
EEG artifact removal using
sub-space decomposition,
nonlinear dynamics, stationary
wavelet transform and machine
learning algorithms

Morteza Zangeneh Soroush1,2,3,4,5,6*, Parisa Tahvilian4,5,
Mohammad Hossein Nasirpour7, Keivan Maghooli4,5,
Khosro Sadeghniiat-Haghighi1,8, Sepide Vahid Harandi9,
Zeinab Abdollahi10, Ali Ghazizadeh2,3 and
Nader Jafarnia Dabanloo4,5

1Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences,
Tehran, Iran, 2School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM,
Tehran, Iran, 3Bio-Intelligence Research Unit, Electrical Engineering Department, Sharif University of
Technology, Tehran, Iran, 4Department of Biomedical Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran, 5Engineering Research Center in Medicine and Biology, Science
and Research Branch, Islamic Azad University, Tehran, Iran, 6Department of Clinical Neuroscience,
Mahdiyeh Clinic, Tehran, Iran, 7Department of Medical Genetics, Institute of Medical Biotechnology,
National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran, 8Sleep Breathing
Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran, 9Department of
Psychology, Islamic Azad University, Najafabad Branch, Najafabad, Iran, 10Department of Electrical and
Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran

Blind source separation (BSS) methods have received a great deal of attention in

electroencephalogram (EEG) artifact elimination as they are routine and

standard signal processing tools to remove artifacts and reserve desired

neural information. On the other hand, a classifier should follow BSS

methods to automatically identify artifactual sources and remove them in

the following steps. In addition, removing all detected artifactual

components leads to loss of information since some desired information

related to neural activity leaks to these sources. So, an approach should be

employed to detect and suppress the artifacts and reserve neural activity. This

study introduces a novel method based on EEG and Poincare planes in the

phase space to detect artifactual components estimated by second-order blind

identification (SOBI). Artifacts are detected using a mixture of well-known

conventional classifiers and were removed employing stationary wavelet

transform (SWT) to reserve neural information. The proposed method is a

combination of signal processing techniques and machine learning

algorithms, including multi-layer perceptron (MLP), K-nearest neighbor

(KNN), naïve Bayes, and support vector machine (SVM) which have

significant results while applying our proposed method to different

scenarios. Simulated, semi-simulated, and real EEG signals are employed to

evaluate the proposed method, and several evaluation criteria are calculated.

We achieved acceptable results, for example, 98% average accuracy and 97%

average sensitivity in artifactual EEG component detection or about 2% asmean
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square error in EEG reconstruction after artifact removal. Results showed that

the proposed method is effective and can be used in future studies as we have

considered different real-world scenarios to evaluate it.

KEYWORDS

EEG artifact removal, source separation, phase space reconstruction, noise reduction,
subspace decomposition, stationary wavelet transform

1 Introduction

EEGs containing brain electrical activity have become

effective in different applications in all fields of science. These

nonlinear and non-stationary signals can be employed to study

the cognitive states or to diagnose mental disorders (Sanei and

Chambers, 2007; Islam et al., 2016; Romo Vázquez et al., 2012;

Klemm et al., 2009; Croft and Barry, 2000; Lagerlund et al., 1997;

Li et al., 2006; Senthilkumar, 2008; Mumtaz et al., 2021; Yang

et al., 2018; Cao et al., 2015; Rahman et al., 2015; Sai et al., 2018;

Rodr´ıguez-Berm´udez and Garcia-Laencina, 2015; Mahajan

and Morshed, 2015; Shoker et al., 2005; Jung et al., 2000;

Vorobyov and Cichocki, 2002; Belouchrani et al., 1997;

Delorme and Makeig, 2004; Min and Luo, 2009).

Unfortunately, in most practical settings, EEGs are usually

corrupted by environmental and physiological signals called

EEG artifacts. Biological artifacts, including electromyogram

(EMG), electrocardiogram (ECG), electrooculogram (EOG),

eye blinking artifact, etc., levitate from non-cerebral sources in

the human body. In contrast, environmental artifacts arise from

external sources such as power line transmission, electric motors,

electrode movement and etc., (Sai et al., 2018). Both types

interfere with EEG signals easily and make interpretation and

diagnosis difficult. Non-physiological artifacts are precluded by

most EEG recording devices but biological artifacts like EMG and

EOG still remain and need to be eliminated. This fact motivates

us to propose a new method to reduce biological artifacts as

interpreting corrupted EEGs is of great importance. Needless to

say, artifact removal and noise suppression are inseparable parts

in biological signal processing, and the more effective the

methods are the more accurate the results will be. Therefore,

there are several methods to deal with corrupted EEGs, such as

linear filtering, autoregressive modeling, adaptive filters, blind

source separation (BSS) based methods, wavelet transforms,

principal component analysis (PCA) and etc., (Lagerlund

et al., 1997; Croft and Barry, 2000; Li et al., 2006; Sanei and

Chambers, 2007; Senthilkumar, 2008; Klemm et al., 2009; Romo

Vázquez et al., 2012; Islam et al., 2016). Conventional methods

like linear filters are not effective due to inherent overlap between

artifacts and cerebral activity in the frequency domain (Sai et al.,

2018; Rodr´ıguez-Berm´udez and Garcia-Laencina, 2015;

Mahajan and Morshed, 2015; Shoker et al., 2005). BSS-based

methods have been receiving a great deal of attention since they

isolate artifacts into independent components (ICs) using

subspace filtering (Sai et al., 2018). Second order blind

identification (SOBI) algorithm, which is widely used in EEG

preprocessing applications, utilizes the original EEG and time-

shifted version(s) to exploit temporal information and estimate

uncorrelated components (Cao et al., 2015; Rahman et al., 2015;

Yang et al., 2018). BSS-based artifact removal consists of three

major steps: 1) applying the source separation method, 2) source

identification and artifact removal, and 3) channel

reconstruction using a mixing matrix and remaining sources.

Based on the previous experimental and analytical studies, these

methods are useful tools in EEG artifact removal (Klemm et al.,

2009; Romo Vázquez et al., 2012; Islam et al., 2016). Different

articles have concluded that independent component analysis

(ICA), introduced as a noise suppression tool for the first time in

(Vorobyov and Cichocki, 2002), is one of the most robust

methods in artifact elimination but is not very time fast.

Among different BSS-based methods, second-order blind

identification (SOBI) is reportedly one of the most effective

methods and, at the same time, simple and practical. SOBI

has been employed to remove artifacts in several studies.

Several authors have found SOBI the most reliable and widely

used approach (Lagerlund et al., 1997; Croft and Barry, 2000; Li

et al., 2006; Ng and Raveendran, 2009; Klemm et al., 2009; Romo

Vázquez et al., 2012; Sweeney et al., 2013; Islam et al., 2016).

Several toolboxes like EEGLAB (Delorme and Makeig, 2004)

have implemented SOBI due to its wide usage and efficiency.

SOBI has been known as a superior method in comparison with

ICA and most BSS methods. It should be noted that SOBI and

other similar artifact removal methods in this family have their

own shortcomings, which will be discussed later in this paper.

Considering the advantages and disadvantages and also our

application, we decided to use SOBI in this study to extract

EEG sources. More detailed information about SOBI is brought

in the following sections. To achieve reliable results, extracted

sources should be identified to eliminate artifacts. Sources used to

be visually identified by experts but this method often leads to

insufficient EEG data for further analysis. Moreover, the origin of

the artifacts is sometimes unknown. Thus source identification

should be applied to achieve reliable neural sources. Manual

identification methods are time-consuming and expensive.

Researchers have proposed automated methods to identify

extracted sources (Cao et al., 2015; Rahman et al., 2015; Yang

et al., 2018). Mostly, sources are identified by classifiers using

extracted features (Sai et al., 2018; Mumtaz et al., 2021). Since

EEG is complex and chaotic, nonlinear analysis seems to be more

successful in EEG artifact removal (Rodr´ıguez-Berm´udez and
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Garcia-Laencina, 2015). This motivates us to examine the phase

space (of the extracted EEG sources) which is one of the most

primitive EEG nonlinear analysis methods to identify extracted

EEG sources and classify them into two groups containing neural

sources and artifactual ones (Goshvarpour et al., 2016; Zangeneh

Soroush et al., 2017; Zangeneh Soroush et al., 2018a; Zangeneh

Soroush et al., 2018b; Zangeneh Soroush et al., 2018c; Zangeneh

Soroush et al., 2018d; Zangeneh Soroush et al., 2019a; Zangeneh

Soroush et al., 2019b; Zangeneh Soroush et al., 2020; Zangeneh

Soroush, 2021). We introduce a new state space extracted from

the EEG phase space. This new space is based on the angle values

between points in the phase space and is called angle space (AS),

resulting in a graphical illustration named angle plot (AP).

Moreover, Poincare planes are effective to describe

nonlinear signals (Belouchrani et al., 1997; Richman and

Moorman, 2000; Seppänen et al., 2015; Sharma et al., 2015;

Taskinen et al., 2016). So, Poincare planes are employed to

quantify the APs. Extracted features from Poincare

intersections are normalized, and then sources are classified

using conventional classifiers such as multilayer perceptron

(MLP) neural network, K nearest neighbor (KNN), Bayes and

support vector machines (SVM). We also apply the ensemble of

these classifiers to improve our classification results. Identified

artifactual sources are fed into the artifact removal procedure

using stationary wavelet transform (SWT). Several studies have

claimed the advantages of SWT due to its ability to process non-

stationary and nonlinear signals (Richman and Moorman,

2000). We employ SWT to prevent data loss since there is

always information leakage to artifact components while using

BSS methods. SWT can keep cerebral activity to a great extent

compared to other wavelet transformations such as discrete

wavelet transform (DWT) and continuous wavelet transform

(CWT) (Romo Vázquez et al., 2012; Klemm et al., 2009; Croft

and Barry, 2000; Lagerlund et al., 1997; Li et al., 2006;

Senthilkumar, 2008; Mumtaz et al., 2021; Yang et al., 2018;

Cao et al., 2015; Rahman et al., 2015; Sai et al., 2018;

Rodr´ıguez-Berm´udez and Garcia-Laencina, 2015; Mahajan

and Morshed, 2015; Shoker et al., 2005; Jung et al., 2000;

Vorobyov and Cichocki, 2002; Belouchrani et al., 1997;

Delorme and Makeig, 2004). Remained components are used

to reconstruct the “clean” EEG. Not only is this method able to

verify sources precisely, but it also can suppress artifacts

effectively. Figure 1 shows the block diagram of the

suggested method. Contaminated EEGs are separated into

sources via the SOBI algorithm. Estimated sources are

reconstructed in phase space. Reconstructed phase space is

transferred into a new space called Angle Space (AS), and

some quantifiers such as Poincare intersections are defined

to describe phase space dynamics mathematically. Extracted

features are fed into basic classifiers to identify sources. Real

and simulated signals and artifacts are used in this study to

assess the performance of the suggested method. Different

criteria like classification performance (CP), relative

root-mean-square error (RRMSE), Correlation Analysis

(CA), and average mutual information (AMI) are defined to

evaluate this method. Results show that the proposed method is

successful.

