sapidus

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Procambarus clarkii (Agapito et al., 1995), Uca pugilator (Tilden
et al., 2001) and Daphnia magna (Markowska et al., 2009), or in
both the photophase and the scotophase as in N. granulata
(Maciel et al., 2008). In C. sapidus, circulating melatonin did
not exhibit a temporal oscillation in intermolt or premolt crabs,
and no concentration difference was seen between stages.
However, preliminary data with more time points evaluated
every 4 h, along the 24 h (data not shown) suggest that both,
ecdysteroids and melatonin, display an increase at ZT9.

In crustaceans, light does not seem to affect melatonin
synthesis: C. sapidus and other species presented the highest
concentrations during the photophase, suggesting that factors
other than light regulate melatonin production in these animals.
Unfortunately, most reports about melatonin concentration in
crustacean hemolymph did not mention the stage of the molt

cycle, temperature, and light conditions, which may be the reason
for the inconsistencies seen in the literature. In our study, we
focused on two stages of the molt cycle, and kept constant light-
dark cycle, temperature, and water conditions, to clarify the
controversial data about melatonin rhythmicity in crustaceans.
Nevertheless, further experiments should be performed to
confirm this finding.

To analyze a possible positive effect of melatonin on the molt
cycle, the intermolt crabs were daily injected with melatonin for
7 days at ZT6 and the ecdysteroid levels, ecdysteroid receptor,
and MIH expression were determined. The reason to use
intermolt crabs was to verify whether melatonin treatment
would induce the ecdysis; the injection time was based on the
majority of the literature reports which claim that melatonin
peaks in the photophase.

The ecdysteroid levels did not show variation, but a reduction
at ZT17 in melatonin-treated animals was visible; but probably
due to the individual variability the difference was not statistically
significant. In our hypothesis, melatonin should evoke the same
effect as methyl farnesoate on the molt cycle (Reddy et al., 2004);
in other words, we expected a melatonin-induced increase in the
production and secretion of ecdysteroids. A possibility is that the
melatonin injections were sufficient to induce a later stage of
premolt, where the ecdysteroid levels were reduced in C. sapidus.

Our results revealed a similar expression pattern of both genes
in the eyestalk, where exogenous melatonin inhibited their
transcription at ZT17, whereas, in the hepatopancreas,
melatonin increased CasEcR expression at ZT9, suggesting
organ-specific melatonin receptors.

The eyestalk X-organ/sinus gland complex synthesizes and
stores MIH, respectively, a hormone required during the later
stages, posterior to ecdysis, the postmolt and intermolt stages
(Philippen et al., 2000; Nakatsuji et al., 2009). Nevertheless, it has
been reported that in some species MIH is synthesized in the
premolt stage, stored in the sinus gland until the releasing time,
but never with higher levels than in the postmolt and intermolt
periods (Nakatsuji et al., 2000). One has also to consider the
interaction between ecdysteroid receptor and MIH in the
eyestalk, where CasEcR may be acting in the later premolt
stage before ecdysis. Techa and Chung (2015) suggested that
ecdysteroids exert positive feedback on the MIH expression: after
reaching certain levels, the ecdysteroids inhibit the molt cycle via
EcR stimulation of MIH transcripts. Bearing this in mind, one
may suggest a positive action of melatonin on the molt cycle, in
which the MIH inhibition may emanate from CasEcR inhibition.
We hypothesized that melatonin acts as a positive regulator of the
molt cycle through an inhibitory action on the molt inhibitor
hormone in the eyestalk as discussed above.

Ecdysteroid receptors in the target organs, such as the
hepatopancreas, display distinct functions from those in the
eyestalk since the signaling in the hepatopancreas could
induce ecdysis (Shechter et al., 2007; Huang et al., 2015). In
fact, as to the hepatopancreas, melatonin-treated crabs, which
were in the intermolt stage, showed an increase inCasEcR levels at
ZT9; in addition, this gene exhibited an oscillation in treated
animals. It would be expected that the expression of the
ecdysteroid receptors increases with the melatonin treatment.

FIGURE 6 | Temporal gene expression in intermolt C. sapidus after daily
injections of 10−7 mol melatonin/animal for 7 days. (A) CasMIH (n = 3–5) and
(B) CasEcR (n = 4–6) in the eyestalks, and (C) CasEcR (n = 3–4) in the
hepatopancreas. Total RNA was extracted 1, 9, and 17 h after lights on.
Gene expression was normalized by CasRPL12, and the values were
expressed relative to the minimal mean of a control in each graph. p values
refer to the differences between molt stages, or temporal points within a single
molt group, as determined by Two-way ANOVA, followed by Bonferroni post-
test.
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Interestingly, melatonin-injected intermolt crabs showed CasEcR
expression similar to premolt crabs (Figure 4C), corroborating the
hypothesis that melatonin has a positive effect on the molt cycle.

Taken altogether, our results demonstrated the lack of
temporal variation in CasMIH gene expression in premolt and
intermolt eyestalk animals. On the other hand, CasEcR displayed
an oscillatory profile with a peak at ZT9 in the eyestalk of
intermolt animals; in the hepatopancreas, this gene seems to
oscillate in premolt animals. Importantly, our study highlights
important limitations in the literature regarding melatonin
secretion rhythm in crustaceans. In C. sapidus, we are the first
to demonstrate melatonin presence and how this hormone
behaves in premolt and intermolt stages.

We also demonstrated that exogenous melatonin has a
positive effect on the molt cycle, leading to a gene expression
in intermolt animals’ pattern similar to the one found in premolt
crabs, probably affecting eyestalk and hepatopancreas physiology.
In the eyestalk, we found an indirect activation of the molt cycle
(through CasMIH and CasEcR inhibition) whereas in the
hepatopancreas the indoleamine increased the expression of
CasEcR. Ultimately, our results widened the knowledge about
the influence of melatonin on molt-related genes and daily
hormone variation, bringing an essential contribution to the
field of comparative endocrinology.
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