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The potential effects of vitamin D in athletes have received considerable attention in the
literature. However, little is known about vitamin D metabolites and their association with
physical performance in athletes. Therefore, the aim of our study was to determine the
relationship between metabolites of vitamin D, vitamin D binding protein (VDBP), free,
bioavailable 25-(OH)D, and physical fitness tests in athletes. A total of 40 indoor and
outdoor players (16 judoists and 24 football players) participated in the study. Vitamin D
metabolites (25-(OH)D, 24,25-(OH)2D3, 3-epi-25-(OH)D3, and 1,25-(OH)2D) were
assessed using LM-MS/MS. Free 25-(OH)D concentration was evaluated by
calculation using serum albumin and VDBP levels. Athletic performance was assessed
using handgrip and vertical jump. Our study showed a significant correlation between
vitamin Dmetabolites and handgrip strength and vertical jump variables in indoor players. It
demonstrated a significant association between 3-epi-25-(OH)D3 and vertical jump
parameters in outdoor players. The results of our study showed relationship between
free, bioavailable 25-(OH)D, and vertical jump variables in indoor players. In conclusion, we
provide novel information on the vitamin D metabolites and athletic performance in
athletes. Based on the results of our study, we concluded that vitamin D metabolites
might be involved in skeletal muscle function in relation to athletic performance.
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1 INTRODUCTION

During the last few decades, interest has increased in vitamin D research because studies frequently
evidence vitamin D deficiency/insufficiency among athletes worldwide (Valtueña et al., 2014;
Krzywanski et al., 2016; Lombardi et al., 2017). Findings from a meta-analysis of 23 studies, on
a total of 2,313 athletes, demonstrated that 56% of those practicing both indoor and outdoor activities
had insufficient vitamin D concentrations (Farrokhyar et al., 2015). Further, for athletes living at
latitudes above 40°N, the risk of vitamin D inadequacy significantly increases during wintertime
(Farrokhyar et al., 2015).

Current studies indicate that vitamin D plays a role in skeletal muscle function. Calcitriol [1α,25-
(OH)2D] stimulates the myogenic differentiation of mesenchymal stem cells and upregulates the
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insulin growth factor (IGF)-II and follistatin expression (Garcia
et al., 2011). It downregulates, instead, IGF-I and myostatin
protein expression (Di Luigi et al., 2020). 1α,25-(OH)2D can
enhance the sensitization of calcium binding sites at the
sarcoplasmic reticulum level (Girgis et al., 2013) and influence
muscle cell growth and differentiation, particularly of the fast-
twitch type II fibers (Halfon et al., 2015). In addition, vitamin D
increases insulin sensitivity, energetic substrate metabolism, and
oxidative capacity by regulating mitochondrial respiration
(Antinozzi et al., 2017; Ashcroft et al., 2020). 1α,25-(OH)2D
exerts different non-classic biological effects that are supposed
to influence health status, exercise, and sport performance in
athletes (Owens et al., 2018).

Recent advances in mass spectrometry (MS)-based detection
of plasma metabolites have allowed for the accurate detection of
1,25-(OH)2D, 24,25-(OH)2D, a major catabolic metabolite of 25-
(OH)D, and 3-epi-25-(OH)D. Although only calcitriol has
defined biological activities, there is interest in the other
vitamin D metabolites. For instance, studies involving animal
models demonstrated that 24,25-(OH)2D exerts a crucial role in
the maintenance of bone integrity, healing, and function (Seo
et al., 1997; Seo and Norman, 1997). Furthermore, 24,25-(OH)2D
modulates growth plate chondrocyte physiology and parathyroid
gland function (Herrmann et al., 2017). In turn, 3-epi-25-(OH)D
levels are directly associated with the cardiovascular risk profile,
and 3-epi-1α,25(OH)2D, a derivative of 3-epi-25-(OH)D,
effectively reduces blood parathyroid hormone (PTH) without
affecting calcium levels (Brown et al., 2005; Lutsey et al., 2015). To
our knowledge, there are only few studies, especially intervention
ones, related to the status of different vitamin D metabolites
(Hassan-Smith et al., 2017; Mieszkowski et al., 2020; Mieszkowski
et al., 2021).

Circulating levels of calcidiol [25-(OH)D] are currently used
as the indicator of vitamin D status (Bikle et al., 2017; Tsuprykov
et al., 2018). Recently, there has been speculation as to whether
just measuring total 25-(OH)D is appropriate for the assessment
of vitamin D status in different physiological and
pathophysiological conditions (Bikle et al., 2017). Around
85%–90% of the total circulating 25-(OH)D and 1α,25-
(OH)2D is bound to vitamin D binding protein (VDBP).
About 10%–15% is bound to albumin, in contrast to free 25-
(OH)D [bioavailable 25-(OH)D], which accounts <1% of total
circulating vitamin D (Bikle et al., 2017; Owens et al., 2018).
According to the “free hormone” hypothesis (Chun et al., 2014),
current studies have shown that only the non-bound fraction of
vitamin D is able to enter cells and to exert biologic effects (Bikle
and Schwartz, 2019). It has been documented that the
bioavailable fraction of circulating 25-(OH)D displays a
stronger association with bone mineral density (BMD) than
total levels, in healthy adults (Powe et al., 2011), and with
intact PTH levels (iPTH) (Shieh et al., 2016).