This paper is organized as follows: “Section 2” represents

material and methods. In “Section 3” you can find results.

“Section 4” is dedicated to the discussion, and finally, the

paper is concluded in “Section 5”.

2 Materials and methods

2.1 Blind source separation and second-
order blind identification

BSS makes an effort to solve Eq. 1.

FIGURE 1
The block diagram of the proposed method.
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X(t) � AS(t) (1)
Where X(t) � {x1(t). . . . . xN(t)} and S(t) � {s1(t). . . . . sM(t)}
represent observation signals forN channels (e.g., EEGs) andM

estimated sources, respectively. A is called the mixing matrix and

has the size of NpM. In this model, EEGs are considered an

instantaneous linear mixture of sources through an unknown

mixing matrix of A (Wam et al., 2004).

SOBI algorithm is based on second-order statistics, and

consists of two main stages 1) signals (i.e., EEGs): are zero-

meaned, and whitening process is performed, and 2) a set of

covariance matrices is constructed (Belouchrani et al. (1997)

proposed SOBI for extracting correlated sources based on joint

approximate diagonalization of a random set of time-lagged

covariance matrices. The covariance matrix is defined based

on Eq. 2.

R(qj) � 1
C
∑ �X(t) �XT(t − qj) (2)

Where �X(t) and �XT(t − p) are zero-meaned and time-delayed

signals, respectively and q indicates time lags which are chosen as

a set of different values instead of a single time lag to improve the

time-efficiency of SOBI. C is the number of considered time lags.

Sources are supposed to be mutually uncorrelated and stationary.

Reportedly, SOBI is capable of functionally separating sources

which are physiologically interpretable (Vigário and Oja, 2000;

Tang et al., 2002a; Tang et al., 2002b; Jug et al., 2021). SOBI is

robust in low SNRs (Belouchrani et al., 1993; Cardoso and

Souloumiac, 1996; Tang et al., 2002b; Wam et al., 2004;

Goshvarpour et al., 2016; Zangeneh Soroush, 2021). Since

SOBI is iterative, it is found to be one of the fastest

algorithms, compared to previous methods such as ICA,

compared with other BSS methods (Wam et al., 2004). It

should be mentioned that recently other versions of BSS

methods such as canonical correlation analysis (CCA) have

been introduced and are faster than SOBI; however, their

performance in EEG artifact removal is not higher in all cases.

Compared to ICA, SOBI relies on a second-order statistical

analysis of signals while ICA is based on higher-order

statistics, which means ICA is more time-consuming,

complex, and laborious (Zangeneh Soroush, 2021). These

features suggest that the SOBI method of source separation is

effective (Belouchrani et al., 1993; Cardoso and Souloumiac,

1996; Goshvarpour et al., 2016). These characteristics

motivated us to use SOBI in this study.

2.2 Phase space and angle space
reconstruction

Phase space reconstruction (PSR), has become a useful tool in

nonlinear signal processing in numerous studies (Zangeneh

Soroush et al., 2017; Zangeneh Soroush et al., 2018a;

Zangeneh Soroush et al., 2018b; Zangeneh Soroush et al.,

2018c; Zangeneh Soroush et al., 2018d; Zangeneh Soroush

et al., 2019a; Zangeneh Soroush et al., 2019b; Zangeneh

Soroush et al., 2020; Zangeneh Soroush, 2021). This robust

analysis introduces a new transformation and several

characteristics of a given signal by retaining signals’

magnitude and phase information. This motivated us to study

these characteristics with the goal of automated source

identification. Phase space includes state vectors describing the

signal. There are several ways to reconstruct the phase space of a

signal. Reviewing previous studies, we turn to the most common

method, time delay embedding (Zangeneh Soroush et al., 2018b;

Zangeneh Soroush et al., 2019b). Suppose that v(t) is a signal

withK time samples. We can reconstructK − d + 1 vectors in the

phase space as:

V(i) � [v(i + T) v(i + 2τ) . . . v(i + (d − 1)τ)]
i � 1.2. . . . .K − (d − 1) (3)

Where d and τ are the embedding dimension and time delay,

respectively. d and τ are important parameters while

reconstructing phase space (Zangeneh Soroush et al., 2018a;

Zangeneh Soroush et al., 2019a). Based on previous studies,

the value of d is chosen as two, and τ is 0.2-times the

standard deviation of the signal (Zangeneh Soroush et al.,

2017; Zangeneh Soroush et al., 2018a; Zangeneh Soroush

et al., 2018b).

2.3 Angle space reconstruction

Having reconstructed the phase space of the signal, we

consider the angle between each three points (in row) as a

geometrical characteristic of the phase space. In other words,

each line connecting points in the phase space is considered a

vector. The angles between vectors and also the vector length are

calculated in order to transform the phase space into a new state

space called angle space (AS) (Zangeneh Soroush et al., 2017;

Zangeneh Soroush et al., 2018a; Zangeneh Soroush et al., 2018b;

Zangeneh Soroush et al., 2018c; Zangeneh Soroush et al., 2018d;

Zangeneh Soroush et al., 2019a; Zangeneh Soroush et al., 2019b;

Zangeneh Soroush et al., 2020; Zangeneh Soroush, 2021). Angle

space reconstruction leads to two sequences of angle values (AV)

and vector lengths (VL) which contain valuable information

about the underlying signal. Vector length is set to the unit for all

points in AS to achieve AP. Therefore, we suppose the vector

length is equal to one, and all angle values are transferred to the

X-Y coordination on the unit circle to study angle space and its

dynamics. Here, we just consider the angle values on the unit

circle (r � 1) called angle plot (AP). It can be considered a new

representation of a signal (Zangeneh Soroush et al., 2018b).

Different features are defined and then extracted from this

new representation.
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2.4 Feature extraction based on AP and
poincare planes

2.4.1 Poincare plane
Poincare sections are considered a geometrical description of

state space. Poincare planes (PPs) are defined in one dimensional

less than the corresponding state space. PPs enable us to analyze

signal trajectories and transitions. Choosing appropriate PPs is of

a great deal of importance. Thanks to suitable PPs, maximum

information about system dynamics and changes is transferred

and also down-sampled (Sharma et al., 2015). Having reviewed

previous studies, we came to a conclusion to employ five

suggested PPs (Takens et al., 1981; Acharya et al., 2012; Lee

et al., 2014; Fang et al., 2015; Sharma et al., 2015; Sadeghi

Bajestani et al., 2017). We call these five sections PP1 to PP5.

Table 1 represents the Poincare planes we used in this study and

the abbreviations.

As mentioned before, features are extracted based on AP

and the proposed Poincare planes. Statistical features

containing mean, variance, skewness, and kurtosis are

extracted from AP. Features employed for source

identification are explained in Table 2. Statistical features

including average, variance, skewness, and kurtosis of the

angle values are extracted. The number of intersections (for

each PP) is also considered a feature.

2.5 Classification

K-nearest-neighbor (KNN), Naïve Bayes, support vector

machine (SVM), and multi-layer-perceptron (MLP) are four

basic and standard classifiers that generate immense interest in

numerous studies in different fields. They are employed in this

paper to have a more comprehensive study. We used 10-fold

cross-validation to evaluate our classifiers using average EEG

source classification accuracy. KNN classifies unknown input

data according to the K closest training samples. The parameter

K is the main factor in this classifier. We took a trial-and-error

approach to determine the best value for K, which is 20 in this

study. KNN is very effective while samples have spherical

distribution is the feature space because it classifies samples

based on the distances and nearest neighbors. MLP is a fully-

connected neural network with input, hidden, and output

layers. Each layer consists of several neurons connected via

weights, which are determined through the learning process.

The number of neurons in the input layer is equal to the number

of features, while the number of neurons in the hidden and

output layer is variable and should be defined with respect to

the application and data. We took a trial-and-error approach to

determine the number of neurons in the only hidden layer. It

was determined as 10 in this study. The number of neurons in

the output layer was equal to the number of classes. We

employed the Levenberg-Marquart learning algorithm to

train our MLP classifier and adjust its weights. Naïve Bayes

is the third classifier we employed in this project. We take

advantage of the Bayesian classifier’s properties in minimizing

the classification error based on probability density functions of

training samples. Bayes provides us with a decision boundary in

the probability density functions to classify an unknown given

test data. SVM uses the training data to identify support vectors

which are the closest training samples from different classes and

can determine the decision boundary. We used the original

SVM with a linear kernel (decision boundary). SVM has been

approved as an effective classifier since it is less affected by the

size of the training data, compared to other classifiers such as

TABLE 1 Poincare planes used in this study.

# Abbreviation Description

1 PP1 X axis

2 PP2 Y axis

3 PP3 Diagonal line (first and third quadrant bisector)

4 PP4 Perpendicular to diagonal line (second and fourth quadrant bisector)

5 PP5 Circular plane with the radius of r � 0.001

TABLE 2 Extracted features from AP and PPs for source identification.

# Feature description Abbreviation

1 Average of angle values AveAP

2 Variance of angle values VaAP

3 Skewness of angle values SkAP

4 Kurtosis of angle values KuAP

5 Median of angle values MeAP

6 Shannon’s entropy of angle values ShAP

7 Length of the angle time series LeAP

8 Number of intersections with PP1 NPP1

9 Number of intersections with PP2 NPP2

10 Number of intersections with PP3 NPP3

11 Number of intersections with PP4 NPP4

12 Number of intersections with PP5 NPP5

Results show that these features are significant. These features are extracted from each

source. Source Identification is performed based on these features.
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MLP. These classifiers are explained precisely in other works

like (Cardoso and Souloumiac, 1996; Goshvarpour et al., 2016;

Zangeneh Soroush et al., 2017; Zangeneh Soroush et al., 2018a;

Zangeneh Soroush et al., 2018b; Zangeneh Soroush et al., 2018c;

Zangeneh Soroush et al., 2018d; Zangeneh Soroush et al., 2019a;

Zangeneh Soroush et al., 2019b; Zangeneh Soroush et al., 2020;

Zangeneh Soroush, 2021), so we avoid reviewing them here.

