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Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler
chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of
subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler
chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium
perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3)
FB + DON group (basal diet + 3mg/kg FB + 4mg/kg DON + C. perfringens); and 4) FB +
DON + NE group (basal diet + 3mg/kg FB + 4mg/kg DON + E. maxima + C. perfringens).
Birds in NE and FB + DON + NE groups received 2.5 × 103 E. maxima on day 14. All birds
were inoculated withC. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB
+ DON, and FB + DON +NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and
22-point increase in FCR respectively, than in the control group. Subclinical doses of FB +
DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21.
On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p <
0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased
(p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE
group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control
group and the presence of FB + DON in NE-induced birds further decreased the villi height
to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased
(p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a
lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It
can be concluded that subclinical doses of combined FB and DON predispose C.
perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced
birds exacerbated the severity of NE.
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INTRODUCTION

Corn is one of the major components of poultry feed, and up to
65% of finished poultry feed can be comprised of corn and corn
byproducts (Alqaisi et al., 2017). Poultry diets are often
contaminated with more than one mycotoxin. Fumonisins
(FB) and deoxynivalenol (DON) are secondary mycotoxin
metabolites produced by Fusarium verticillioides and Fusarium
graminearum, respectively (Glenn, 2007). According to the
2021 survey by Biomin, FB and DON are the most prevalent
mycotoxins in poultry feed samples in North America and were
detected in 64% and 47% of poultry diets, respectively (Biomin,
2021). Recent surveys have identified that, on average, the
amount of DON in corn and cereal grain was 808 μg/kg and
1,721 μg/kg, respectively; the amount of FB in corn was
2,405 μg/kg. Furthermore, DON and FB can co-occur in
poultry feed ingredients, and 92% of feed samples analyzed in
2021 had more than one mycotoxin (Biomin, 2021). Though
negative effects of FB have been reported when FB are present at
100 mg/kg in chicken feed, FB has been suggested to cause
negative effects even at a lower dose when co-occurring with
other mycotoxins such as aflatoxins, DON, and zearalenone in
poultry (Ogbuewu, 2011). Co-occurrence of mycotoxins
decreases the tolerance to individual mycotoxins and,
therefore, the existence of multiple mycotoxins in poultry feed
even at subclinical levels can be expected to exacerbate the
pathology of individual mycotoxins in poultry.

European Food Safety Authority (EFSA) and Food and Drug
Administration (FDA) have set guidelines for maximal
permissible levels of major mycotoxins in poultry feed.
However, subclinical doses of FB (20 mg/kg diet) and DON
(5 mg/kg diet), alone (Antonissen et al., 2014; Antonissen
et al., 2015) or in combination (Grenier et al., 2016), cause
metabolic and immunological disturbances that amplify the
severity of necrotic enteritis (NE), coccidiosis, and increase the
susceptibility to bacterial diseases in chickens. Mycotoxin
interactions within the animal system are mainly additive, but
depending on the endpoint assessment these interactions can also
be synergistic or antagonistic (Grenier and Oswald, 2011).

Currently, NE is an economically important disease affecting
the modern broiler industry. Subclinical NE affects broilers
between 2–5-weeks of age and is characterized by intestinal
mucosal damage, with no apparent clinical signs or mortality
(Hofacre et al., 2018). Subclinical NE leads to decreased digestion
and absorption of nutrients, reduced weight gain, and impaired
feed conversion rate in poultry (Immerseel et al., 2004).
Coccidiosis and feed contaminated with mycotoxins,
particularly FB and DON (Antonissen et al., 2015), are
considered to be the predisposing factors for NE. In addition,
mycotoxins reduce the efficacy of coccidiosis vaccines and,
therefore, contribute to NE incidence in chickens (Broom,
2017). Recent restrictions on the use of antibiotics and
ionophores in broiler production led to an increase in the
occurrence of NE by altering the composition and microbial
balance in the gut microbiome (Smith, 2019). The causative
organism for NE is Clostridium perfringens, a commensal
bacterium in the gastrointestinal tract of healthy broilers. C.

perfringens loads range up to 1 × 105 CFU/g of digesta in
healthy chickens, while in chickens with clinical NE
symptoms, C. perfringens loads increase to 1 × 106 to 1 ×
108 CFU/g of digesta, along with associated toxins that include
necrotic toxin enteritis B-like (NetB) (Timbermont et al., 2011;
Mora et al., 2020).

In the past, FB below 50 mg/kg feed and DON at 5 mg/kg
feed were considered not to cause negative effects in poultry
(Dänicke et al., 2001; Filazi et al., 2017). However, recent
studies have identified that a combined dose of 20 mg/kg FB
and 1.5 mg/kg DON decreases the production performances,
causes gut damage, and increases coccidiosis severity
(Antonissen et al., 2014; Antonissen et al., 2015; Grenier
et al., 2016), which can be expected to predispose the
broilers to NE. Information regarding the role of chronic
exposure of subclinical doses, even at doses much lower
than previous studies, of mycotoxins is lacking. Continuous
exposure to mycotoxins is expected to damage the gut wall and
increase gut permeability to negatively affect the FDA
recommendation on NE, gut health, and immune response
in chickens. Therefore, the objective of this study was to
evaluate the combined effects of FB (3 mg/kg diet) and
DON (4 mg/kg diet) on gut health and immune parameters
and evaluate the role of mycotoxins as a predisposing factor in
inducing and increasing the severity of a NE in poultry.

MATERIALS AND METHODS

Diet Formulation
A non-medicated corn–soybean meal-based mash diet was
applied as a basal diet (Table 1). The feeding study was
divided into two experimental phases: 1) d0–18, starter feed,
and 2) d19–35, finisher feed. Two strains of Fusarium, F.
graminearum strain PH-1 and F. verticillioides strain
M3125 were cultured for DON and FB production,
respectively (Altpeter and Posselt, 1994). In brief, Fusarium
strains were cultured separately in carboxymethyl cellulose
liquid media and shaken for 5 days (F. verticillioides) or 7 days

TABLE 1 | Ingredient and nutrient composition of basal diets (as-fed basis).