More recently, the relationships between total 25-(OH)D
concentration and performance-related factors in athletes have
been observed in many studies (Seo et al., 2019; Kim et al., 2020;
Most et al., 2021; Wilson-Barnes et al., 2021). Although the
importance of vitamin D for athletes in regard to health and
performance was emphasized, the studies found inconsistent

results. A main issue is represented by the fact that those
studies did not consider the metabolites of vitamin D and the
amount of free or bioavailable 25-(OH)D, important to muscle
function. Considering the role of vitamin D in skeletal muscle and
athletic performance, there is a need to assess such factors among
this population. Therefore, the primary aim of our study was to
assess circulating vitamin Dmetabolites, VDBP, free, bioavailable
25-(OH)D concentration in athletes by considering the behavior
of their training, either indoor or outdoor. A secondary aim was
to determine the relationship between metabolites of vitamin D,
VDBP, free, bioavailable 25-(OH)D, and physical fitness tests in
athletes.

2 METHODS

2.1 Participants
Forty injury-free male athletes (16 judoists and 24 football
players) were included in the study. All participants were
Caucasians with white skin, and none of them was a regular
sunbed user. None of the subjects used any food supplements
containing vitamin D and calcium. Participants’
characteristics are shown in Table 1. The study was carried
out in Wrocław (Poland), which is situated at the latitude of
51°10’ N. It was conducted during the general preparatory
period in the 2nd Polish national football team and academic
judo team. Athletes within sport discipline had similar exercise
loads. Data were collected during 2 weeks at the turn of
February and March 2021.

Measurements were performed under the fasting state. Height
was measured by an anthropometer accurate to up to 1·10–3 m
(GPM Siber Hegner Machinery Ltd., Zurich, Switzerland). The
body mass was measured with the use of an electronic scale
accurate up to 102 g (Fawag, Lublin, Poland).

Skinfold thickness was measured at seven sites (biceps, triceps,
subscapular, suprailiac, abdominal, thigh, and calf) with a
Harpenden skinfold calliper (British Indicators, Burgess Hill,
United Kingdom). Each measurement was taken by the same
person, 3 times, and the mean value was used for calculation.
Percentage body fat was assessed using the formula (Withers
et al., 1987; Siri, 1993).

2.2 Biochemical Analyses
Athletes were instructed to visit laboratory between 7.00 and
10.00 a.m., after 10-to-12-h fasting and 24-h abstinence from
training. Blood samples were collected into plain tubes,
containing a clot activator (Vacutest, Kima, Italy). Blood was
kept at room temperature for 1 h and then centrifuged at 1300 g,
for 10 min, at 22°C. Serum was aliquoted and stored at −80°C
until assayed.

iPTH in blood serum was determined by the electro-
chemiluminescence assay (ECLIA) on an Elecsys analyzer
(Roche, Switzerland) according to the manufacturer’s protocol
and specific assay laboratory quality control procedures. The
intra- and inter-assay coefficients of variation (CVs) were 4.5%
and 4.8%, respectively, and the limit of detection was at 1.20 pg/
mL (0.127 pmol/L).
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Total calcium (Ca) was determined, in serum, by a
colorimetric assay using the Konelab 60 system from
bioMérieux (France).

Albumin was assayed on a Siemens Dimension Xpand Plus
clinical chemistry system (Siemens, Germany).

Albumin-adjusted calcium (ACa) was calculated using the
formula

ACa � Ca + [(4 − albumin ( g

dL
))p 0.8].

2.3 Vitamin D Metabolite Levels
The vitamin D metabolite [25-(OH)D3, 25-(OH)D2, 24,25-
(OH)2D3, 3-epi-25-(OH)D3, and 1,25-(OH)2D3] levels were
determined by quantitative analysis via liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS;
QTRAP®4,500 (Sciex) coupled with an ExionLC HPLC
system), with minor changes according to a previously
published method (Rola et al., 2020).

2.4 Free Vitamin D via Vitamin D Binding
Protein
VDBP was measured by the enzyme-linked immunosorbent
assay (ELISA, R and D Systems, Minneapolis, MN,
United States) according to the manufacturer’s instructions.
The intra-assay CV ranges between 5% and 7%, and the inter-
assay CV ranges between 5% and 8%.

The levels of free 25-(OH)D were calculated from total
measured 25-(OH)D, VDBP, and serum albumin
concentrations by using the equations by Bikle et al. (1986)
(Method 1—M1),

Free 25−(OH)D� total 25−(OH)D
1 + (6 x 103x albumin)+(7 x 108 x VDBP).

Moreover, free, bioavailable 25-(OH)D concentration was
calculated using equations adapted from those described by
Vermeulen et al. (1999) (Method 2—M2). Vermeulen
equations were adapted by replacing the variables for

TABLE 1 | Athletes’ characteristic and physical performance parameters.

Mean ± SD

Judoists (n = 16) Football
Players (n = 24)