Since source recognition is part of this study, we report

classification accuracy for these conventional classifiers to

compare the results.

2.6 Wavelet-based artifact removal

Different algorithms can be taken into account to remove

artifacts. One can set artifactual components to zero, which is

not very practical since neural information is very possible to

leak into these components. So, ignoring all artifactual sources

might lead to information loss. Although this approach seems

to be very simple, it leads to significant distortion in

reconstructed EEGs. On the other hand, a well-known

algorithm to suppress artifacts is decomposing artifactual

components by wavelet transform. Decomposed sub-bands

are denoised by thresholding (Yang et al., 2018). Several

studies have suggested wavelets including discrete wavelet

transform (DWT), continuous wavelet transform (CWT),

or stationary wavelet transform (SWT) with the aim of

artifact elimination (Castellanos and Makarov, 2006;

Hoffmann and Falkenstein, 2008; Hamaneh et al., 2014).

As it is stated in (Coifman and Donoho, 1994; Hoffmann

and Falkenstein, 2008; Ng and Raveendran, 2009; Yang et al.,

2018), SWT is superior to DWT and CWT in removing

biological artifacts. Additionally, SWT is translation-

invariant, suggesting its superiority to DWT while

removing biological artifacts. According to the results in

(Hoffmann and Falkenstein, 2008), we employ SWT to

denoise detected artifactual components. Figure 2

represents the block diagram of the suggested artifact

removal approach using SWT.

We decided to use Haar wavelet because of its advantages in

comparison with other wavelet basis functions, five levels of

decompositions, and soft thresholding, as suggested in

(Hoffmann and Falkenstein, 2008). Wavelet analysis results in

obtaining approximations and details corresponding to strong

artifacts and cerebral information, respectively. Artifactual

sources are decomposed, and sub-bands are taken into the

thresholding step since, in this application, approximations

correspond to artifacts, and obviously, details pertaining to

cerebral activity. So we apply soft thresholding to remove

small values in details. Inverse SWT is applied to

approximation and thresholded details to achieve artifacts-

only signals. Then the reconstructed artifacts are subtracted

from the original signal to have clean EEGs. By thresholding,

small values of leaked EEGs would be removed, and

consequently, artifact-only components could be

reconstructed, projected back to EEG channels, and then

subtracted from EEG data (Prado et al., 2019; Bui and Chen,

1998; Romero et al., 2008). The proposed denoising algorithm is

fast, and simple. Like (Hoffmann and Falkenstein, 2008), we

choose five levels of decomposition, and the MATLAB function

ddencmp computes the global threshold.

2.7 Source identification and artifact
removal performance measures

Although artifact removal methods are mainly evaluated

based on different criteria, the evaluation procedure has

always been problematic because there is no universal or

general quantitative criterion (Yang et al., 2018). Method’s

effectiveness can be analyzed through visual inspection by

experts, which is subjective and not standard. We consider

both subjective and objective metrics in this study. Experts

label real and synthesized signals and also extracted sources.

So classification performance is the first performance measure. In

addition, artifactual sources are suppressed and then “clean” EEG

is reconstructed. Therefore, we can define other metrics to

evaluate the proposed artifact removal method. Based on the

previous studies (Sanei and Chambers, 2007; Islam et al., 2016;

Romo Vázquez et al., 2012; Klemm et al., 2009; Croft and Barry,

2000; Lagerlund et al., 1997; Li et al., 2006; Senthilkumar, 2008;

Mumtaz et al., 2021; Yang et al., 2018; Cao et al., 2015; Rahman

FIGURE 2
The block diagram for the proposed artifact elimination method based on one-level SWT with “haar”wavelet basis function as its wide usage in
EEG preprocessing applications.

Frontiers in Physiology frontiersin.org06

Zangeneh Soroush et al. 10.3389/fphys.2022.910368

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.910368


et al., 2015; Sai et al., 2018; Rodr´ıguez-Berm´udez and Garcia-

Laencina, 2015; Mahajan and Morshed, 2015; Shoker et al., 2005;

Jung et al., 2000; Vorobyov and Cichocki, 2002; Belouchrani

et al., 1997; Delorme and Makeig, 2004), some common

measures are introduced as the evaluation criteria in this study.

2.7.1 Classification performance
Classification accuracy is defined based on the proportion of

the number of correctly classified test samples and the number of

total test samples. Employing 10-fold cross-validation in this

study, average classification performance (ACP), the mean

classification accuracy, is calculated and reported for each

classifier.

2.7.2 Temporal and spectral relative root-mean-
square and mean-absolute errors

Artifact removal systems can be evaluated using the time

domain’s relative root-mean-square error (RRMSE). Several

studies consider this factor an artifact suppression evaluation

parameter (Makinen et al., 2005; Onton and Makeig, 2006; Fang

et al., 2015). RRMSE is defined in the time domain as below:

RRMSE(X) � RMS(X − X̂)
RMS(X) (4)

RMS(X) �
���������������
1

N.K
∑N
i�1
∑K
j�1
X2(i.j)√√

(5)

Where X and X̂ are contaminated (i.e., before artifact removal)

and reconstructed (i.e., after artifact removal) EEGs, respectively.

It can be easily expanded to the frequency domain in order to

estimate relative root-mean-square error using power spectral

density (PSD), which leads to another measure (i.e., RRMSEPSD)

described as following:

RRMSEPSD(X) � RMS(PSDX − PSDX̂)
RMS(PSDX) (6)

Whit PSDX and PSDX̂ indicating PSD of the clean EEG and

denoised EEGs, respectively. This measure enables us to analyze

the results and evaluate the method with respect to the spectral

properties of EEGs. We also used mean absolute error (MAE) in

power spectral density which is called RRMAEPSD to evaluate our

proposed method using Eq. 7. Although RRMSEPSD can provide

us with a practical measure, RRMAEPSD can also be used as it

measures the difference between the contaminated signals and

the reconstructed ones in the frequency domain as below:

RRMAEPSD(X) � MAE(PSDX − PSDX̂) (7)

2.7.3 Average correlation coefficient
Correlation coefficients (CCs) between original EEGs (not

corrupted) and reconstructed ones are valuable metrics to

evaluate how effectively the proposed artifact removal method

can eliminate artifacts. For simulated and semi-simulated signals,

original EEGs and artifacts are available. Therefore average

correlation coefficient (ACC) could be an evaluation measure.

The third criterion in this study is the ACCs overall reconstructed

EEG channels with respect to the corresponding original EEG

channels (Chen et al., 2017).

2.7.4 Average mutual information
Correlation coefficients cannot fully describe the

similarity between two signals. Therefore we decided to

employ mutual information (MI) as an index to evaluate

the similarity of signal dynamics between original EEGs

and reconstructed ones. As another evaluation parameter,

average mutual information (AMI) values are computed

over all channels. Several studies have applied AMI to

quantify their methods (Makinen et al., 2005; Onton and

Makeig, 2006; Hayashi et al., 2015; Sayed et al., 2017;

Sharif and Homayoun Jafari, 2017). MI is computed in Eq.

8 as

MI � ∫+∞

−∞
∫+∞

−∞
p(X.X̂)log⎛⎝ p(X.X̂)

p(X)p(X̂)⎞⎠dX dX̂ (8)

where p(X, X̂) is the joint probability density function of X

(i.e., original EEG) and X̂ (i.e., reconstructed EEG after artifact

removal). p(X) and p(X̂) represent marginal probability density

functions of X and X̂, respectively. Since AMI indicates the

relevance between two signals, it is clear that the larger the AMI

is, the more effective the proposed method will be (Hoffmann

and Falkenstein, 2008).

2.8 Power spectral density in truncated
frequency bands

As one of the previous studies (Fang et al., 2015) proposed

a criterion using the PSD in frequency bands 1–3, 3–20 Hz and

above 20 Hz, we also decided to introduce a new performance

measure based on that. It is considered that artifacts

concentrate in two frequency bands which are 1–4 Hz and

above 30 Hz. It is also assumed that brain activity is within

4–30 Hz. So PSD for artifacts and EEGs can be computed

before and after artifact removal. As it is suggested in (Fang

et al., 2015), there is a trade-off when estimating the following

measure:

PSDtr �
RMS(PSDEEG − ̂PSDEEG)

RMS(PSD1−4 − ̂PSD1−4) + RMS(PSDabove 30 − ̂PSDabove 30)
(9)

Where PSD1−4 shows the spectrum of EEG in 1–4 Hz PSDabove 30

is related to the spectrum of EEG in the frequency band above

30 Hz PSDEEG indicates the signal spectrum between 4 and
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FIGURE 3
(A) 10-s illustration of PSEEGs, (B) Synthesized artifacts, (C) SCEEGs by projecting artifacts at SNR � 0.5db, (D) An example for recorded PREEG
for 5 s, (E) RCEEGs of a subject for 5 s, (F) extracted sources using SOBI algorithm, (G) Illustration of 19-channel SSCEEG1s at SNR � 0.5, (H) An
illustration of SSCEEG2s at SNR � 0.5db.
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30 Hz. PSDs without a tilde sign refer to contaminated EEG and

those with the tilde sign indicate EEG after artifact removal. The

smaller this performance parameter is, the more effective the

proposedmethod will be. Small values for this measure is possible

with a small numerator which suggests good performance in

preserving EEGs and large denominator which shows successful

artifact suppression.

2.9 Database

2.9.1 Simulated data
Generating simulated EEGs is introduced in (Makinen

et al., 2005) based on the phase-resetting theory. According

to (Yeung et al., 2007), EEGs can be reconstructed by adding

four sinusoids with randomly chosen frequencies varying

from 4 to 30 Hz. Frequency values are selected independently

and randomly to synthesize EEGs. So we can easily construct

pure-simulated EEGs (PSEEG) by adding four sinusoids.

This method is also completely explained in (Chen et al.,

2017). To reconstruct a 1-min single-channel signal, thirty 2-

s segments are generated and concatenated together.