Ingredients (%) Starter Finisher

Corn 56.29 64.86
Soybean meal, 48% CP 37.87 28.44
Soybean oil 2.18 3.80
Dicalcium phosphate 1.48 0.84
Calcium carbonate 0.91 0.78
Sodium chloride 0.40 0.40
MHA 0.37 0.32
L-lysine 0.21 0.22
Trace mineral premix 0.10 0.10
Choline chloride (60%) 0.07 0.08
L-threonine 0.06 0.07
Vitamin premix 0.05 0.05
Phytase (500 ftu) 0.01 0.01

Nutrients, vitamins, and minerals were provided in the form and amount described in the
NRC, standard reference diet for chickens (Council, 1994).
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(F. graminearum), and spores were collected. Fungal spores were
added separately to rice media and incubated until mycotoxin
content was analyzed. The homogenized rice cultures with FB
and DON were mixed with a small portion of the basal diet and
re-mixed with the appropriate amount of basal feed to create the
experimental diets. The starter diet (d0–18) and the finisher diet
were formulated to contain 3 mg/kg FB and 4 mg/kg DON,
respectively. The final diets were analyzed by LC-MS-MS to
determine the actual content of FB and DON and the content
of other major mycotoxins (Romer Labs, Union, MO,
United States). The mycotoxin content of the formulated
experimental diet is provided in Table 2.

Birds and Housing
This 35-day feeding trial was conducted with 480 day-old male
Ross × Ross 708 strain broiler chicks (Aviagen, Blairsville, GA,
United States). The animal care practices and use procedures were
followed under the Guide for the Care and Use of Agricultural
Animals in Research and Teaching (McGlone, 2010). All animal

protocols were approved by the Institutional Animal Care and Use
Committee at the Southern Poultry Research Group, Athens, GA.
The birds were raised under the supervision of a licensed poultry
veterinarian. All birds were euthanized by methods approved by
the American Veterinary Medical Association (AVMA). Day-old
broiler chicks were raised in 1.5 m × 1.5 m floor pens (stocking
density of 15 birds/m2) on new shavings/litter following standard
industry practice in North America and raised under ambient
humidity. Chickens were weighed individually and randomly
distributed into either one of the four treatment groups. The
experimental treatment groups were 1) control group (basal diet
+ C. perfringens challenge), 2) NE group (basal diet + E. maxima +
C. perfringens), 3) FB + DON group (basal diet + 3 mg/kg FB
+4mg/kg DON + C. perfringens), and 4) FB + DON + NE group
(basal diet + 3 mg/kg FB + 4mg/kg DON + E. maxima + C.
perfringens). Each treatment was replicated in 8 pens with 15 birds/
pen in a completely randomized design. Chicks had ad libitum
access to the feed and water throughout the experimental period.
The mortality of the birds was recorded daily. The birds were

TABLE 2 | Analyzed mycotoxin content of experimental diets.

Aflatoxin (ppm) Fumonisin (ppm) Deoxynivalenol (ppm) Zearalenone (ppm) Nivalenol (ppm)

Starter diet
Control 0.04a 0.4b 0.1 <0.05 <0.1
Treatment 0.03a 2.8b 4.3 0.3 <0.1

Finisher diet
Control 0.003a 1.5b 0.2 0.07 <0.1
Treatment 0.002a 2.9b 4.0 0.4 0.2

aTotal aflatoxins (B1 + B2).
bTotal fumonisins (B1 + B2 + B3).
The final diets were analyzed by LC-MS/MS, at Romer Labs, Union, MO, United States.

TABLE 3 | Primers and PCR conditions for PCR.

Gene Primer
sequence1 (59- 39)

Annealing temperature (°C) Reference

IL1-β F: TCCTCCAGCCAGAAAGTGA 57.5 Shanmugasundaram and Selvaraj. (2012)
R: CAGGCGGTAGAAGATGAAGC

IL10 F: CATGCTGCTGGGCCTGAA 57.5 Shanmugasundaram and Selvaraj. (2012)
R: CGTCTCCTTGATCTGCTTGATG

LITAF F: ATCCTCACCCCTACCCTGTC 55 Markazi et al. (2019)
R: GGCGGTCATAGAACAGCACT

IFN-γ F: GGCGTGAAGAAGGTGAAAGA 57.4 Shanmugasundaram et al. (2021)
R: CCTCTGAGACTGGCTCCTTTT

RPS-13 F: CAAGAAGGCTGTTGCTGTTCG 55 Shanmugasundaram et al. (2019c)
R: GGCAGAAGCTGTCGATGATT

Claudin-1 F: CATACTCCTGGGTCTGGTTGGT 55 Chen et al. (2017)
R: GACAGCCATCCGCATCTTCT

Claudin-2 F: CCTGCTCACCCTCATTGGAG 55 Li et al. (2015)
R: GCTGAACTCACTCTTGGGCT

Zona occluden-1 F: TGTAGCCACAGCAAGAGGTG 56 Zhang et al. (2017)
R: CTGGAATGGCTCCTTGTGGT

C. perfringens F: AAAGGAAGATTAATACCGCATAA 55 Shanmugasundaram et al. (2020)
R: ATCTTGCGACCGTACTCCCC

Lactobacillus F: CATCCAGTGCAAACCTAAGAG 55 Wang et al. (1996)
R: CCACCGTTACACCGGGAA

Bifidobacterium F: GGGTGGTAATGCCGGATG 57 Langendijk et al. (1995)
R: CCACCGTTACACCGGGAA
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housed in floor pens equipped with nipple-type waterers and
thermostatically controlled heaters.