p-value Cohen’s d

Age (years) 22.5 ± 2.9 21.9 ± 3.7 0.56 −0.18
Body weight (kg) 82.1 ± 10.8 78.3 ± 6.2 0.21 −0.46
Height (cm) 181.4 ± 5.0 182.0 ± 5.6 0.71 0.12
Body fat (%) 11.3 ± 2.5 10.8 ± 1.4 0.46 −0.27
Career duration (years) 12.3 ± 1.0 12.4 ± 1.0 0.56 0.19
Training time (h/week) 15.1 ± 1.4 11.0 ± 1.1 <0.001 −3.4
Calcium (mg/dL) 9.97 ± 0.34 9.90 ± 0.44 0.57 −0.18
ACa (mg/dL) 9.36 ± 0.28 9.34 ± 0.36 0.78 −0.08
iPTH (pg/mL) 50.3 ± 17.2 40.2 ± 19.6 0.09 −0.54
Albumin (g/dL)
Total 25-(OH)D [ng/mL) 19.96 ± 9.31 22.86 ± 8.33 0.32 0.33
25-(OH)D3 (ng/mL) 19.31 ± 9.27 22.0 ± 8.52 0.36 0.30
25-(OH)D2 (ng/mL) 0.65 ± 0.35 0.86 ± 0.47 0.12 0.49
24,25-(OH)2D3 (ng/mL) 1.30 ± 0.91 1.51 ± 0.98 0.49 0.22
3-epi-25-(OH)D3 (ng/mL) 0.72 ± 0.52 0.92 ± 0.51 0.23 0.39
1,25-(OH)2D (pg/mL) 44.69 ± 25.44 40.40 ± 26.97 0.61 −0.16
VDBP (µmol/L) 2.25 ± 0.41 2.48 ± 0.52 0.14 0.47
Free 25-(OH)D M1 (pg/mL) 12.71 ± 6.11 14.07 ± 6.09 0.50 0.22
Free 25-(OH)D M2 (pg/mL) 10.20 ± 4.91 11.45 ± 4.81 0.49 0.22
Bioavailable 25-(OH)D (ng/mL) 4.23 ± 2.04 4.70 ± 1.98 0.54 0.20
Handgrip (kg)
L 49.6 ± 11.4 41.3 ± 7.5 0.018 −0.89
R 48.8 ± 12.1 44.5 ± 7.4 0.27 -0.40
Jump height (m) 0.38 ± 0.06 0.38 ± 0.04 0.85 −0.07
Peak force (N) 2,173 ± 321 2,017 ± 209 0.10 −0.59
Peak velocity (m/s) 2.85 ± 0.21 2.83 ± 0.14 0.81 −0.09
Peak power (W) 4,535 ± 919 4,289 ± 515 0.35 −0.34
RSImod (m/s) 0.48 ± 0.08 0.47 ± 0.06 0.77 −0.10
Peak force (N/kg) 26.2 ± 1.9 25.6 ± 2.0 0.37 −0.31
Peak power (W/kg) 54.4 ± 6.0 54.4 ± 5.3 0.98 0.01
Peak propulsive force/kg (N/kg) 26.1 ± 1.9 25.6 ± 1.9 0.39 −0.29
AVG propulsive force/kg (N/kg) 20.8 ± 1.2 20.7 ± 1.4 0.94 −0.03
Peak propulsive power/kg (W/kg) 54.2 ± 6.1 54.5 ± 5.3 0.87 0.06
AVG propulsive power/kg (W/kg) 31.5 ± 3.3 31.0 ± 2.7 0.58 −0.19
VO2max (ml/kg/min) 50.9 ± 2.1 53.4 ± 3.5 0.02 0.62

Bold values are statistically significant. iPTH, intact parathyroid hormone; L, left; R, right; RSImod, reactive strength index—modified; VDBP, vitamin D binding protein; AVG, average;
VO2max, maximal oxygen uptake.
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testosterone, SHBG, and albumin and their respective binding
constants with those of 25-(OH)D, VDBP, and albumin,

FT � ([T] − (Nx [FT]))
(Kt {SHBG − [T] +N[FT]}),

where Kt is the association constant of SHBG for T and
N=KaCa+1. This yields a second degree equation that can be
solved for either FT or SHBG (Vermeulen et al., 1999).

2.5 Physical Fitness Tests
2.5.1 Hand Grip Strength
Hand grip strength was measured by a manual dynamometer
(T.K.K.5001, Takei Scientific Inst. Co., Ltd., Niigata, Japan) at a
resolution of 102 g and an accuracy of 5·102 g. Prior to testing, each
subject was instructed on the correct performance of the
measurements. Each subject was asked to comfortably hold the
dynamometer with their fingers and palm tight on the device. They
then lowered their upper limb along the trunk, while keeping a
certain distance, so that neither the elbow nor the hand touched the
body, and gripped the dynamometer using maximum muscle
power. Throughout the test, subjects were asked to stand with
their feet apart and the other upper limb freely along the body.
Measurements were taken in kilograms (kg).

2.5.2 Vertical Jump
The maximum power, force, velocity, reactive strength
index—modified (RSImod), and propulsive force/power of the
lower limbs were determined by the vertical jump test using a
dual single-axis force platform system (Pasco PS 2141 plates, Pasco
Scientific Inc., Roseville, CA, United States) with a sampling
frequency of 1,000 Hz, unfiltered (Owen et al., 2014).
Participants were instructed to stand with one foot on each
platform with their hands on their hips. Athletes were asked to
stand still for a period of 3 s to allow the system to ascertain body
weight and the onset of movement threshold (Owen et al., 2014;
McMahon et al., 2018). Once the systemhad recorded bodyweight,
the participant was instructed to jump as high as possible while
keeping their hands on their hips. For each jump, the athlete was
required to return to the “quiet standing” position with the hands
remaining on the hips. Three attempts were given for each athlete.

2.5.3 Aerobic Fitness
Aerobic fitness was determined using standardized 30–15
intermittent fitness test (30-15IFT). The test consisted of 30 s
of shuttle runs with 15 s of passive recovery (Buchheit, 2008). The
test starting velocity was set at 8 km/h, and the speed was
increased by 0.5 km/h every 30 s. Participants run back and
forth between two lines (40 m apart) at a pace directed by a
pre-recorded audible signal. Subjects ran until voluntary
exhaustion or when subjects could no longer maintain the
required running speed were asked to stop the test. The
distance covered at that point was recorded as the test result.

2.6 Statistical Analysis
Descriptive statistics were presented using mean standard
deviations. The normality of data was assessed using the
Shapiro–Wilk test and homogeneity of variance using the

Levene test. The difference in athletes’ characteristic and
physical performance tests between both groups of athletes
was analyzed using the Welch two sample t-test.

In addition, the effect size was determined by Cohen’s d with
95% confidence interval. The effect size was defined as small if
< 0.2, medium if between 0.2 and 0.5, large if between 0.5 and 0.8,
and very large if > 0.8.