Nineteen channels of EEG and also modeled artifacts are

reconstructed in this way. Figure 3A shows one example for

PSEEGs.

All signals are recorded or synthesized with a sampling

frequency of 256 Hz. We model EEGs and artifacts as below:

• EEG: summation of four sinε functions at random

frequencies in the range of 4–30 Hz (Yeung et al., 2007),

• ECG: can be reconstructed by Auto-Regressive (AR)

modeling. Parameters are estimated using real ECG

recordings. Then, artificial ECGs are reconstructed

utilizing AR modeling. We chose AR order as 12 based

on Akaike Information Criterion (AIC) and Bayes

Information Criterion (BIC) (Rissanen, 1999;

Padmavathi and Sri Ramakrishna, 2015) (the average

order was 11.6 with a standard deviation of 1.1),

• EMG: temporal muscle activity is modeled by filtering

(FIR) random noise in the frequency range of 20–60 Hz

(Delorme et al., 2007; Chen et al., 2017; Bai et al., 2016),

• EOG: eye movement is modeled through low-frequency

square pulses with the frequency of 0.2 Hz (Hoffmann and

Falkenstein, 2008; Chen et al., 2017; Bai et al., 2016),

• Eye blinking: we synthesize eye blinking artifact using

random noise band-pass filtered between 1 and 3 Hz

(Delorme et al., 2007).

• White noise: an unfiltered white noise is employed as an

artifact as well.

All five generated artifacts are synthesized in 2-s segments.

We generated artifacts in segments with random lengths varying

from 500 m to 2 s. In other words, a 2-s window consists of an

artifact based on a random selection. Each modeled artifact is

projected to all 19 channels via a random transformation matrix

containing at least ten non-zero random entries and then

summed with 19-channel PSEEGs to artificially generate

simulated contaminated EEGs (SCEEG). The intensity of

artifacts and corresponding channels are randomly selected

according to the normal uniform distribution. Based on (Fang

et al., 2015), artifacts can be added to PSEEGs at different levels of

signal-to-noise ratio (SNR). Eq. 3 represents the summation of

artifacts and EEGs.

XC � XP + λ.XART (10)

Where λ indicates the artifact intensity and totally affects SNR.

XC shows the corrupted 19-channel EEGs. XP and XART

demonstrate pure EEGs and modeled 19-channel artifacts,

respectively. SNR is defined based on Eqs 4, 5.

SNR � RMS(XP)
RMS(λ.XART) (11)

RMS(X) �
���������������
1

N.K
∑N
i�1
∑K
j�1
X2(i.j)√√

(12)

Where N is the number of channels and K shows time samples.

For more information about simulated-contaminated EEG

generation, refer to (Chen et al., 2017). Figures 3B,C illustrate

one example of generated artifacts and CSEEGs.

2.9.2 Real data
The EEG signals are recorded from twenty individuals

(10 males). 19 Ag/Ag-Cl electrodes, according to the

10–20 international standards, are placed on each subject’s

scalp. EEGs are acquired and sampled at 256 Hz for 1 min in

each trial. Each individual participates in 20 separate trials. EEGs

are recorded while normal subjects are sitting in a comfortable

fashion with their eyes open (Lawhern et al., 2012). In the first ten

trials for each individual, subjects are acquired not to move their

head, jaw, or eyebrows. Also, eye blinking or movements are

visually inspected and not considered in the database. Recorded

EEGs are filtered through conventional filtering methods such as

bandpass (4–60 Hz) and 50-Hz notch filters based on previous

studies like (Delorme et al., 2007; Lawhern et al., 2012) in order to

have clean EEGs with no artifacts. Three expert clinicians

controlled the recording process and justified clean EEGs. The

first ten trials are called pure real EEGs (PREEG). We have

PREEGs in 19 channels and ten 1-min trials for twenty subjects.

A sample of PREEGs is represented in Figure 3D.

In the next phase, subjects are asked to blink both eyes

(without squinting) and randomlymove their eyes (vertically and

horizontally) and eyebrows for 1 min in each trial. Subjects are

left free to blink or move their eyes or eyebrows in their natural

manner. Movements are performed in separated and different

trials. Eye blinking, eye movement, and moving eyebrows are

Frontiers in Physiology frontiersin.org09

Zangeneh Soroush et al. 10.3389/fphys.2022.910368

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.910368


performed in the second ten trials. Subjects are previously

informed not to move or tilt their head. Vertical and

horizontal EOGs and also ECG are captured in both phases

with the aim of helping clinicians while recognizing sources. It

should be noted that only 19 contaminated EEG channels are

used in further analyses, and other signals are recorded due to

getting monitored by clinicians. EEGs are filtered by

conventional bandpass and notch filters. Subjects are

controlled visually while recording signals and movements are

recorded in time course. In this phase, individuals participate in

ten trials to have real contaminated EEGs (RCEEG). Then

RCEEGs and extracted sources via the SOBI algorithm are

analyzed by clinicians to label sources. Figures 3E,F show an

illustration of RCEEGs and extracted sources through the SOBI

algorithm respectively. Experts are inquired to put each source in

one category from all six groups containing EEG, ECG, EMG,

EOG, eye blink, and white noise.

Since artifacts including ECG, eye blinking, EMG, EOG, and

white noise are significant and prominent in most BCI

applications, our focus in this study is on these common

artifacts, and other artifacts like head movement, power-line

noise, and electrical shift are ignored (Delorme et al., 2007; Yang

et al., 2018). Expert clinicians, including three

neurophysiologists, are informed to control the experiments

and label extracted sources based on the mentioned artifacts.

In this phase, we have RCEEGs in 19 labeled sources and ten 1-

min trials for each of the twenty subjects.

2.9.3 Semi-simulated data
Two semi-simulated datasets are provided to study the

proposed method. In the first dataset, EEGs are taken from

PREEGs, and generated artifacts are randomly projected and

summed at different SNR values. Then extracted sources are

identified by experts. The first set of semi-simulated

contaminated EEGs (SSCEEG1) is reconstructed using Eq. 9

at different SNR values. Figure 3G illustrates one typical 5-s

SSCEEG at SNR � 0.5. Synthetic artifacts explained in the

previous sub-section are projected with varying intensities and

then added to pure EEG recordings.

For the second semi-simulated dataset, we use EEGs which

are randomly selected from PREEGs. We also recorded EEGs

from other 20 individuals asked to move their eyebrows, blink

both eyes and move their eyes horizontally and vertically. Other

types of mentioned artifacts like ECG or white noise are seen in

the recordings. Then artifacts are extracted via FastICA

algorithm and identified by experts. Extracted artifacts are just

considered and then projected back to PREEGs for further

analyses. Figure 3H illustrates one example for SSCEEG2. In

this approach, we have 200 PREEGs (20 subjects, 10 trials) from

the first group of participants and 200 samples which are

recorded from the second group of individuals. Extracted

artifacts are randomly selected and projected to PREEGs at

different SNR s to reconstruct the second set of semi-

simulated contaminated EEGs (SSCEEG2). We have the

second type of semi-simulated signals containing real artifacts

and real EEGs. Figure 3H shows one example for a 5-s semi-

simulated contaminated EEG.

3 Results

As mentioned before, four different datasets (SCEEG,

RCEEG, SSCEEG1, and SSCEEG2) are provided in this study.

200 different 19-channel simulations or recordings are

considered for each dataset. We apply the proposed method

to different signal lengths to analyze the results more

comprehensively. 10, 30, and 60-s windows are considered for

signals in this study. Table 3 represents the average and standard

deviation of classification accuracy for all datasets. ACP shows

the average accuracy while classifying samples in each dataset

and at different signal lengths. In Table 3, the employed MLP has

just one hidden layer, and the number of neurons in the hidden

layer was determined through a trial-and-error process equal to

10. We used this process to find the best parameter, which results

in the highest classification performance in the training phase.

For the KNN algorithm, we conducted the same procedure and

determined the parameter K equal to 20.

Classification results suggest that the proposed features and

classifiers are effective to identify artifacts. Six groups containing

EEG, EMG, ECG, EOG, eye blinking, and white noise are

considered in the classification. All accuracy results are quite

high and in the same range. It shows that the signal length is not

objective in the proposed method. That is to say that results for

real EEGs are really similar to that of simulated and semi-

simulated ones. It can be easily seen that the ensemble of

three classifiers outperforms each of them. Therefore, we

apply the ensemble of classifiers in further analyses to

evaluate the proposed method. For simplicity, results are

given in the three following subsections to make a better

comparison. We bring the results just for 10 s EEGs in the

following sections for the sake of space. Since, in most studies,

it is of great importance to classify artifacts and brain activities,

we also decide to classify components into two classes containing

neural and artifactual components. Table 3 illustrates the

classification results when six classes of artifacts are going to

be recognized, and Table 4 reports the classification performance

while classifying EEG components into two classes, including

artifactual and “clean.” In other words, in Table 3, we aim to

examine how effective our proposed method is in recognizing

artifact types, while in Table 4, we report how successfully our

method can detect artifactual EEG components estimated by

SOBI. Three aforementioned classifiers and the mixture

classification model are employed in both scenarios, including

6-class and 2-class scenarios. Clean components are assumed and

named as neural components as we suppose they just contain

neural information.
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In this table Acc, Sen, Spc, and Per indicate classification

accuracy, sensitivity, specificity and precision respectively.

These measures suggest how successful our suggested

approach is. Taking a close look at the two tables for 6-class

and binary artifact detection, we come to the conclusion that

our classification performance is much higher in the binary

classification scenario when we just need to determine whether

the given EEG component is artifactual or “clean.” One reason

could be similarity between extracted features in a 6-class

scenario that make the classification problem even more

difficult. For example, artifacts associated with EOG and

electrode displacement may share quite similar dynamics in

the angle plot and can result in similar features, making the

classification step more difficult. This issue will be explored

later in the discussion section. Moreover, in classification

problems, classification accuracy almost pertains to the

number of classes suggesting that the more classes exist, the

more challenging the classification task would be. Additionally,

one can infer that our proposed approach results in features

which are almost similar in some artifact classes and make the

two bigger classes, including clean components and artifactual

ones. This might be assumed as a disadvantage of our proposed

method; however, since our final results which are discussed

later, are acceptable and comparable to recent studies, we can

still consider our suggested approach quite effective in EEG

artifact removal. In addition, in most practical applications, we

may just need to know if the given component is

contaminated or not, and their origins are not of great

importance.