Production Performances and NE Lesion
Score
On day 14, 2.5 × 103 Eimeria maxima sporulated oocysts/bird
were mixed in the feed of NE and FB + DON + NE groups. On
days 19, 20, and 21, birds in all treatment groups were
challenged with 1 × 108 CFU/bird C. perfringens (strain #6)
through the feed to target 3%–5% NE mortality as described
earlier (Hofacre et al., 1998). Before the C. perfringens challenge,
feed and water were withdrawn for 4 h and 2 h, respectively.
Three birds from each pen were randomly sacrificed and
examined for the NE lesion score on day 21. Lesion scoring
was based on a 0 to 3 scale as described earlier (Hofacre et al.,
1998), wherein 0 is normal, 1 is a slight mucus covering the
small intestine, 2 is a necrotic small intestinal mucosa, and 3 is a
sloughed cells and blood in the small intestinal mucosa and
contents. Bodyweight and feed intake were measured at 0, 7, 14,
21, 27, and 35 days of age. Average feed intake and body weight
gain (BWG) were corrected for mortality for calculating the feed
conversion ratio (FCR) for each pen.

Gut Permeability to FITC-Dextran
Gut permeability was measured using the FITC-D assay as
described earlier (Kuttappan et al., 2015). On days 21, 28, and
35, one bird/pen (n = 8) was orally gavaged with 1 ml of
fluorescein isothiocyanate dextran (FITC-D, MW 4000; Sigma-
Aldrich, United States) 2.2 mg/bird. 2 h later, the birds were
euthanized, and blood was collected by cardiac puncture.
Blood samples were centrifuged at 450 × g for 10 min to
separate the serum from red blood cells. The serum was
diluted in PBS with pH 7.4 at a 1:1 ratio. The serum FITC-D
concentration was determined based on a standard curve. A
standard curve with 0, 0.2, 0.4, 0.6, 0.8, 1.0, and 2 μg/ml
FITC-D was drawn using Gen5 software on the same plate as
the samples. The samples and standards were measured at an
excitation wavelength of 485 nm and emission wavelength of
528 nm (Synergy HT, multi-mode microplate reader, BioTek
Instruments, Inc., VT).

Spleen and Cecal Tonsil CD8+: CD4+ Ratio
On days 21, 28, and 35, post-challenge, the effect of FB and DON
on the spleen and cecal tonsil CD4+ and CD8+ cell percentages
were determined by flow cytometry as described previously
(Shanmugasundaram et al., 2015). In brief, single-cell

FIGURE 1 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on production performances. Day-old chicks were distributed into four
treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB + DON + NE groups. Birds in the NE and FB + DON + NE groups
received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. Body weight and
feed consumption was measured on days 0, 7, 14, 21, 28, and 35 of age to calculate body weight gain (Panel 1A) and feed consumption ratio (Panel 1B). Mortality-
corrected bodyweight gain and feed conversion ratio are presented. Bars (+SEM) without a common superscript differ significantly (p < 0.05). n = 8 pens of 15 birds/pen.

TABLE 4 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on necrotic enteritis lesion score at 21 days of age.

Treatment Score 0 Score 1 Score 2 Score 3 Rank scores
mean

Chi sq.
p-value

Control 21 3 0 0 22.4 0.01
NE 1 14 9 0 60.5
FB + DON 18 6 0 0 37.3
FB + DON + NE 0 9 15 0 73.8

Day-old chicks were distributed into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB + DON + NE groups. Birds in the NE and FB +
DON + NE groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. On day 21, three
birds were scored for NE lesion scores on a 0 to 3 scale wherein 0 is normal, 1 shows slight mucus covering the small intestine, 2 has a necrotic small intestinal mucosa, and 3 shows
sloughed cells and blood in the small intestinal mucosa and contents. Lesion scores were analyzed by a non-parametric test, and Wilcoxon/Kruskal–Wallis rank-sum test was used to
separate the means.
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suspensions from the spleen and cecal tonsils were enriched for
mononuclear cells by density centrifugation over Histopaque
(1.077 g/ml, Sigma-Aldrich, St. Louis, MO) for 15 min at
400 g. The cells were incubated with a 1:250 dilution of
fluorescent-isothiocyanate conjugated mouse anti-chicken
CD4+ (Southern Biotech, Birmingham, AL), 1:450 dilution of
phycoerythrin-conjugated mouse anti-chicken CD8+ (Southern
Biotech, Birmingham, AL), and 1:200 dilution of unlabeled
mouse IgG for 15 min. The unbound antibodies were removed
by centrifugation, the percentages of CD4+ and CD8+ cells were
analyzed using a flow cytometer (Guava EasyCyte, Millipore,
MA), and CD8+: CD4+ ratio was calculated.

Jejunal Tight Junction Protein and Cecal
Tonsil Cytokine mRNA Expression
On days 21, 28, and 35, 1 bird per pen (n = 8) was euthanized by
cervical dislocation. A portion of distal-jejunum and proximal
ileum (1 cm proximal and 1 cm distal to the Meckel’s
diverticulum) and cecal tonsils were collected in cryovials
containing RNAlater® (Ambion Inc., Austin, TX,
United States) and stored at −70°C until further analysis. The
jejunum was analyzed for claudin-1, claudin-2, and zona-
occluden-1 tight junction protein mRNAs, and cecal tonsils
were analyzed for pro-and anti-inflammatory cytokines IL-1β,
IL-10, LITAF, and IFN-γ mRNA expression, as described
previously (Shanmugasundaram and Selvaraj, 2012).

Total RNA was extracted from all experimental groups using
the TRI reagent (Molecular Research Center, Cincinnati, OH)
following the manufacturer’s instructions. RNA concentration
and purity were determined using an Epoch spectrophotometer
(BioTek, Winooski, VT, United States), using the 260/280 and