Multiple regression was performed to analyze association
between iPTH, Ca, ACa, and vitamin D metabolites levels.
Moreover, we used this analysis to check relationship between
vitamin D metabolites levels and athletic performance.
Statistically significant models were adjusted for age, body
mass, and body fat.

All analyses were performed with R for Windows, version 4.1
(R Foundation for Statistical Computing, Vienna, Austria). p <
0.05 was selected as the significance threshold.

3 RESULTS

We included forty participants in this study. Athletes competed in
two sport’s discipline: judo (classified as indoor) and football
(classified as outdoor) (Table 1). Indoor athletes’ weekly training
hours were significantly higher than outdoor (15.1 ± 1.4 vs. 11.0 ±
1.1 h, p < 0.001). VO2max was significantly higher in outdoor than
in indoor players (53.4 ± 3.5 vs. 50.9 ± 2.1 ml/kg/min, p < 0.02).

Assuming serum total 25-(OH)D levels in the range of
30–50 ng/mL to be the physiological norm 17.5% (n = 7) of
athletes achieved this level. We found that 42.5% (n = 17) of the
participants had a total 25-(OH)D concentration of below 20 ng/
ml, which is defined as vitamin D deficiency (Table 1) (Pludowski
et al., 2018).

There was no statistical difference in vitamin D metabolites
[total 25-OH)D, 25-(OH)D3, 25-(OH)D2, 24,25-(OH)2D3, 3-epi-
25-(OH)D3, 1,25-(OH)2D3], VDBP, free 25-(OH)D (M1, M2),
and bioavailable 25-(OH)D between the indoor and outdoor
player group (Table 1).

Handgrip strength (L) was higher in judoists (p = 0.018) than
in football players. There were no changes observed between
groups for handgrip strength (R), vertical jump parameters, and
VO2max (Table 1).

Multiple regression analyses demonstrated association
between iPTH, Ca, ACa, and vitamin D metabolites, VDBP,
free (M1, M2), and bioavailable 25-(OH)D in both groups
with no intergroup differences.

We performed multiple regression analyses to explore possible
association between vitamin D metabolites and the athletic
performance parameters in indoor (Table 2) and outdoor
players (Table 3). Furthermore, we performed multiple
regression analysis also to determine relationship between
VDBP, free (M1, M2), bioavailable 25-(OH)D, and the
physical fitness tests for both groups (Table 4).

Table 2 presents the association of vitamin Dmetabolites with
athletic performance by multiple regression analyses in indoor
players. Multiple regression analysis demonstrated that total 25-
(OH)D, 24,25-(OH)2D3, and 3-epi-25-(OH)D3 were significantly
associated with jump height, peak velocity, peak power, RSImod,
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TABLE 2 | Association of athletic performance with vitamin D metabolites by multiple regression analyses* in indoor players (n = 16).

Physical fitness
test
variables

Total 25-(OH)D (ng/mL) 24,25-(OH)2D3 (ng/mL) 3-epi-25-(OH)D3 (ng/mL) 1,25(OH)2D (pg/ml)

ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value

VO2max

(ml/kg/min)
0.194 (−0.447–0.835) 0.55 0.173 (−0.470–0.817) 0.60 0.050 (−0.602–0.703) 0.88 −0.373 (−0.980–0.233) 0.23

Handgrip strength
L (kg)

0.456 (−0.010–0.923) 0.055 0.305 (−0.194–0.804) 0.23 0.615 (0.202–1.028) 0.004 −0.338 (−0.831–0.155) 0.18

Handgrip strength
R (kg)

0.461 (−0.003–0.926) 0.052 0.415 (−0.061–0.892) 0.088 0.612 (0.198–1.026) 0.004 −0.480 (−0.939–−0.020) 0.041

Jump height (cm) 0.540 (0.099–0.980) 0.016 0.550 (0.113–0.990) 0.014 0.701 (0.327–1.074) <0.001 −0.378 (−0.863–0.107) 0.13
Peak force (N) 0.287 (-0.214–0.789) 0.26 0.339 (-0.154–0.832) 0.18 0.460 (−0.005–0.925) 0.052 −0.339 (−0.832–0.153) 0.18
Peak velocity [m/s] 0.518 (0.070–0.970) 0.024 0.534 (0.092–0.980) 0.018 0.673 (0.286–1.060) <0.001 −0.421 (−0.896–0.054) 0.083
Peak power (W) 0.538 (0.096–0.980) 0.017 0.536 (0.094–0.980) 0.018 0.766 (0.430–1.103) <0.001 −0.393 (−0.875–0.089) 0.11
RSImod (m/s) 0.511 (0.060–0.960) 0.026 0.547 (0.108–0.990) 0.015 0.599 (0.179–1.018) 0.005 −0.302 (−0.802–0.197) 0.24
Peak force (N/kg) 0.153 (-0.365–0.670) 0.56 0.331 (-0.163–0.826) 0.19 0.108 (−0.413–0.628) 0.69 −0.339 (−0.832–0.154) 0.18
Peak
power (W/kg)

0.681 (0.298–1.065) <0.001 0.716 (0.350–1.081) <0.001 0.784 (0.459–1.109) <0.001 −0.477 (−0.938–−0.017) 0.042

Peak propulsive
force/kg (N/kg)

0.183 (-0.331–0.698) 0.48 0.372 (-0.115–0.858) 0.13 0.119 (−0.401–0.639) 0.65 −0.353 (−0.843–0.137) 0.16

AVG propulsive
force/kg (N/kg)

0.616 (0.203–1.029) 0.003 0.716 (0.350–1.082) <0.001 0.530 (0.086–0.970) 0.019 −0.376 (−0.862–0.109) 0.13

Peak propulsive
power/kg (W/kg)

0.686 (0.305–1.067) <0.001 0.725 (0.364–1.086) <0.001 0.776 (0.446–1.106) <0.001 −0.482 (−0.941–−0.023) 0.040

AVG propulsive
power/kg (W/kg)

0.631 (0.225–1.038) 0.002 0.719 (0.356–1.083) <0.001 0.703 (0.331–1.076) <0.001 −0.469 (−0.932–−0.007) 0.047

Statistically significant variables were adjusted for age, body mass, and body fat; ß, unstandardized coefficient; 95%CI, confidence interval; VDBP, vitamin D binding protein; VO2max,
maximal oxygen uptake; L, left; R, right; CMJ, countermovement vertical jump; AVG, average. Bold values are statistically significant.