Detected components as artifacts are fed into SWT-based

artifact removal. Considering Acc and Sen measures, it is evident

that the ensemble of the classifiers is more efficient and successful

compared to each classifier alone.

To analyze the results more completely, we decided to report

the features’ average and standard deviation in Table 5. So, all

artifact components in all datasets are put in one group and

sources related to brain activity in the other group. We

performed a t-test analysis to examine how effective our

proposed features are. Average and standard deviation values

are reported for both artifactual and clean classes. It should be

noted that all EEG signals from real, semi-simulated, and

simulated are used in this analysis. EEG components were

divided into two classes, including “Artifactual” and “Clean.”

Most significant features whose p-values are lower than 0.05 are

reported in Table 5. All components are normalized to the range

of [−1 1] before features’ statistics estimation in order to have the

same amplitude range for all components. Average and standard

deviation values are computed for all EEGs over each extracted

feature. T-test is also carried out to investigate the level of

significance for each proposed feature. The most significant

features are highlighted. Considering Table 5, we can easily

find out that most proposed features are significant enough to be

included in the next step, where classification models are going

to be trained using these features. As it is clear, all features

related to Poincare planes have a p-value less than 0.05. It shows

the importance of nonlinear analysis of signal dynamics, and

Poincare planes are able to describe the characteristics of the

components. Besides, 2-class classification is carried out over all

normalized components. Features whose p-value is less than

0.05 (are highlighted in Table 5) are selected for each

component, and then classification is carried out. Table 6

represents the classification results for the artifactual and

TABLE 3 Average and standard deviation of classification accuracy in the 6-class scenario using all of the datasets, including simulated, semi-
simulated and real EEGs.

Length (s) Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG

10 MLP 75.72 ± 6.55 76.64 ± 5.52 76.16 ± 6.33 75.62 ± 6.51

KNN (K = 20) 76.53 ± 7.41 76.17 ± 6.09 76.32 ± 7.11 75.85 ± 7.16

Bayes 77.04 ± 8.69 76.39 ± 5.36 76.22 ± 6.27 75.49 ± 7.23

Ensemble 78.12 ± 5.74 79.06 ± 5.87 78.93 ± 5.85 78.86 ± 5.95

30 MLP 76.49 ± 7.93 75.84 ± 6.16 75.33 ± 7.41 75.37 ± 7.79

KNN (K = 20) 76.31 ± 7.01 75.92 ± 6.09 75.87 ± 6.71 75.41 ± 8.23

Bayes 76.17 ± 7.39 75.78 ± 7.04 75.63 ± 8.08 75.49 ± 6.23

Ensemble 78.01 ± 7.68 78.17 ± 7.98 77.93 ± 7.15 78.86 ± 5.95

60 MLP 77.06 ± 6.55 75.64 ± 6.52 75.16 ± 6.33 75.62 ± 7.51

KNN (K = 20) 76.53 ± 6.41 75.17 ± 5.09 75.32 ± 5.35 75.85 ± 6.16

Bayes 76.04 ± 8.69 75.39 ± 7.44 75.22 ± 7.29 75.49 ± 7.23

Ensemble 78.63 ± 7.58 77.63 ± 6.57 78.06 ± 6.32 76.93 ± 6.04
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TABLE 4 Classification results (in the 2-class scenario) for recognizing neural and artifactual components. Acc, Sen, Spc and Per present classification
accuracy, sensitivity, specificity and precision, respectively. Ensemble represents the mixture of classifiers.

Length (s) Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG

10 MLP Acc 95.54 ± 2.96 96.09 ± 2.28 94.92 ± 3.88 94.17 ± 2.15

Sen 96.83 ± 3.02 96.11 ± 3.64 95.07 ± 2.61 94.02 ± 3.98

Spc 95.74 ± 3.04 94.14 ± 3.02 94.56 ± 2.99 95.84 ± 1.78

Per 95.86 ± 3.67 95.08 ± 2.99 94.21 ± 1.81 94.47 ± 3.17

KNN (K = 20) Acc 95.32 ± 3.39 94.79 ± 3.04 95.84 ± 3.45 96.00 ± 2.06

Sen 96.69 ± 3.27 95.89 ± 1.95 94.11 ± 3.39 95.96 ± 2.81

Spc 95.57 ± 2.99 94.99 ± 2.92 95.10 ± 3.00 95.52 ± 3.08

Per 95.34 ± 3.26 96.53 ± 3.55 94.46 ± 2.94 94.98 ± 3.08

Bayes Acc 96.58 ± 3.05 94.23 ± 3.07 95.30 ± 2.12 94.97 ± 3.26

Sen 97.77 ± 2.83 95.37 ± 3.02 94.40 ± 3.38 94.20 ± 2.95

Spc 96.65 ± 3.16 94.77 ± 2.99 95.49 ± 2.08 96.02 ± 3.92

Per 97.03 ± 3.12 96.12 ± 2.98 95.74 ± 3.04 94.87 ± 2.87

Ensemble Acc 98.73 ± 3.01 97.91 ± 3.08 97.71 ± 3.66 96.29 ± 3.01

Sen 97.94 ± 3.30 98.03 ± 3.39 96.81 ± 2.75 96.35 ± 3.50

Spc 97.71 ± 3.12 97.55 ± 2.99 96.86 ± 3.23 97.78 ± 3.03

Per 98.80 ± 3.01 98.10 ± 2.98 97.16 ± 3.39 97.41 ± 3.38

30 MLP Acc 94.88 ± 3.34 96.54 ± 2.36 96.35 ± 3.46 95.71 ± 3.22

Sen 96.49 ± 2.87 95.09 ± 1.95 94.93 ± 2.39 94.15 ± 2.71

Spc 96.41 ± 2.90 93.51 ± 3.71 95.96 ± 3.11 95.88 ± 2.67

Per 96.42 ± 2.98 94.26 ± 2.21 95.12 ± 3.71 97.53 ± 3.73

KNN (K = 20) Acc 95.67 ± 3.11 94.94 ± 2.97 96.44 ± 3.03 96.66 ± 2.58

Sen 93.79 ± 2.72 97.35 ± 3.30 95.04 ± 3.09 95.31 ± 3.07

Spc 95.72 ± 2.74 94.38 ± 2.20 94.80 ± 3.51 95.74 ± 3.24

Per 96.63 ± 2.53 95.75 ± 3.07 95.79 ± 3.57 94.13 ± 2.27

Bayes Acc 95.49 ± 2.84 94.81 ± 2.58 97.91 ± 2.84 94.82 ± 2.85

Sen 96.03 ± 2.80 95.89 ± 3.04 95.83 ± 2.93 95.79 ± 1.97

Spc 95.73 ± 3.48 94.24 ± 3.12 96.38 ± 3.54 95.67 ± 3.26

Per 94.70 ± 2.76 95.60 ± 3.24 94.94 ± 2.62 94.67 ± 2.74

Ensemble Acc 97.29 ± 2.65 96.58 ± 3.26 97.53 ± 2.78 96.55 ± 2.81

Sen 96.21 ± 3.16 97.49 ± 3.92 96.73 ± 2.08 97.33 ± 2.96

Spc 97.89 ± 3.75 96.82 ± 2.82 96.10 ± 3.64 97.39 ± 3.29

Per 96.85 ± 2.82 97.80 ± 2.64 97.72 ± 3.18 96.45 ± 2.21

60 MLP Acc 93.93 ± 2.36 96.42 ± 3.09 95.7 ± 2.89 96.87 ± 3.33

Sen 94.19 ± 2.95 95.29 ± 3.01 92.95 ± 2.95 95.18 ± 3.25

Spc 92.06 ± 2.06 95.20 ± 2.96 94.65 ± 3.01 94.52 ± 2.94

Per 96.44 ± 3.04 96.59 ± 3.49 94.18 ± 2.88 95.86 ± 3.07

KNN (K = 20) Acc 95.33 ± 2.92 94.20 ± 3.25 94.42 ± 3.13 94.64 ± 2.82

Sen 94.25 ± 3.19 95.70 ± 3.23 95.51 ± 3.17 95.46 ± 2.93

Spc 96.37 ± 3.20 95.84 ± 3.80 95.28 ± 2.29 94.15 ± 3.31

Per 93.29 ± 2.42 94.76 ± 3.63 95.03 ± 2.83 94.67 ± 2.73

Bayes Acc 94.90 ± 2.17 95.22 ± 3.15 95.67 ± 2.35 95.55 ± 3.19

Sen 94.76 ± 2.61 95.83 ± 2.34 96.13 ± 2.76 96.04 ± 3.82

Spc 95.32 ± 2.52 94.85 ± 3.57 95.35 ± 2.97 95.88 ± 2.34

Per 95.31 ± 2.79 95.10 ± 2.88 94.70 ± 3.43 96.26 ± 2.69

Ensemble Acc 97.14 ± 3.01 96.72 ± 3.19 96.02 ± 3.06 96.66 ± 3.11

Sen 98.23 ± 2.37 97.59 ± 2.83 96.74 ± 2.38 97.93 ± 3.05

Spc 96.84 ± 2.69 96.33 ± 3.27 97.25 ± 1.98 96.80 ± 2.83

Per 96.63 ± 3.15 95.19 ± 2.92 96.71 ± 2.43 96.78 ± 2.95
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clean EEG component recognition. The most significant

features, selected by t-test and reported in Table 5, are used

in this classification.

A closer look at the recent results in Tables 4–6 shows that

classification performance while using the mixture model is

relatively high and higher than several previous studies such

as (Chen et al., 2014; Sayed et al., 2017). Referring to Table 5, we

can even determine the type of artifact with an accuracy of more

than 75% in all cases and datasets. It is noticeable in Table 6 that

all components, regardless of the datasets, are classified into two

classes with accuracy and sensitivity of more than 96% and 95%,

respectively.

3.1 Simulated data results

In Figure 4A, artificial and contaminated EEGs are

represented. Artifacts can be seen in this figure. Some of them

are pointed out by arrows. Simulated artifacts in this figure

correspond to the mentioned artifacts in Figures 4A,B

demonstrates extracted sources via the SOBI algorithm. First,

three sources and the last one pertain to the artifacts. These

sources are identified as artifacts using the ensemble of classifiers.