260/230 ratios. 2 mg RNAwas reverse transcribed into cDNA and
analyzed for IL-1β, IL-10, LITAF, IFN-γ, claudin-1, claudin-2,
and zona-occluden-1 by real-time PCR (CFX96 Touch Real-Time
System, BioRad, Hercules, CA) using SYBR Green. Primer
sequences and annealing temperature are provided in Table 3.
Each well contained 10 µl SYBR Green PCR master mix, 7 µl
RNAse-free water using C1000 TouchTM Thermal cycler
(BioRad, Hercules, CA), 2 µl (~600 ng/μl) cDNA, 0.5 µl
forward primer (5 µM), and 0.5 µl reverse primer (5 µM). To
perform real-time PCR, the following settings were used for all
genes: an initial denaturation of 95°C for 10 min (1 cycle);
followed by 95°C for 15 s; and 60°C for 45 s (40 cycles). The
melting profile was determined by heating samples at 65°C for
30 s and then increasing the temperature at a linear rate of 10°C/s
to 95°C while continuously monitoring fluorescence.
Housekeeping genes of β-actin, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), and ribosomal protein S13 (RPS13)
were selected, and the stability was analyzed using Normfinder
software (Department of Molecular Medicine, Aarhus University
Hospital, Denmark) as described previously
(Shanmugasundaram et al., 2018). The RPS13 gene was
selected for data normalization because it was the most stable
expression among the set of housekeeping genes analyzed for
normalization. The cecal tonsil IL-1β, IL-10, LITAF, and IFN-γ,
the jejunal claudin-1, claudin-4, and zona-occluden-1 mRNAs
were normalized with RPS13. The 2ˉΔΔCt method, as previously
described (Livak and Schmittgen, 2001), where Ct is the threshold
cycle, was used to calculate the mRNA fold change. The fold
change was calculated as 2(Ct Sample – housekeeping)/2 (Ct

Reference – housekeeping). The reference group was the control group.

C. perfringens, Total Lactobacillus, and
Total Bifidobacteria Loads in the Cecal
Content
On days 21, 28, and 35, cecal content from one bird/pen (n = 8) was
collected and stored at −20°C until further use. The DNA from the
cecal microflora DNA was extracted as described earlier (Amit-
Romach et al., 2004; Shanmugasundaram et al., 2019a). The DNA
pellet was resuspended in TE buffer (10mM Tris-HCl, 1 mM
EDTA, pH 8.0) and stored at −20°C until further use. The final
concentration of the isolated DNA was determined using an Epoch
spectrophotometer (BioTek, Winooski, VT, United States). The
DNA samples were diluted to a final concentration of 100 ng/μl. The
primers for Lactobacillus, Bifidobacterium, and C. Perfringens were
adapted from an earlier publication (Amit-Romach et al., 2004).
The Ct values were converted into CFU/g using a standard curve as
described previously (Shanmugasundaram et al., 2019b). The PCR
efficiency and the slope and intercept of the standard curve were
determined by the CFX software (Bio-Rad, Hercules, CA). The PCR
efficiency of the C. perfringens, Lactobacillus, and Bifidobacteria
standard curve analysis was 98%, 99%, and 99%, respectively.

Jejunal and Ileal Histomorphology
On 21, 28, and 35 days, jejunal and ileal samples were collected
from one bird/pen (n = 8) from each replication post-challenge.
Approximately 4 cm of jejunal and ileal samples were cut proximal

FIGURE 2 | Effect of subclinical dose of FB + DON and E. maxima/C.
perfringens challenge on gut permeability to FITC-dextran. Day-old chicks
were distributed into four treatment groups: control, necrotic enteritis (NE),
fumonisin + deoxynivalenol (FB + DON), and FB + DON + NE groups.
Birds in the NE and FB +DON+NE groups received 2.5 × 103 Eimeria maxima
oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium
perfringens on days 19, 20, and 21. One bird/pen was orally gavaged with
2.2 mg/bird of 4,000 MW fluorescein isothiocyanate dextran (FITC-D), and
blood was collected 2 h later. Serum FITC-D concentration was determined in
a microplate reader. Bars (+SEM) without a common superscript differ
significantly (p < 0.05). n = 8 (8 pens of 15 birds/pen).
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and distal to the Meckel’s diverticulum and stored in buffered
formalin. The jejunal and ileal samples were processed at room
temperature in a graded series of alcohols (15 min in 50% ethanol,
15 min in 70% ethanol, 15 min in 96% ethanol, and 30min in 100%
ethanol with one change at 15min), cleared in Pro-par (Anatech,
Battle Creek, MI) for 45 min with 2 changes at 15 and 30min, and
infiltrated with paraffin at 60°C overnight with one change at
15 min using a tissue processor (Sakura Finetek USA, Inc.,
Torrance, CA, United States). Paraffin blocks were cut into 5-
μm cross-sections and mounted on super frost slides (Thermo
Fisher Scientific, Waltham, MA, United States). Slides were then
stained with hematoxylin and eosin. Cross-sections were viewed
using the cellSens Imaging software (Olympus America, Central
Valley, PA) to measure villi length and crypt depth. Ten intact
lamina propria villi and crypts per section and 5 sections per
sample were analyzed as described earlier (Shanmugasundaram
et al., 2020). The tip of the villus to the villus–crypt junction was
measured as villus height. The crypt depth was defined by the
depth of the invagination between adjacent villi. All the samples in
a time point were collected from the same bird, except for the gut
permeability analysis for which a second bird was used.

Statistical Analysis
A one-way ANOVA (JMP Pro 15 software, Cary, NC) was
used to examine the effects of the subclinical dose of FB +
DON on dependent variables, with the pen being considered

as the experimental unit. When the main effects were
significant (p < 0.05), differences between means were
analyzed by Tukey’s least-square means comparison.
Values reported are least-squares means ± SEM. The lesion
scores were analyzed by a non-parametric test, and a
Wilcoxon/Kruskal–Wallis rank-sum test was used to
separate the means. The heatmap was rendered with JMP’s
plotting library (Šefcová et al., 2020).

RESULTS

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on
Production Performances
There were significant (p < 0.05) treatment effects on body weight
gain on days 14, 21, 28, and 35 (Figure 1A). On day 14, birds in
the FB + DON had lower BWG compared to the birds in the
control group. On day 35, birds in the NE and FB + DON + NE
groups had 242 g (p < 0.05) and 339 g (p < 0.05) lower BWG than
the birds in the control group, respectively.