TABLE 3 | Association of athletic performance with vitamin D metabolites by multiple regression analyses* in outdoor players (n = 24).

Total 25-(OH)D [ng/mL] 24,25-(OH)2D3 [ng/mL] 3-epi-25-(OH)D3 [ng/mL] 1,25(OH)2D [pg/mL]

Physical
fitness
test
variables

ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value

VO2max (ml/kg/min) 0.095 (−0.321–0.511) 0.66 0.232 (−0.174–0.638) 0.26 0.090 (−0.326–0.507) 0.67 −0.112 (−0.527–0.303) 0.60
Handgrip strength
L (kg)

−0.049 (−0.466–0.369) 0.82 −0.062 (−0.479–0.355) 0.77 0.061 (−0.356–0.478) 0.78 −0.152 (−0.565–0.261) 0.47

Handgrip strength
R (kg)

0.079 (−0.337–0.496) 0.71 0.113 (−0.302–0.528) 0.59 0.117 (−0.298–0.532) 0.58 −0.041 (−0.459–0.376) 0.85

Jump height (cm) 0.314 (−0.124–0.753) 0.16 0.265 (−0.180–0.711) 0.24 0.359 (−0.072–0.790) 0.10 −0.077 (−0.538–0.383) 0.74
Peak force (N) 0.339 (−0.096–0.774) 0.13 0.303 (−0.137–0.744) 0.18 0.444 (0.030–0.858) 0.035 −0.140 (−0.597–0.318) 0.55
Peak velocity (m/s) 0.276 (−0.168–0.720) 0.22 0.219 (−0.232–0.669) 0.34 0.331 (−0.105–0.767) 0.14 −0.087 (−0.548–0.373) 0.71
Peak power (W) 0.432 (0.015–0.848) 0.042 0.312 (−0.127–0.751) 0.16 0.492 (0.089–0.894) 0.017 −0.321 (−0.758–0.117) 0.15
RSImod (m/s) 0.264 (−0.182–0.709) 0.25 0.308 (−0.132–0.747) 0.17 0.229 (−0.221–0.678) 0.32 −0.058 (−0.519–0.403) 0.80
Peak force (N/kg) 0.118 (−0.341–0.577) 0.61 0.188 (−0.266–0.641) 0.42 0.311 (−0.128–0.750) 0.16 0.128 (−0.330–0.586) 0.58
Peak power (W/kg) 0.261 (−0.185–0.707) 0.25 0.203 (−0.250–0.655) 0.38 0.384 (−0.042–0.811) 0.08 −0.130 (−0.588–0.328) 0.58
Peak propulsive
force/kg (N/kg)

0.127 (−0.331–0.585) 0.59 0.191 (−0.263–0.644) 0.41 0.323 (−0.115–0.760) 0.15 0.119 (−0.340–0.578) 0.61

AVG propulsive
force/kg (N/kg)

0.337 (−0.098–0.772) 0.13 0.311 (-0.128–0.750) 0.17 0.475 (0.068–0.881) 0.022 -0.042 (-0.503–0.420) 0.86

Peak propulsive
power/kg (W/kg)

0.274 (-0.170–0.718) 0.23 0.214 (-0.237–0.665) 0.35 0.395 (−0.030–0.819) 0.07 −0.142 (−0.599–0.316) 0.54

AVG propulsive
power/kg (W/kg)

0.316 (−0.122–0.754) 0.16 0.260 (−0.186–0.706) 0.25 0.432 (0.016–0.849) 0.042 −0.029 (−0.491–0.433) 0.90

Statistically significant variables were adjusted for age, body mass, and body fat; ß, unstandardized coefficient; 95% CI, confidence interval; VDBP, vitamin D binding protein; VO2max,
maximal oxygen uptake; L, left; R, right; CMJ, countermovement vertical jump; AVG, average. Bold values are statistically significant.
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propulsive force, and power. There was also significant
correlation between 3-epi-25(OH)D3 and handgrip strength (L,
R). Multiple regression analysis indicated that 1,25(OH)2D
significantly associated with handgrip strength (R), peak
power, and propulsive power.

There was significant correlation between free 25-(OH)D (M1,
M2) and handgrip strength (L) in indoor players. Analysis
showed that free 25-(OH)D (M1,M2) and bioavailable 25-
(OH)D significantly associated with jump height, peak
velocity, power, RSImod, propulsive force, and power (Table 4).

In the group of outdoor players, multiple regression analysis
showed that peak power was significantly associated with serum
total 25-(OH)D and 3-epi-25-(OH)D3. The association between
peak force, propulsive force and power, and 3-epi-25-(OH)D3

was observed (Table 3).
Table 5 presents the association of VDBP, free (M1, M2), and

bioavailable 25-(OH)D with athletic performance by multiple
regression analyses in outdoor players. According to our results,

there was no significant correlation between VDBP, free (M1,
M2), bioavailable 25-(OH)D, and physical performance
parameters in outdoor athletes.