EEG is leaked to these sources. Artifactual sources are taken into

the SWT-based artifact removal algorithm in order to get

artifacts eliminated. Figure 4C shows the output sources of

SWT. Then, EEG channels are reconstructed using the inverse

of the mixing matrix. Figure 4D represents the final

reconstructed EEGs. Considering the pure EEGs and the

results of the proposed method, no appreciable artifact is

notified in the results. Moreover, reconstructed EEGs are

justified by experts to evaluate the results visually.

In this section, we evaluate the proposed method through

200 independent realizations. In each realization, artifacts are

separately generated at random intensities and then added to the

simulated EEGs. The implementation is carried out at different

SNR values to evaluate the method more precisely. ACP,

RRMSE, RRMSEPSD , ACC, and AMI are calculated for each

TABLE 5 Average and standard deviation values for the proposed features. T-test was performed for the proposed features, and p-values were
reported.

# Feature abbreviation Ave ± std
in the brain
activity class

Ave ± std
in the artifact
class

p-value

1 AveAP 37.46 ± 5.17 40.02 ± 4.92 0.0657

2 VaAP 43.81 ± 12.57 49.75 ± 10.02 0.0789

3 SkAP 0.94 ± 0.18 0.69 ± 0.39 0.0491

4 KuAP 3.67 ± 0.94 3.01 ± 0.64 0.0476

5 MeAP 73.31 ± 5.58 60.15 ± 6.70 0.0581

6 ShAP 982,312.37 ± 37.93 977,375.96 ± 42.12 0.0464

7 LeAP 3,217.03 ± 10.56 3,102.66 ± 9.36 0.0812

8 NPP1 312.87 ± 8.56 198.56 ± 9.03 0.0299

9 NPP2 367.35 ± 10.11 245.73 ± 9.26 0.0438

10 NPP3 312.48 ± 11.78 456.87 ± 10.49 0.0327

11 NPP4 327.87 ± 12.07 423.87 ± 9.06 0.0492

12 NPP5 189.58 ± 7.92 163.44 ± 6.65 0.0413

TABLE 6 Classification performance in the 2-class scenario using the
most significant features from Table 5 for the normalized EEG
components over all samples from simulated, semi-simulated, and
real ones.

Classifier 10 s 30 s 60 s

MLP Acc 97.63 ± 1.57 96.36 ± 1.32 96.43 ± 1.38

Sen 97.22 ± 1.32 96.27 ± 1.61 96.46 ± 1.51

Spc 97.53 ± 1.38 97.29 ± 1.12 95.67 ± 1.75

Per 96.37 ± 1.24 96.88 ± 1.26 96.58 ± 1.36

KNN (K = 20) Acc 96.94 ± 1.49 97.42 ± 1.49 96.31 ± 1.29

Sen 97.12 ± 1.38 96.37 ± 1.15 96.38 ± 1.31

Spc 96.28 ± 1.46 97.49 ± 1.63 96.49 ± 1.68

Per 97.07 ± 1.37 97.69 ± 1.22 95.93 ± 1.58

Bayes Acc 97.38 ± 1.31 97.85 ± 1.24 96.96 ± 1.79

Sen 96.21 ± 1.18 96.93 ± 1.36 95.41 ± 1.43

Spc 97.36 ± 1.23 97.27 ± 1.33 95.57 ± 1.52

Per 96.87 ± 1.45 97.28 ± 1.47 96.32 ± 1.48

Ensemble Acc 98.26 ± 1.27 97.95 ± 1.18 98.27 ± 1.37

Sen 98.39 ± 1.04 98.01 ± 1.09 97.76 ± 1.46

Spc 97.63 ± 0.95 97.98 ± 1.27 97.83 ± 1.45

Per 98.84 ± 1.01 98.21 ± 0.98 98.46 ± 1.33
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FIGURE 4
Results of the proposed method for simulated signals (A) simulated and contaminated EEG (B) detected artifactual components (C) denoised
components using SWT (D) reconstructed EEG.
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implementation and shown in Figure 5. We can compare the

effectiveness of different classifiers trained with the suggested

features. Average values for all performance measures are

displayed for different length of signals and at different SNRs.

As it is clear, the ensemble of classifiers outperforms the other

classification models at all SNR values. All performance criteria

are almost close for MLP, KNN and Bayes but the ensemble

classification model is more effective. It is worth mentioning that

the ensemble of classifiers can preserve the original EEGs when

they are highly contaminated (e.g., SNR<0.5). Average values for
each performance parameter at different SNRs are reported and

displayed. As SNR decreases, all performance criteria degrade

sharply. For Figures 5–7, Blue, red, green and black colors

represent the results of bayes, KNN, MLP, and the ensemble

classification model, respectively. The first, second, and third

rows show the results for 10-s, 20-s and 30-s EEG signals,

respectively. In each figure, the horizontal axis represents the

signal-to-noise ratio (SNR) while the vertical axis shows the value

for the evaluation criterion which was used.

The statistical analysis in Table 7 shows that the results of the

ensemble model are significantly different from the sole

classifiers. In all evaluation criteria, all p-values are below the

confidence interval, suggesting that the proposed method can

introduce a new algorithm that is much more effective than

conventional classifiers. However, other classification models are

not statistically different regarding the results and the employed

FIGURE 5
Performance parameters using simulated data at various SNR value and evaluation criteria, including ACP, RRMSE, RRMSEPSD , RRMAEPSD , ACC,
and AMI.

TABLE 7 Statistical analysis of the results in Figure 5 t-test analysis was conducted to check which criteria are significantly different. A confidence
interval equal to 0.05 was considered in this analysis. p-values are reported in this table.

# Classification
accuracy

RRMSE RRMSEPSD RRMAEPSD ACC AMI

1 Bayes 0.0467 0.0491 0.0731 0.0436 0.0693 0.0481

2 KNN 0.0915 0.0458 0.0838 0.0484 0.0912 0.0498

3 MLP 0.0413 0.0786 0.0422 0.0321 0.0551 0.0401

4 Ensemble 0.0202 0.0374 0.0484 0.0396 0.0235 0.0218
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statistical analysis. Considering AMI, RRMSE, and RRMSEPSD, it

should be noted that these criteria are statistically different

between the classifiers and also the ensemble model.

3.2 Semi-simulation results

We collected two different datasets for semi-simulated signals to

investigate the method’s performance more precisely. The proposed

method is applied to both semi-simulated datasets. Figure 6

illustrates the results related to SSCEEG1. This dataset consists of

actual pure EEGs contaminated by simulated artifacts. Similarly,

Figure 6 indicates that the ensemble of classifiers leads to improved

results for different signal lengths.

Since experts control the generated signals and label all of the

extracted sources, we can easily measure the performance

parameters. Additionally, we have the pure EEGs in both

semi-simulated datasets. So evaluation measures containing

ACP, RRMSE, RRMSE PSD, ACC, and AMI can be calculated

for SSCEEG1 and SSCEEG2. Figure 7 shows the performance

measures for the second dataset of semi-simulated EEGs called

SSCEEG2 at different SNRs. Results for SSCEEG2 are quite

similar to that of SSCEEG1. This similarity indicates that the

considered EEG model to generate EEGs for the simulated

dataset is quite reliable and realistic.

The results prove the proposed model for pure EEGs

and also contaminated and simulated EEGS. Since the

results for SSCEEG2 are almost close to that of

SSCEEG1, we conclude that the proposed method is

practical in real applications.

3.3 Real data results

In this section, we apply the proposed method to real

contaminated EEGs. These EEGs contain severe artifacts to

evaluate the suggested artifact removal procedure. Since there

is no ground truth available for real data, we cannot report

performance parameters. In other words, for real EEGs

evaluation procedure is performed quantitatively, including

visualization criteria like topography or spectral density and

temporal analysis. It should be noted that source classification

accuracy for real data is previously reported in Table 3. For real

contaminated EEGs visual inspection is performed by experts to

evaluate the proposed method. Figure 8 shows a real

contaminated EEG recording from a participant in a 5-s segment.

As can be seen, SOBI separates sources and isolate artifacts.

Although the source separation algorithm is effective, brain

activity leaks to most artifactual sources. This motivates us to

employ automated artifact detection using the ensemble of

FIGURE 6
Performance measures for SSCEEG1 using evaluation criteria including ACP, RRMSE, RRMSEPSD , RRMAEPSD , ACC, and AMI.
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mentioned classifiers. All detected artifact components are

processed via the proposed artifact elimination method based

on SWT. In Figure 8, an EEG recording contaminated with all

mentioned artifacts is represented. Taking a closer look at

extracted sources in Figure 8B, it is clear that sources

1,2,3,4,5,6,7,8,9,12, and 16 are artifactual. All of these sources

are detected by the proposed classification model. Figure 9 shows

the reconstructed EEG and its sources after artifact removal.

Somemuscle activity can be seen in Fp1, Fp2, andF8.Moreover, it

might be realized that artifacts related to eye movement and blinking

still remain in the reconstructed EEG. To analyze the results more

thoroughly, we decided to consider the topography maps and power

spectral density before and after applying the proposed method.

Figure 10 illustrates the topography maps for extracted sources;

similarly, Figure 11 represents power spectral density for channels.

Considering the results in Figure 11, artifacts are easy to

distinguish in most components. Eye movement and blinking are

clear with respect to the channel locations. The 12th component, for

example, shows the activity in both sides of the forehead, which is

related to ECG and can be seen in F8 channel. The topography map

for components after artifact removal ensures the proposed method

works effectively. Figure 12 shows the power spectral density for all

channels before and after the proposed method.

We decided to study the results in the frequency domain more

comprehensively. Therefore, four channels including Fp1, Fp2, F8,

and T7 contaminated by severe artifacts are selected, and the power

spectral density for those channels are represented in Figure 12.

All of these channels are detected as artifacts by the

classification model. Since brain activity mostly concentrates

within the frequency band 2–30 Hz and considering that all

participants are in the rest mode sitting comfortably, we can

easily analyze the power spectral density for given channels.

Moreover, based on the previous studies (Lawhern et al., 2012;

Chen et al., 2017; Yang et al., 2018) we can assume that most

artifacts are in the frequency band 1–4 Hz and above 30 Hz.

Considering this fact, we can realize that the proposed method

can perform well in almost all types of artifacts. Channels

Fp1 and Fp2 are severely interrupted by eye blinking and

movement. Figure 10A shows that the SWT-based method

can eliminate ocular activity. In addition, in these channels,

there are some activities above 30 Hz, which is well

suppressed by the suggested method. F8 and T7 are corrupted

by ECG and muscle activity. Considering the spectrum of

original and reconstructed signals around 40, 70, and 80 Hz, it

is obvious that eliminating these artifacts is possible via the

proposed method. The channel T7 contains noise and EMG,

more or less. EEG content is preserved in almost all channels with

a little desired information loss.