There were significant (p < 0.05) treatment effects on the FCR
on days 21, 28, and 35 (Figure 1B). On day 14, birds in the FB +
DON group had 21 points (p = 0.05) increase in FCR compared to
the birds in the control group. On day 35, birds in the NE and FB

FIGURE 3 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on jejunal tight junction protein mRNA expression. Day-old chicks were
distributed into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB +DON +NE groups. Birds in the NE and FB + DON
+ NE groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. Tight
junction protein mRNA content was analyzed after correcting for the housekeeping gene RPS13mRNA content and normalizing to themRNA content of the control
group at D21 (A), D28 (B) and D35 (C), so all bars represent fold change compared to the control group. Bars (+SEM) without a common superscript differ significantly
(p < 0.05). n = 8 (8 pens of 15 birds/pen).
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+ DON + NE groups had 19 points and 22 points significant
increase in FCR than those in the control group.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on NE
Lesion Score
There were significant (p < 0.05) treatment effects on the NE
lesion score on day 21 (Table 4). Birds in the control group
had the lowest Wilcoxon/Kruskal–Wallis score means for
lesion scores. In birds with induced NE, 4.2% (1 out of 24)
had a NE lesion score of 0, 58.3% (14 out of 24) had a NE
lesion score of 1, 37.5% (9 out of 24) had a NE lesion score of
2, and 0% had a NE lesion score of 3. In birds exposed to FB +
DON and induced with NE, 0% had a NE lesion score of 0 ,
37.5% (9 out of 24) had a NE lesion score of 1, 62.5% (15 out
of 24) had a NE lesion score of 2, and 0% had a NE lesion
score of 3. Birds in the NE group had higher (p < 0.05)
Wilcoxon/Kruskal–Wallis Score Means for lesion scores than
scores observed in the control group. Subclinical dose of FB +
DON increased (p < 0.05) the Wilcoxon/Kruskal–Wallis
Score Means for lesion scores compared with the control
group on day 21. The presence of FB + DON in NE-
challenged birds increased (p < 0.05) the Wilcoxon/
Kruskal–Wallis Score Means for lesion scores compared to
the NE group.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on Gut
Permeability to FITC-Dextran
There were significant (p < 0.05) treatment effects on the serum
FITC-D concentration on days 21 and 28 (Figure 2). On day 21,
birds in the NE, FB + DON, and FB + DON + NE groups had a
150% (p < 0.05), 51% (p > 0.05), and 293% (p < 0.05) increase in
serum FITC-D compared to the birds in the control group. Similar
trends were observed on day 28. The presence of FB + DON in NE-
challenged birds increased (p < 0.05) the serum FITC-D
concentration further by 57%, compared with NE group on day 21.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on
Jejunal Tight Junction Protein mRNA
Expression
There were significant (p < 0.05) treatment effects on the jejunal
mRNA expression on days 21, 28, and 35 (Figure 3). On day 21,
birds in the NE, FB + DON, and FB + DON +NE groups had lower
claudin-1, claudin-2, and zona occludens-1 mRNA expression
compared to the birds in the control group. On days 28 and 35,
birds in the NE group had similar claudin-1 and zona occludens-1
mRNA expression when compared with the control group, but birds
in the FB + DON and FB + DON + NE groups still had

FIGURE 4 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on cecal tonsil cytokine mRNA expression. Day-old chicks were
distributed into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB +DON +NE groups. Birds in the NE and FB + DON
+ NE groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. IL-1β,
IL-10, LITAF, and IFN-γ mRNA content was analyzed after correcting for the housekeeping gene RPS13 mRNA content and normalizing to the mRNA content of
the control group, so all bars represent fold change compared to the control group. Bars (+SEM) without a common superscript differ significantly (p < 0.05). n = 8 (8 pens
of 15 birds/pen).
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downregulated claudin-1 and zona occludens-1mRNA compared to
the control group. Similar trends were observed on days 28 and 35.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on
Cytokine mRNA Expression
There were significant (p < 0.05) treatment effects on the cecal
tonsil IL-1β, IL-10, LITAF, and IFN-γ jejunal mRNA expression
on day 21 (Figure 4). On day 21, birds in the NE, FB + DON, and
FB + DON + NE groups had an approximately 4-fold increase in
IL-1βmRNA compared to the birds in the control group. Similar
trends were observed on days 28 and 35.

On day 21, birds in the NE and FB +DON +NE groups had an
approximately 3-fold increase in IL-10 mRNA compared to the
birds in the control group.

On day 21, birds in the FB + DON + NE group had higher
LITAFmRNA compared to the birds in the NE group. On day 35,
birds in the FB + DON group had higher LITAF mRNA
compared to the birds in the control group.

On day 21, birds in the FB + DON + NE group had an
approximately 4-fold increase in IFN-γ mRNA compared to the
birds in the control group.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on the
Spleen and Cecal Tonsil CD8+: CD4+ Ratio
On day 21, birds in the FB +DON group had a lower CD8+: CD4+

ratio in the cecal tonsils compared to the birds in the control
group (Figure 5). On day 35, birds in the FB + DON and FB +
DON + NE groups had a lower CD8+: CD4+ ratio in the cecal
tonsils compared to the birds in the control group

On day 21, birds in the FB + DON and FB + DON + NE
groups had a lower CD8+:CD4+ ratio in the spleen compared to

that in the birds in the control group. On day 35, birds in the FB +
DON + NE group had a lower CD8+:CD4+ ratio in the spleen
compared to the birds in the control group.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on
Jejunal and Ileal Histomorphology
On day 21, birds in the NE group had a 24% decrease (p > 0.05) in
villi height to crypt depth ratio compared to the birds in the
control group and the presence of FB + DON in NE-induced
birds further decreased the villi height to crypt depth ratio by
8.4% when compared with NE group (Figure 6). Similar results
were observed in the ileum on day 21.

Effect of Subclinical Dose of FB + DON and
E. maxima/C. perfringens Challenge on C.
perfringens, Lactobacillus spp., and
Bifidobacterium spp. Loads in the Cecal
Content
On days 21, 28, and 35, birds in the NE, FB + DON, and FB +
DON + NE groups had an approximately 1.3 Log increase in C.
perfringens loads in the cecal tonsils compared to the birds in the
control group (Figure 7).