4 DISCUSSION

This study represents a picture of the entire set of vitamin D
metabolites in athletes. In this study, the enrolled athletes were
classified into two groups, train indoor and outdoor. The aim of
our study was to determine the relationship between metabolites
of vitamin D, VDBP, free, bioavailable 25-(OH)D, related blood
parameters (iPTH, Ca, and ACa), and physical fitness tests in
athletes.

Physical activity can affect vitamin D metabolism and, hence,
the final level of 25-(OH)D, main indicator of vitamin D status,
and the other metabolites, all having important physiological
roles. Further, it is possible that vitamin D metabolism is

TABLE 4 | Association of athletic performance with VDBP, free, and bioavailable 25-(OH)D concentration by multiple regression analyses* in indoor players (n = 16).

Physical
fitness test
variables

VDBP [µmol/L] Free 25-(OH)D M1 [pg/mL] Free 25-(OH)D M2 [pg/mL] Bioavailable 25-(OH)D [ng/mL]

ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value

VO2max

(ml/kg/min)
0.144 (−0.502–−0.791) 0.66 0.066 (−0.585–−0.718) 0.84 0.066 (−0.586–−0.718) 0.84 0.093 (−0.557–−0.744) 0.78

Handgrip
strength L (kg)

0.066 (−0.457–−0.589) 0.80 0.456 (−0.010–−0.922) 0.05 0.459 (−0.007–−0.924) 0.05 0.427 (−0.047–−0.901) 0.077

Handgrip
strength
R (kg)

0.154 (−0.363–−0.672) 0.56 0.425 (−0.050–−0.899) 0.079 0.429 (−0.044–−0.903) 0.075 0.404 (−0.075–−0.883) 0.10

Jump
height (cm)

−0.259 (−0.765–−0.247) 0.32 0.668 (0.278–−1.058) <0.001 0.670 (0.280–−1.059) <0.001 0.635 (0.230–−1.039) 0.002

Peak force (N) 0.274 (−0.230–−0.778) 0.29 0.227 (−0.283–−0.737) 0.38 0.235 (−0.274–−0.744) 0.37 0.179 (−0.336–−0.695) 0.50
Peak velocity
(m/s)

−0.230 (−0.740–−0.280) 0.38 0.633 (0.227–−1.038) 0.002 0.635 (0.230–−1.040) 0.002 0.596 (0.176–−1.017) 0.005

Peak
power (W)

0.091 (−0.431–−0.613) 0.73 0.562 (0.128–−0.995) 0.011 0.568 (0.137–−0.999) 0.010 0.524 (0.077–−0.97) 0.021

RSImod (m/s) −0.216 (−0.728–−0.295) 0.41 0.580 (0.154–−1.007) 0.008 0.581 (0.154–−1.007) 0.008 0.552 (0.115–−0.99) 0.013
Peak
force (N/kg)

−0.021 (−0.545–−0.503) 0.94 0.131 (−0.388–−0.650) 0.62 0.133 (−0.386–−0.653) 0.61 0.098 (−0.424–−0.619) 0.71

Peak
power (W/kg)

−0.183 (−0.698–−0.332) 0.49 0.773 (0.440–−1.105) <0.001 0.775 (0.444–−1.106) <0.001 0.750 (0.403–−1.096) <0.001

Peak
propulsive
force/kg
(N/kg)

−0.018 (−0.541–−0.506) 0.95 0.159 (−0.358–−0.676) 0.55 0.162 (−0.355–−0.679) 0.54 0.126 (−0.393–−0.646) 0.63

AVG
propulsive
force/kg
(N/kg)

−0.042 (−0.565–−0.481) 0.88 0.612 (0.198–−1.026) 0.004 0.614 (0.200–−1.027) 0.004 0.602 (0.184–−1.020) 0.005

Peak
propulsive
power/kg
(W/kg)

−0.170 (−0.686–−0.346) 0.52 0.773 (0.440–−1.105) <0.001 0.775 (0.444–−1.106) <0.001 0.751 (0.405–−1.097) <0.001

AVG
propulsive
power/kg
(W/kg)

−0.195 (−0.709–−0.319) 0.46 0.713 (0.346–−1.080) <0.001 0.716 (0.350–−1.082) <0.001 0.683 (0.300–−1.065) <0.001

*Statistically significant variables were adjusted for age, body mass, and body fat; ß, unstandardized coefficient; 95% CI, confidence interval; VDBP, vitamin D binding protein; VO2max,
maximal oxygen uptake; L, left; R, right; CMJ, countermovement vertical jump; AVG, average; M1, equations by Bikle et al. (1986); M2, equations by Vermeulen et al. (1999). Bold values
are statistically significant.
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differently affected by different kinds of physical activity (in terms
of muscle action and sun exposure). Thereby, it is interesting to
compare these two situations.

Skeletal muscles express, other than the VDR, CYP27B1 (the
gene encoding for 1alpha-hydroxylase, the enzyme that
hydroxylates 25-(OH)D into 1,25-(OH)2D. Therefore, skeletal
muscles are able to activate vitamin D (Latham et al., 2021).
Although the biological relevance of the expression of this
enzymatic activity is not well defined, it has been hypothesized
that it is related to mitochondrial function and muscle
regeneration, at least in rodents (Latham et al., 2021). Further,
1alpha-hydroxylase expression is decreased in denervation, in
rats (Mori et al., 2020), while it is increased in muscle biopsies
from amyotrophic lateral sclerosis patients (Si et al., 2020).
Therefore, although the unclear mechanisms underlying its
regulation, evidences suggest a direct connection between the
muscle activity and vitamin D metabolism.