As stated in Eq. 8, PSDtr was introduced as a reliable criterion

in (Fang et al., 2015) to evaluate artifact removal methods. We

FIGURE 7
Performance measures for SSCEEG2 using evaluation criteria including ACP, RRMSE, RRMSEPSD , RRMAEPSD , ACC, and AMI.
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also considered this measure and calculated in our

implementations. Table 8 represents PSDtr for all datasets

used in this study.

The average value of this measure is computed over all

contaminated EEGs. The average value of the aforementioned

performance measure is 0.2496 (for the proposed method) over

all EEG simulations and recordings. This measure is calculated in

order to compare this studywith previous ones. Results show that the

proposed method outperforms most previous studies in this field.

4 Discussion

In this study, we managed to suppress different artifacts

through an automated procedure. To investigate more, we

decided to examine the proposed angle plot in representing

signals. Supplementary Figure S1 shows the angle plot for

some well-known signals whose dynamics are clear to us. As

illustrated, angle plot can accurately describe signals’ dynamics

appropriately. The sinusoid signal has the frequency equal to

10 Hz. The random time series is zero-mean with unit variance.

The chaotic signal is achieved by employing the logistic

regression with the tuning parameter equal to 3.9. We decided

to reconstruct the angle plot for all types of artifactual

components. Expectedly, angle plots are significantly different

and can be recognized visually. These simulations showed that

the proposed method could effectively reflect the dynamics of

simple and complex signals alike.

In contrast to several studies such as (Delorme et al., 2007;

Hoffmann and Falkenstein, 2008; Chen et al., 2017), the

proposed method in this study is completely automated and

more precise. Since previous studies use different performance

criteria, it is impossible to compare their results with ours. But we

have tried to compute major evaluation parameters to have a fair

comparison. In addition, previous studies have applied their

methods to different datasets. So it seems to be difficult to

compare the results. In terms of computation complexity, it

takes the proposed method less than 0.25 s to analyze a 1-min

FIGURE 8
(A) Real contaminated EEG and (B) extracted sources using SOBI.
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and 19-channel EEG recording sampled at 256 Hz and remove

artifacts. For all simulations and recordings, the processing time

is under 0.25 s, which is practical for BCI applications and also

for diagnosis purposes. All implementations are performed using

MATLAB (release R2016a) running on Windows 7 Laptop PC

with Intel (R) Core (TM) 2 Duo 2.0 GHz processor with 4 GB

RAM. The average processing time and the standard deviation

for real EEG recordings and simulated EEGs are 0.21 and 0.09 s,

respectively. Since other similar methods are compared with

SWT-based artifact removal in (Hoffmann and Falkenstein,

2008), we avoid reviewing them here for the sake of space. In

this study, since only artifactual components are fed into the

SWT-based artifact removal procedure, it is clear that the

proposed method has less computation complexity than

methods that analyze all components.

Supplementary Table S1 shows the average processing time

and the standard deviation for all components at the signal

lengths of 10, 30, and 60 s. Other BSS methods might be

suggested in some studies like (Chen et al., 2017), which

claim that some other BSS methods outperform SOBI in

particular situations, but while considering all evaluation

measures such as processing time and simplicity, it is evident

that SOBI is slightly better than most BSS methods.

Since support vectormachine (SVM) is one of themost effective

classifiers in previous studies like (Brychta et al., 2007a; Delorme and

Makeig, 2004), we decided to employ SVM with the polynomial

kernel (order of 3). The SVM’s kernel and also other parameters are

set based on trial and error. SVM Classification results are no better

than other mentioned classifiers. The reason is mainly related to the

separability in the feature space. Ten-fold cross-validation is

performed to evaluate SVM. Results show that the mixture

classification model can slightly better recognize components.

One can say that SVM can also be included in the mixture. This

motivates us to build the mixture classification model using SVM.

Table 9 represents the classification results. Components are

classified into “brain-activity” and “artifacts” groups.

For the sake of space, we decided to bring average values

for 10, 30 s, and 1-min components in each dataset. Results in

FIGURE 9
(A) Reconstructed EEG through the proposed method and (B) EEG components.
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Table 9 suggest that the proposed mixture is able to recognize

artifacts and separate them from brain activity. The final

mixture of classifiers, including SVM, is more accurate than

other proposed classification models. So we can realize that

this mixture can be performed in the future. Additionally,

SVM’s results are slightly better than MLP and Bayes, but

statistical analysis shows no difference between classifiers

while used alone. In contrast to single classifiers, ensemble

classification models have better results and higher accuracies.

Based on the t-test, both mixtures (MLP + KNN + Bayes and

MLP + KNN + Bayes + SVM) have significantly higher results

than other classification models. As it is mentioned, we apply

the voting. In terms of the 3-classifier mixture, one class easily

has more votes, but in the 4-classifier mixture, if the votes are

equal, we go for SVM’s vote since it has slightly better results

than other classifiers.

As was mentioned in the results, we have two scenarios,

including 6-class and binary classification. The former is about

recognizing the artifact type, such as EOG, ECG, etc., while the

latter is focused on just recognizing artifactual and “clean” EEG

components. Looking back at the classification results in Tables

3–5, we conclude that the binary classification had higher

recognition rates compared to the 6-class scenario. The reason

could be the similarity that some artifacts have in the proposed

features. Our suggested attributes can definitely distinguish

artifacts from neural components, however, they are not as

effective when it comes to artifact type recognition. In

addition, some unpredictable errors might have happened

FIGURE 10
Topography maps for components related to (A) contaminated and (B) reconstructed and cleaned EEG.
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while labeling artifactual components as there is always

information leakage between components while employing

BSS methods. It means that estimated artifactual components

do not entirely belong to just one specific artifact type; rather,

they carry information about two or more artifacts in one EEG

component. Moreover, experts might have made mistakes while

recognizing and labeling EEG components. The chosen features

are the ones which have worked successfully in EEG dynamics

representation in our previous studies. That could be the main

reason why these features work well in EEG neural and artifactual

component recognition. These features were selected after we

tested several features from time, frequency, and time-frequency

analysis in previous studies. Angle plot has the potential to be

described in several ways, such as in the framework of graph

theory or as a complex network which makes this processing

method appropriate in EEG analysis. As reported above, the

ensemble of classifiers shows higher classification accuracies

compared to the sole classifiers. As mentioned, according to

the statistical analysis, there is not a significant difference

between the results reported by t-test analysis. This suggests

that maybe in future studies, other fusion methods such as

bagging and boosting methods could be employed to achieve

better and significantly different results of using fusion methods.

The other aspect could be the proposed features which have

resulted in similar results for all the classifiers. It could be inferred

that in terms of the misclassified samples, all classifiers

mistakenly labeled specific samples. However, after error

analysis, it turned out that this hypothesis was correct and

some samples which were not outliers were misclassified by

all of our classifiers. On the other hand, the proposed fusion

method could not make a considerable difference as for those

samples, all classifiers mislabeled data. It could be suggested that,

FIGURE 11
Power spectral density of channels for (A) contaminated real and (B) cleaned EEGs.
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in future studies, other features from the EEG angle plot could be

extracted and analyzed. It is worthmentioning that our suggested

approach resulted in almost 98% accuracy (on average),

according to Table 9. In comparison with previous studies in

this area, this is an acceptable classification performance

considering that we have analyzed several scenarios and

different datasets, such as real EEG signals, and simulated and

semi-simulated ones.

Taking a closer look at Figures 5–7, we can conclude that the

evaluation criteria, including ACP, RRMSE, RRMSEPSD ,

RRMAEPSD, ACC, and AMI are proportionate with SNR.

Although there is not a considerable gap in classification

accuracy between the sole classifiers and the ensemble of

them, in other criteria such as RRMSE in both time and

frequency domains, we can see that there is a considerable

difference between the ensemble model and sole classifiers.

However, for long-windowed 60-s EEG components, the

ensemble model does not work well. It could be related to the

non-stationary nature of EEG signals as EEG dynamics,

characteristics, and statistical features change in long windows

of signals. On the other hand, RRMSE in the frequency domain

shows that the ensemble model has better performance than the

classifiers. For RRMSE in the frequency domain, the power

spectrum density of signal should be estimated, which is a

serious problem in spectrum estimation as it is highly

dependent on the signal length, number of segments, and the

overlap used to estimate the EEG spectrum density. This could

affect our estimation and lead to different results. This could

justify the difference in the trends of RRMSE in time and

frequency domains. Although they follow the same pattern in

lower SNRs, in higher SNRs they follow different trends. Other

evaluation criteria, including ACC and AMI are used to measure

similarity between the clean EEG signal and the reconstructed

one. However, due to the nonlinearity in EEG dynamics, we

believe AMI can represent this similarity better as it works for

nonlinear signals better than ACC, which is more suitable for

determined signals. Both AMI and ACC show that there is a

considerable difference in the performance of the ensemble

model and sole classifiers. This again implies that although

the suggested approach does not stand out in terms of

classification performance, but considering the whole process,

our methods is effective in EEG artifact detection and

elimination.

We prefered to analyze the feature space more. To do that, all

components from all datasets are normalized and then

12 suggested features are extracted from each source. We

perform principal component analysis over all samples from

different datasets and then normalize the components to achieve

main components from the feature space. The two first

components are plotted in Supplementary Figure S2. Red and

blue circles indicate artifactual and neural components

respectively. 2,000 samples are selected randomly from each

class i.e. neural activity and artifacts to have equal number of

samples in each class.

It can be verified that the proposed features efficiently

determine artifactual and neural components in this study.

Results show that although classification performance is the

same for almost all components at different length, 10-s

components are better classified in comparison with

components with the length of 30 and 60 s. As it is

mentioned before, the phase space and consequently the angle

FIGURE 12
Power spectrum for (A) Fp1, (B) Fp2, (C) F8 and (D) T7. Red
and green lines correspond to EEGs before and after applying
artifact elimination respectively.
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space are able to demonstrate and represent the signal dynamics

even at short length of the signal. This nonlinear analysis

provides us with some new features which do not vary based

on the length of the signal. That is why we can recognize sources

very well regardless to the signal length. We have also tried

different sampling rates. Real and simulated signals are sampled

at the sampling rate of 128, 256, 512, and 1,024 Hz. No

significance difference is found in the results between different

sampling rates. Similar results at different signal length and

sampling rates suggest that the proposed method is practical

for different purposes. Also, all results are acceptable and

comparable in terms of visual subjective inspection and also

quantitative objective measures. In this study, we focus on

removing stereotyped biological artifacts. Non-stereotyped

artifacts such as head and electrode movement might cause

special patterns while recording EEG. These artifacts should

be eliminated before the proposed artifact removal procedure.