On day 21, birds in the FB + DON group had lower (p < 0.05)
Lactobacillus spp. compared to the birds in the control group.

Heat Map Representing Pearson’s
Correlation Coefficient Matrix Between
Cytokine Amounts and Body Weight Gain
The negative value of Pearson’s coefficient indicated that IL-1β
and IL10- mRNA expression on days 21 and 28 were inversely
related to body weight (Figure 8).

FIGURE 5 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on the spleen and cecal tonsil CD8+: CD4+ ratio. Day-old chicks were
distributed into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB +DON +NE groups. Birds in the NE and FB + DON
+ NE groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. CD4+

and CD8+ cells were identified using fluorescent-linked anti-chicken CD4 and CD8 in a flow cytometer. Bars (+SEM) without a common superscript differ
significantly (p < 0.05). n = 8 (8 pens of 15 birds/pen).
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DISCUSSION

Corn is the major energy source in poultry feed and constitutes
50%–80% of the finished poultry feeds in the United States and
Europe (Guerre, 2016). Mycotoxins are ubiquitous in nature
(Shimshoni et al., 2013), and under practical conditions, it is
difficult to produce clean corn without mycotoxin contamination.
In this study, the starter basal diets in the control group were
naturally contaminated with 40 μg/kg aflatoxin, 400 μg/kg FB,
and 100 μg/kg DON, and the finisher basal diets in the control
group were contaminated with 3 μg/kg aflatoxin, 1,500 μg/kg FB,
and 200 μg/kg DON. Because there is an increase in the
occurrence of mycotoxins contamination of poultry feed under
field conditions, there is a growing concern regarding the negative
effects of combined mycotoxins, even when present at sub-
clinical doses, on gut health. Hence, this study aimed to
identify whether the combined presence of FB and DON at
subclinical concentration predisposed broiler chickens to NE
and acerbated the severity of NE lesions.

In the current study, a combined dose of 3 mg/kg FB and
4 mg/kg DON decreased the chickens’ body weight on day
14 even before the birds were inoculated with E. maxima. In
birds that were induced with NE, FB and DON further decreased
the body weight gain. Our data suggest that a combined dose of
3 mg/kg FB and 4 mg/kg DON in the poultry diet increased gut
permeability and decreased villi height to crypt depth ratio, which
can be expected to decrease body weight and increase the FCR.
An earlier study identified that combination of FB and DON

either at 20 and 1.5 mg/kg or 20 and 5.0 mg/kg feed, respectively,
increases the feed conversion ratio. A similar result was observed
in piglets when feeding 6 mg/kg FB and 3 mg/kg DON in
combination, which decreased the production performance
(Grenier and Oswald, 2011). Broilers exposed to multiple
mycotoxins at subclinical doses in the starter to finisher diets
exhibit decreased production broiler performance and impaired
health (Wang et al., 2005). Earlier reports have identified that
poultry feed contaminated with 5 mg/kg DON alone did not alter
the chicken production performance (Awad et al., 2011).
Similarly, FB alone at 300 mg (Brown et al., 1992) or 50 mg
(Yu et al., 2022) did not cause a decrease in production
performance in broiler birds. Considering that when FB or
DON was individually fed, they did not decrease the
production performance even when present at 300 mg/kg and
5 mg/kg. It should be noted that subclinical doses of FB + DON
had numerical changes, rather than statistical significance, on
production performances. It has been suggested that the
interpretation of p values should not be a dichotomous
conclusion as either significant or nonsignificant, but it should
be interpreted based on the real-world implication of the
observed change in the data points (Andrade, 2019). FB +
DON decreased the body weight gain by 87 g, further
decreased the body weight by 97 g, and worsened the FCR by
3 points in birds induced with NE on day 35. FB + DON at
subclinical dose can thus lead to a loss of up to 184 g per bird,
which accounts for approximately 10.5% of live body weight.
Thus, it can be concluded that in this present study, the combined

FIGURE 6 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on jejunal and ileal histomorphology. Day-old chicks were distributed
into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB + DON + NE groups. Birds in the NE and FB + DON + NE
groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium perfringens on days 19, 20, and 21. Jejunal and
ileal sections were stained with hematoxylin and eosin. Villi height and crypt depth were measured using cellSens Imaging software, and villi height:crypt depth ratio
was calculated. Bars (+SEM) without a common superscript differ significantly (p < 0.05). n = 8 (8 pens of 15 birds/pen).
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dose of DON and FB had a synergistic negative effect on body
weight gain and feed conversion ratio.

The presence of both FB andDON increased the severity of the
NE lesions in birds induced with NE. However, FB and DON did
not increase NE mortality (23.3% and 21.2% mortality in FB +
DON and FB + DON + NE group). In the NE model studied, the
control group was inoculated with C. perfringens and, hence, the
C. perfringens loads were approximately 7 logs/g of cecal content.
In the absence of accompanying intestinal wall damage because of
E. maxima or mycotoxins, the control group had no NE lesions.
These findings suggest that combined subclinical doses of FB and
DON increase the severity of the NE lesion without increasing the
associated mortality. NE lesion scores, but not the associated
mortality, should be used to assess the cost of subclinical doses of
FB and DON under field conditions.

Previous studies have identified that chronic exposure to
FB1 at 100 mg/kg concentration for 28 days or 300 mg/kg for
14 days decreases the jejunum villus height and villus: crypt depth
ratio and causes mild villus atrophy and goblet cell hyperplasia in
broiler chicks (Rauber et al., 2013). This study identified that the
presence of FB and DON combination decreased villi height to
crypt depth ratio similar to that in the NE group. The villi length
to crypt depth ratio is an indicator of the intestinal renovation
rate and a higher villi to crypt ratio indicates a lower intestinal
turnover (Brown et al., 1992; Van Nevel et al., 2005). Thus,
subclinical doses of FB and DON combination increased the

intestinal turnover and contributed to the observed decrease in
FCR and loss in body weight gain during NE.