We showed that in the group of indoor judoists there was a
significant correlation between total 25-(OH)D and vertical jump

parameters (jump height, peak velocity, peak power, RSImod, and
propulsive force and power). The relationship between total 25-
(OH)D and physical performance levels of male athletes has been
described in several studies (Fitzgerald et al., 2015; Kim et al.,
2020; Most et al., 2021). Our study also showed the relationship
between 24,25-(OH)2D3, 3-epi-25-(OH)D3, 1,25-(OH)2D, and
vertical jump variables in indoor players. A small number of
studies have assessed correlations between serum concentrations
of 1,25-(OH)2D. Other vitamin D metabolites such as 24,25-
(OH)2D3 and 3-epi-25-(OH)D3 have not been previously studied
in relation to physical performance in athletes. Hassan-Smith
et al. (2017) observed a statistically significant association
between 1,25-(OH)2D and jump height-peak power in a group
of 116 healthy human volunteers (79 women and 37 men; aged
20 ± 74 years). The authors demonstrated that 25-(OH)D3 and
24,25-(OH)2D3 were associated with efficiency (a measure of the
relationship between maximum jump force and power, with the
less force required to generate the same power, the more efficient
the jump) in the studied group (Hassan-Smith et al., 2017). 24,25-

TABLE 5 | Association of athletic performance with VDBP, free, and bioavailable 25-(OH)D concentration by multiple regression analyses* in outdoor players (n = 24).

Physical
fitness test
variables

VDBP [µmol/L] Free 25-(OH)D M1 [pg/mL] Free 25-(OH)D M2 [pg/mL] Bioavailable 25-(OH)D [ng/mL]

ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value ß (95% CI) p-value

VO2max

(ml/kg/min)
−0.141 (−0.565–−0.282) 0.51 0.073 (−0.353–−0.500) 0.74 0.072 (−0.354–−0.499) 0.74 0.069 (−0.358–−0.496) 0.75

Handgrip
strength L (kg)

−0.282 (−0.692–−0.129) 0.18 0.135 (−0.289–−0.559) 0.53 0.131 (−0.293–−0.555) 0.54 0.141 (−0.283–−0.564) 0.51

Handgrip
strength
R (kg)

0.021 (−0.407–−0.448) 0.92 0.079 (−0.348–−0.505) 0.72 0.079 (−0.348–−0.505) 0.72 0.096 (−0.330–−0.521) 0.66

Jump
height (cm)

0.160 (−0.309–−0.629) 0.50 0.201 (−0.265–−0.666) 0.40 0.203 (−0.263–−0.668) 0.39 0.185 (−0.282–−0.652) 0.44

Peak force (N) −0.133 (−0.604–−0.338) 0.58 0.289 (−0.166–−0.744) 0.21 0.289 (−0.166–−0.744) 0.21 0.246 (−0.214–−0.707) 0.29
Peak velocity
(m/s)

0.158 (−0.311–−0.628) 0.51 0.186 (−0.281–−0.653) 0.44 0.187 (−0.280–−0.654) 0.43 0.171 (−0.298–−0.639) 0.48

Peak
power (W)

−0.064 (−0.539–−0.410) 0.79 0.356 (−0.089–−0.800) 0.12 0.356 (−0.089–−0.800) 0.12 0.319 (−0.132–−0.769) 0.17

RSImod (m/s) −0.038 (−0.513–−0.437) 0.88 0.232 (−0.231–−0.694) 0.33 0.233 (−0.229–−0.695) 0.32 0.238 (−0.224–−0.700) 0.31
Peak
force (N/kg)

−0.016 (−0.492–−0.459) 0.95 0.089 (−0.385–−0.562) 0.71 0.090 (−0.383–−0.564) 0.71 0.088 (−0.386–−0.561) 0.72

Peak
power (W/kg)

0.021 (−0.455–−0.496) 0.93 0.222 (−0.241–−0.686) 0.35 0.223 (−0.240–−0.686) 0.35 0.217 (−0.247–−0.681) 0.36

Peak
propulsive
force/kg
[N/kg]

−0.040 (−0.515–−0.435) 0.87 0.106 (−0.367–−0.578) 0.66 0.107 (−0.365–−0.580) 0.66 0.104 (−0.369–−0.577) 0.67

AVG
propulsive
force/kg
[N/kg]

−0.087 (−0.561–−0.386) 0.72 0.298 (−0.155–−0.752) 0.20 0.299 (−0.154–−0.753) 0.20 0.303 (−0.150–−0.756) 0.19

Peak
propulsive
power/kg
(W/kg)

−0.141 (−0.565–−0.282) 0.96 0.235 (−0.227–−0.697) 0.32 0.236 (−0.226–−0.698) 0.32 0.231 (−0.231–−0.694) 0.33

AVG
propulsive
power/kg
(W/kg)

−0.282 (−0.692–−0.129) 0.82 0.231 (−0.232–−0.693) 0.33 0.233 (−0.230–−0.695) 0.32 0.224 (−0.239–−0.687) 0.34

Statistically significant variables were adjusted for age, body mass, and body fat; ß, unstandardized coefficient; 95% CI, confidence interval; VDBP, vitamin D binding protein; VO2max,
maximal oxygen uptake; L, left; R, right; CMJ, countermovement vertical jump; AVG, average; M1, equations by Bikle et al. (1986); M2, equations by Vermeulen et al. (1999).
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(OH)2D3 is not considered to be physiologically active although
studies involving animal models demonstrated that it plays an
important role in normal bone integrity, function, and healing
(Seo et al., 1997; Nemere et al., 2006).