Fortunately, these artifacts can be easily discarded from the data

by visual inspection. In term of computer simulations, all

simulations have been implemented in MATLAB. We also

used of EEGLAB (Delorme and Makeig, 2004).

EEG signal, as mentioned before, is a complex, chaotic,

nonlinear and dynamic biosignal whose characteristics are

nonstationary. This means that proposed EEG preprocessing

methods should preserve the main nonlinear characteristics of

preprocessed EEG signals. Deep learning models are one of

those methods which can provide this feature, and thanks to

the advancement in data recording systems and data

repositories, now it is possible to employ deep learning in

most projects. Deep learning models can learn high-level and

hierarchical data representations from big and massive data,

which is why deep learning has been widely used in signal

processing, specifically in EEG artifact removal. Several

studies, such as (Yang et al., 2018; Sun et al., 2020; Joseph

TABLE 8 PSDtr for simulated, semi-simulated and real EEGs at signal length 10, 30, and 60 s using four proposed classifiers.

Length (s) Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG

10 MLP 0.36 ± 0.12 0.44 ± 0.13 0.46 ± 0.14 0.57 ± 0.13

KNN (K = 20) 0.41 ± 0.11 0.43 ± 0.16 0.44 ± 0.16 0.60 ± 0.12

Bayes 0.38 ± 0.09 0.48 ± 0.19 0.49 ± 0.16 0.61 ± 0.14

Ensemble 0.37 ± 0.08 0.40 ± 0.13 0.44 ± 0.12 0.58 ± 0.09

30 MLP 0.39 ± 0.15 0.51 ± 0.14 0.53 ± 0.17 0.53 ± 0.16

KNN (K = 20) 0.42 ± 0.16 0.47 ± 0.13 0.45 ± 0.18 0.57 ± 0.19

Bayes 0.43 ± 0.16 0.53 ± 0.16 0.57 ± 0.21 0.68 ± 0.22

Ensemble 0.32 ± 0.14 0.45 ± 0.14 0.49 ± 0.17 0.71 ± 0.17

60 MLP 0.48 ± 0.18 0.53 ± 0.15 0.52 ± 0.16 0.58 ± 0.19

KNN (K = 20) 0.50 ± 0.14 0.52 ± 0.17 0.53 ± 0.19 0.61 ± 0.21

Bayes 0.46 ± 0.13 0.49 ± 0.16 0.51 ± 0.18 0.53 ± 0.23

Ensemble 0.45 ± 0.10 0.48 ± 0.13 0.50 ± 0.17 0.52 ± 0.16

TABLE 9 Classification accuracy of all the classifiers and also the ensemble of them. Average values are mentioned here.

Classifier SCEEG SSCEEG1 SSCEEG2 RCEEG

SVM Acc 96.76 ± 1.13 96.63 ± 1.26 95.26 ± 1.23 95.66 ± 1.14

Sen 96.34 ± 1.09 96.17 ± 1.15 96.39 ± 1.16 96.73 ± 1.17

Spc 96.91 ± 1.17 95.24 ± 1.01 94.29 ± 1.39 96.54 ± 1.21

Per 97.07 ± 0.96 96.39 ± 1.12 95.09 ± 1.08 96.21 ± 1.18

MLP + KNN + Bayes + SVM Acc 99.39 ± 0.75 99.28 ± 0.64 98.22 ± 0.91 98.78 ± 1.01

Sen 99.12 ± 0.82 98.92 ± 0.57 98.84 ± 0.77 98.39 ± 0.94

Spc 98.86 ± 0.67 98.76 ± 0.99 99.03 ± 0.82 99.08 ± 0.85

Per 99.26 ± 0.52 98.51 ± 0.97 98.47 ± 0.88 98.94 ± 0.97
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et al., 2021; Mathe et al., 2021; Webb et al., 2021; Zhang et al.,

2021) have employed deep neural networks to detect and

remove artifacts from EEG and other biosignals. The main

disadvantage of deep learning-based methods is the number of

samples they need to train their models, which makes these

methods impractical in real-world applications as we have

limited numbers of samples or subjects. In (Sun et al., 2020), it

is shown that a one-dimensional residual convolutional neural

network model (1D-ResCNN) can effectively suppress the

EEG artifacts with much lower RMSE compared to ICA-

based and also wavelet-based methods. However, in that

study, the combination of SOBI and wavelet or the

combination of ICA and wavelet denoising was not studied,

and also just ECG, EMG, and EOG artifacts were considered

and analyzed in their implementation. Despite interesting

results, in that study, just SNR and RMSE were reported,

which made us unable to compare all the before-mentioned

criteria we used to evaluate our methods. As it is highly

recommended, in noise reduction algorithms, one should

consider temporal, and frequency domains of preprocessed

EEG signals as well as topography maps to evaluate the artifact

removal method fairly. Other studies such as (Mathe et al.,

2021) also reported outstanding results which were not

compared to the conventional methods in this field. These

studies also did not consider all scenarios such as simulated,

semi-simulated, and real EEG signals to test their proposed

methods. To sum up, deep learning-based EEG noise/artifact

removal methods have reached considerable and outstanding

results. However, more analyses are required to study deep

neural networks in this area completely. As it is stated in those

articles, their proposed methods need a better design for

practical and real-world applications. Also, all types of

artifacts should be considered to evaluate how effective

such methods are in EEG artifact removal (Mathe et al.,

2021). More future studies should be conducted to compare

the methods which are more based on signal processing basis

with the ones employing deep learning. We can now

implement most complex deep learning neural networks

thanks to computer hardware advancements.

On the other hand, our proposedmethod can be considered a

novel method in signal processing or time series analysis. Several

methods in complex time series analysis called complex networks

have recently gained attention from different fields of science.

These complex networks which are reconstructed from nonlinear

time series, can represent them in a new space using graph

theories. In other words, such graphs are driven from complex

time series and provide new representations. Several complex

networks such as visibility networks (graphs) have been

introduced do far (Mohammadpoory et al., 2017; Zou et al.,

2019). Apparently, our proposed angle plot can be viewed as a

visibility graph; however, it is reconstructed based on the angle

values in the state space. In other words, our angle network could

be described as an unweighted visibility network driven from

angle values in EEG state space. More exploration could be

performed in future studies to compare our proposed angle

network with other successful complex networks.

5 Conclusion

In this paper, we introduce a new method to suppress

different types of artifacts and noise based on BSS (SOBI),

wavelet transform (SWT) and an ensemble of classifiers (MLP,

KNN, Bayes, and SVM). A preprocessing chain is suggested

and evaluated in this paper. We have concluded that the

proposed method is effective, fast and simple. Based on the

results, hybrid methods, including BSS methods and artifact

elimination procedures, are recommended to remove artifacts

and noise from EEG (Yang et al., 2018). Automated methods

are superior to methods based on visual inspection in terms of

artifact elimination and EEG interpretation (Romo Vázquez

et al., 2012; Cao et al., 2015; Islam et al., 2016; Yang et al.,

2018). We proposed an automated EEG artifact removal

approach using SOBI, conventional classifieirs and SWT to

reduce stereotyped EEG biological artifacts.

The proposed method has some advantages, such as its

simplicity which makes it reproducible in real-world

applications. The suggested approach can be used in online or

real-time EEG pre-processing platforms. The most challenging

problem with our proposed method is that this approach is

computationally extensive, and fast processing machines are

required to implement this method. Since the ensemble of

several classifiers is employed in this study, it should be noted

that over-fitting and under-fitting might cause some problems. It

can be considered one of the weak points while applying

classifiers in automated artifact recognition methods. This

problem could be tackled by considering training and testing

errors together and also performing some validation methods

such as k-fold cross-validation. In addition, the proposed artifact

detection method is based on SOBI, which is mainly effective for

stereo-typed artifacts like the ones we had in most research

experiments, while in other practical ones, such as newborn’s

EEG preprocessing, we mostly face non-stereotyped artifacts

(Kumaravel et al., 2022). This point should also be taken into

consideration while employing our proposed methods. Another

important point is about low-dimension EEG signals. This study

assumes that the number of sources is equal to or less than the

number of channels. Therefore, sufficient EEG channels are

required to estimate sources correctly. Moreover, it is

considered that the number of artifacts is less than or equal to

the number of components and channels. These assumptions

might cause problems while dealing with low-dimension EEG

signals. In that situation, some decomposition methods, such as

empirical mode decomposition, might be a good solution to

decompose EEGs as the first step. Then BSS methods can be

applied to decomposed signals. Previous studies have shown that
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for EEG artifact removal, the combination of EEG subspace

decomposition methods such as ICA-family methods and

wavelet transforms could lead to acceptable results (Zikov

et al., 2002; Brychta et al., 2007b; Delorme et al., 2007;

Kumaravel et al., 2022). We used this to propose our method,

which is mainly based on SOBI and SWT. We chose SOBI for

EEG subspace decomposition and SWT for the wavelet

transformation due to their high performance in the previous

studies. These methods, as stated above, have their own

shortcoming and are not necessarily “the best” or “the

superior” methods in EEG artifact removal. It should be noted

that other methods should also be considered and could be

compared with ours in future studies to explore more in this field.

No global measure is available to compare different methods

in this field. Besides, previous studies have tested methods on

different datasets. This makes the results inconsistent. That is

why most previous studies have trouble reproducing other

methods. We have tried to evaluate the proposed method

through several approaches. Temporal and spectral criteria are

considered. We will try to define new evaluation criteria in future

work. It should be noted that the results suggest that although the

proposed method outperforms most previous studies and is fast,

effective and practical, it fails in a few cases while dealing with

highly-contaminated EEGs. The proposed method has been

applied to real, semi-simulated, and simulated EEGs. In our

future studies, we are going to compare different methods with

the present one. In addition, the proposed method could be

employed to eliminate other types of artifacts, such as power-line

interference and head movement.
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