FB and DON acerbated the loss in the tight junction protein and
increase in gut permeability associated with NE. FB and DON
combination decreased the jejunal claudin-1, claudin-2, and zona-
occluden-1 in the intestine. The decrease in the jejunal tight junction
protein owing to subclinicalmycotoxinwas comparable to the loss in
the tight junction in the birds induced with NE. Earlier studies have
identified that chronic exposure to FB decreases the proliferation of
intestinal epithelial cells and breaks down the gut barrier in pigs
(Bouhet et al., 2004). Tight junction proteins are comprised of
transmembrane proteins such as claudins and occludens, and
cytoplasmic proteins, such as zona occludens (Findley and Koval,
2009). Tight junction proteins act as a barrier to pathogens and
harmful toxins while permitting the entry of nutrients, ions, and
water (Tomaszewska et al., 2021). Caco-2 cells exposed to a
combination of aflatoxin and ochratoxin had significantly
decreased tight junction proteins (Gao et al., 2018). FB inhibits
ceramide synthase, which results in the accumulation of sphingoid
bases and their metabolites, leading to the depletion of complex
sphingolipids (Wang et al., 1991). In addition, FB leads to the
accumulation of sphinganine (Riley et al., 1999) and increases
calmodulin, an apoptotic protein. Alteration in the sphingolipid
metabolic products, sphingosine content, and calmodulin can be
expected to decrease intestinal cell viability and loss in tight junction
proteins (Bouhet et al., 2004). Furthermore, chronic exposure to FB

FIGURE 7 | Effect of subclinical dose of FB + DON and E. maxima/C. perfringens challenge on C. perfringens, total Lactobacillus, and total Bifidobacteria loads in
the cecal content. Day-old chicks were distributed into four treatment groups: control, necrotic enteritis (NE), fumonisin + deoxynivalenol (FB + DON), and FB + DON +
NE groups. Birds in the NE and FB + DON + NE groups received 2.5 × 103 Eimeria maxima oocyst per bird on day 14. All birds received 1 × 108 CFU/bird of Clostridium
perfringens on days 19, 20, and 21. Cecal content was analyzed for C. perfringens, (A) total Lactobacillus, (B) and total Bifidobacteria (C) through PCR. Bars
(+SEM) without a common superscript differ significantly (p < 0.05). n = 8 (8 pens of 15 birds/pen).
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+ DON enhances the claudin-1, claudin-2, and zona-occluden
internalization by endocytosis (Fujita et al., 2000). This results in
the reduction of claudins at a cellular level and a lack of new
molecules to replace the damaged tight junction proteins (Hopkins
et al., 2003).

During NE infection, the integrity of intestinal epithelial cells
is compromised due to either inflammation or toxins or the
associated gut dysbiosis. Quantification of serum FITC-d is
commonly used as an indicator for assessing intestinal
paracellular permeability and magnitude of severity
(Kuttappan et al., 2015). The oral administration of FITC-D
passes through the disrupted intestinal epithelium and enters
systemic circulation, which can be quantified in the blood (Liu
et al., 2021). In this current study, the presence of FB and DON
caused a loss in gut integrity, and this loss in gut integrity was
acerbated in birds challenged with NE. The observed increase in
serum FITC-D level correlated with decreased tight junction
proteins in the ileum. A decrease in the tight junction proteins
of the intestine leads to a loss in gut integrity and an increase in
gut permeability, and it can explain the observed increase in
serum FITC-D concentration. This current study suggests that
chronic exposure to even subclinical doses of mycotoxins could
adversely damage the intestinal gut epithelium.

FB and DON increased the cecal tonsil IL-1β, an inflammatory
cytokine. Upregulation of interleukins is observed normally
during various bacterial and parasitic infections (Mensikova
et al., 2013). Immune system activation includes changes in

cytokines such as tumor necrosis factor (TNF-α, IL-1β, IFN-γ,
and IL-10 (Wallach et al., 2014). Activated macrophages secrete
IL-1β to induce inflammation (Bhat and Fitzgerald, 2014). In
mice, a single dose of in vivoDON exposure increases TNF-α, IL-
1β, IFN-γ, and IL-10 in CD4+ cells isolated from spleen and
Peyer’s patches (Zhou et al., 1997). In vitro treatment of chicken
splenocytes with DON increases the concentrations of IL-1β, IL-
10, and IFN-γ (Azcona-Olivera et al., 1995; Ren et al., 2015). In
this present study, birds exposed to FB and DON had increased
cecal tonsil IFN-γmRNA transcription at levels similar to that in
the birds undergoing a NE challenge. IFN-γ plays an important
role in the host’s defense against intracellular pathogens such as
coccidiosis. This increased IFN-γ mRNA transcription at D21 in
the combined toxin group suggests that FB and DON could have
had a synergistic effect on IFN-γ mRNA transcription. Cecal
tonsils of Eimeria-challenged birds had an increase in IFN-γ
mRNA transcription when chickens were fed Fusarium
mycotoxins contaminated diet (Girgis et al., 2010). Chronic
exposure to combined FB + DON activates the NF-kB
pathway to upregulate pro-inflammatory cytokines (Pinton
and Oswald, 2014; Taranu et al., 2015). Several studies have
identified that the dietary mycotoxins, at doses even below EU
guidance, could upregulate both pro and anti-inflammatory
cytokines in the duodenum and jejunum (Bracarense et al.,
2012; Lucke et al., 2018; Guo et al., 2021). Similarly, in this
present study, 4 mg/kg DON and 3 mg/kg FB increased the pro-
and anti-inflammatory cytokines, suggesting that combined

FIGURE 8 | Heat map representing Pearson’s r correlation coefficient matrix between cytokine amounts and body weight gain. Heat map showing the
transcriptional fold change of LITAF, IL-1β, IL-10, and IFN-γ in the cecal tonsils of birds fed mycotoxin contaminated diet and induced with necrotic enteritis. The color
scale, −1 (blue) to +1 (red), and the negative value of the coefficient indicate that increased IL-1β and IL-10 mRNA expression levels are inversely affected the body
weight.
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toxins could have adverse effects on intestinal epithelial cells to
modify the cecal tonsils cytokines expression in broilers.
Furthermore, Pearson’s correlation analysis identified
significant negative correlations (p < 0.05) between IL-1β, IL-
10, and body weight. The negative coefficient indicated that the
chronic exposure to mycotoxins increased the IL-1β and IL-10
mRNA transcripts, coinciding with an ultimate decrease in body
weight gain. Activation of the immune system and cytokines
production requires energy resources and affects the production
performance, resulting in a trade-off between immune function
and growth (van der Most et al., 2011). NE infection by itself
increased proinflammatory cytokines, and further synergism
between FB, DON, and NE acerbated the loss in body weight
gain in the FB + DON + NE group.