We showed that in the group of outdoor players there was a
significant association between serum total 25-(OH)D and peak
power. Other studies demonstrated a positive association between
25-(OH)D levels and jump height in male soccer players
(Koundourakis et al., 2014) and university-level outdoor
athletes (Wilson-Barnes et al., 2020). We also showed the
association between 3-epi-25-(OH)D3 and peak power, force,
propulsive force, and power in outdoor athletes. Mieszkowski
et al. (2020) demonstrated that serum 25-(OH)D3, 24,25-
(OH)2D3, and 3-epi-25-(OH)D3 levels significantly increased
after the ultra-marathon in control and supplemented group.
C-3 epimerization is a common metabolic pathway of major
metabolites of vitamin D3. 25-(OH)D3 undergoes epimerization,
and 3-epi-25-(OH)D3 is the most prevalent form (Singh et al.,
2006). The biological function of 3-epi-25-(OH)D3 is not well
understood. To the best of our knowledge, this is the first paper
reporting relationship between physical performance indicators
and 24,25-(OH)2D3, 3-epi-25-(OH)D3 levels in athletes.
Therefore, it is pivotal to study the effects of vitamin D
metabolites’ action on skeletal muscle function in relation to
athletic performance.

The free hormone hypothesis postulates that only the non-
bound fraction (the free fraction) of hormones, which otherwise
circulate in blood bound to their carrier proteins, is able to enter
the cells and to exert their biologic effects (Bikle and Schwartz,
2019). Studies suggest that some functions of vitamin D may be
more closely related to the free or bioavailable fraction of vitamin
D than to total serum 25-(OH)D concentrations (Bikle et al.,
2017; Owens et al., 2018).

Therefore, we considered whether the free fraction of 25-
(OH)D correlates with musculoskeletal functions in relation to
physical performance in athletes. To the best of our knowledge,
there are no studies designed to assess VDBP, free, and
bioavailable vitamin D status in athletes and its correlation
to athletic performance. The impact of vitamin D on muscle
strength, especially lower muscle strength in athletes, was
evident in most studies (Hamilton et al., 2014;
Koundourakis et al., 2014; Książek et al., 2016; Książek
et al., 2018) and was physiologically explained by different
vitamin D receptor expressions in various muscle groups
(Bischoff et al., 2001; Hassan-Smith et al., 2017). Vitamin D
affects the number and diameter of type II muscle fibers, which
mainly regulate the ability to perform short high-power
exercises (Dzik and Kaczor, 2019). Therefore, we used a
vertical jump to check athletic performance in studied
groups. A vertical jump is one of the essential motor skills
that requires complex motor coordination, and it has been
identified as one of the fundamental movement skills.
Therefore, vertical jump test is used to evaluate simple
lower limb muscular strength and complex tasks, such as
sprint deceleration, sprint acceleration, throwing, and
change of direction (Petrigna et al., 2019), which reflect
physical effort during judo and football match.

We demonstrated associations between free and bioavailable
25-(OH)D levels and aspects of physical performance (handgrip
strength L, vertical jump variables); this was, however, only
observed within the indoor group. The differences in the
obtained result between indoor and outdoor athletes may be
due to the baseline individual training profile, different kinds of
physical effort related to sport discipline, and hence activation
of different muscle groups. This might explain the lack of
significant association between VDBP, free, bioavailable 25-
(OH)D, and physical performance variables in our outdoor
players.

As a homeostatic perturbation, exercise and training affects
calcium metabolism. Thereby, the measurement of PTH and
calcium is relevant to assess the athlete’s health status as well as to
contextualize the change observed in vitamin D metabolites
(Lombardi et al., 2020). The results of our study showed that
iPTH, Ca, and ACa were associated with and vitamin D
metabolites, VDBP, free and bioavailable 25-(OH)D in both
groups. However, we did not find differences in these
associations between indoor and outdoor athletes. However,
studies in this field are limited. In a recent study conducted at
the British university athletes, we compared the seasonal effects
(fall vs spring) of discipline, specific training, either indoors or
outdoors on bone indices, and vitamin D status. Seasonal
variation of serum 25-(OH)D was found independent from
training modality (indoor vs outdoor) and PTH resulted
negatively associated with the vitamin D status in the
combined groups, indoor group, and more significant in the
outdoor group during the spring term (Wilson-Barnes et al.,
2020). In military recruits, a 32-week training program reduced
vitamin D status (25-(OH)D < 50 nmol/L) and enhanced
concentrations of PTH associated with the occurrence of stress
fractures (Davey et al., 2016). Similarly to our study, instead, PTH
resulted unaffected by an 8-week repeated sprint training regimen
in young active men (Sansoni et al., 2018) and by 13 weeks of
military training (O’Leary et al., 2019), despite the changes in
bone indexes.

4.1 Limitations and Strengths of the Study
Some limitations should be considered when evaluating the
result of this analysis: first, the limited sample size, so further
research on a larger group of athletes is needed, and second,
there was a lack of a non-sportive control group. Furthermore,
our data are associational and no causal links between the
vitamin D metabolites and physical performance can be drawn
from this study. A notable strength of our investigation is,
instead, the homogeneity within each cohort of experienced
male athletes sharing the same age and anthropometry. We
performed blood drawing and physical performance test in the
same period (within two weeks) for both cohorts and strong
pre-analytical phase.

5 CONCLUSION

Our study showed a significant correlation between vitamin D
metabolites [total 25-(OH)D, 24,25-(OH)2D3, 3-epi-25-(OH)D3,
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and 1,25-(OH)2D] and handgrip strength and vertical jump
variables in indoor players. It also showed a significant
association between 3-epi-25-(OH)D3 and vertical jump
parameters in outdoor players. The results of our study
demonstrated the relationship between free, bioavailable 25-
(OH)D, and vertical jump variables only in the group of
indoor players.

In conclusion, this is the first study demonstrating the
relationship between vitamin D metabolites, free and
bioavailable 25-(OH)D, and physical performance in athletes.
These observations imply that vitamin D metabolites might be
involved in skeletal muscle function. However, more work is
needed to explore the role of vitamin D metabolites in relation to
athletic performance.
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