T cell proliferation involves the activation and differentiation of T
cells into effector and memory subsets which is critical for the
adaptive immune system. CD8+: CD4+ ratio is a marker of immune
dysfunction (Roitt, 1992; Martin et al., 2016). The impairment in
CD4+ T cell regeneration and persistent elevation of CD8+ T cells are
indicators of inflammation that involves gut microbial translocation
(Hirakawa et al., 2020; Ruhnau et al., 2020). In this present study, the
presence of FB + DON decreased the CD8+: CD4+ cell ratio in the
cecal tonsils, and this effect was acerbated in the FB + DON + NE
group compared to the control group. Similar results were observed
in chickens’ peripheral mononuclear cells (PBMCs) when they were
fed contaminated diets containing up to 3.8 μg/g deoxynivalenol
(DON), 0.3 μg/g 15-acetyl DON, and 0.2 μg/g zearalenone (Girgis
et al., 2008). Furthermore, broilers fed 20mg/kg FB and 1.5 mg/kg of
DON had an increased percentage of T lymphocytes, and
CD4+CD25+ in the cecal tonsils (Grenier et al., 2016). In bovine
and porcine PBMCs, a similar kind of trend was observed when they
were fedDONcontaminated diet. In porcine PBMCs, in vitro studies
with DON at 0.4 mM or higher concentration have decreased the
proliferation of CD8+ and CD4+ cells (Novak et al., 2018). Similarly,
beef cattle exposed to 1.7 mg DON and 3.5 mg FB for 21 days has
significantly decreased the CD8+: CD4+ ratio (Duringer et al., 2020;
Roberts et al., 2021). Our studies demonstrated that combined
subclinical doses of FB and DON negatively affected the
proliferation of the CD8+ and CD4+ T cells. FB and DON target
the cell with high protein turnover and inhibit protein synthesis.
CD8+ and CD4+ cells are considered highly proliferative cells
(Overgaard et al., 2015) and are likely highly sensitive to FB and
DON (Taranu et al., 2010; Daenicke et al., 2011). Impaired CD8+

and CD4+ cell proliferation can be expected to compromise the
immune response to NE. Changes in T-helper and cytotoxic T cell
profiles, along with changes in inflammatory cytokines, suggest that
the chicken immune system is altered by chronic exposure to
Fusarium mycotoxins even at a subclinical dose in broiler
chickens leading to impaired resistance to NE. Our results
suggest that the CD8+: CD4+ ratio could be a potential
biomarker of early Fusarium mycotoxin exposure.

Lactobacillus spp. and Bifidobacterium spp. are considered to be
beneficial bacteria in the chicken gut. In this present study, the
subclinical dose of FB and DON decreased the Lactobacillus
spp. load in the ceca. Similar results were found when chickens
were exposed to DON 5mg/kg diet (Antonissen et al., 2015; Guo
et al., 2021). Chronic exposure to subclinical doses of FB and DON

increased the C. perfringens load and caused intestinal dysbiosis, and
hence, this current study identified that FB andDONmycotoxins can
be predisposing factors for C. perfringens-induced NE in chickens.
Increased C. perfringens altered the balance between intestinal
microbiota, with major changes observed in Lactobacillus
spp. (Antonissen et al., 2016; Zhang et al., 2018; Hernandez-Patlan
et al., 2019). The chronic exposure to FB+DON increased the cecalC.
perfringens load but had no effect on Bifidobacterium spp. (Lucke
et al., 2018). Therefore, it can be concluded that chronic exposure to
subclinical doses of combined FB + DON affected the relative
abundance of Lactobacillus spp. and exacerbated the NE by
enhancing intestinal inflammation and shifting the gut
microbiome towards pathogenic microorganisms (Yang et al., 2021).

The findings reported here have significant practical
importance and reflect the real-world problem because of the
common occurrence of Fusarium mycotoxins in poultry feeds
and subclinical necrotic enteritis occurrence in the field.
According to the FDA, the recommended level for FB and
DON in the poultry finished diet is 50 mg/kg and 5 mg/kg
(FDA, 2001; FDA, 2010). The level of FB and DON in the
experimental diets of the current study was much lower than the
FDA tolerance levels. The findings of this study represent the
effects of chronic exposure to the subclinical levels of FB and
DON in broiler chickens and their role in inducing subclinical
necrotic enteritis. Our findings identified the mechanism
through which FB and DON exhibited synergistic effects and
predicted the specific thresholds of combined toxins and their
adverse effects in chickens. Our data suggested that Fusarium
mycotoxins not only directly affected the production
performance but also influenced chicken health by inducing
NE and acerbated the severity of NE.

Our data demonstrated that chronic feeding of a combined dose
of 3 mg/kg FB and 4mg/kg DON in the poultry diet downregulates
the tight junction proteins and increased the severity of NE in broiler
chickens. Chicken diets with FB and DON contamination, even at
subclinical levels, induced a negative impact on performance, altered
small intestinal morphology, and significantly increased the
incidence of NE. In conclusion, the presence of FB and DON
decreased the BWG, increased the FCR, increased gut
permeability, decreased jejunal tight junction protein, increased
inflammatory cytokines in the cecal tonsil, decreased CD8+:CD4+

ratio in the cecal tonsil and spleen, increased C. perfringens load in
the cecal content, and decreased Lactobacillus spp. loads in the cecal
content and predisposed broiler birds to NE.
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