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The response to atrial fibrillation (AF) treatment is differing widely among

patients, and a better understanding of the factors that contribute to these

differences is needed. One important factor may be differences in the

autonomic nervous system (ANS) activity. The atrioventricular (AV) node

plays an important role during AF in modulating heart rate. To study the

effect of the ANS-induced activity on the AV nodal function in AF,

mathematical modelling is a valuable tool. In this study, we present an

extended AV node model that incorporates changes in autonomic tone. The

extension was guided by a distribution-based sensitivity analysis and

incorporates the ANS-induced changes in the refractoriness and conduction

delay. Simulated RR series from the extended model driven by atrial impulse

series obtained from clinical tilt test data were qualitatively evaluated against

clinical RR series in terms of heart rate, RR series variability and RR series

irregularity. The changes to the RR series characteristics during head-down tilt

were replicated by a 10% decrease in conduction delay, while the changes

during head-up tilt were replicated by a 5% decrease in the refractory period

and a 10% decrease in the conduction delay. We demonstrate that the model

extension is needed to replicate ANS-induced changes during tilt, indicating

that the changes in RR series characteristics could not be explained by changes

in atrial activity alone.
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1 Introduction

Atrial fibrillation (AF) is the most common supraventricular tachyarrhythmia

(Hindricks et al., 2020). Characteristic for AF is an increased and irregular atrial

activity that results in a rapid and irregular ventricular activation. Atrial fibrillation is

linked to substantial morbidity and mortality, and is a significant burden to patients,

physicians, and healthcare systems globally. Twomain strategies of AF treatments are rate

control and rhythm control. Rate control is one of the corner stones of AF management,

however the effect of individual rate-control drugs are difficult to predict in advance. This

is why the choice of a rate-control drug today remains empiric and driven largely by their

OPEN ACCESS

EDITED BY

Axel Loewe,
Karlsruhe Institute of Technology,
Germany

REVIEWED BY

Jordi Heijman,
Maastricht University, Netherlands
Alberto Porta,
University of Milan, Italy

*CORRESPONDENCE

Felix Plappert,
felix.plappert@bme.lth.se

SPECIALTY SECTION

This article was submitted to Cardiac
Electrophysiology,
a section of the journal
Frontiers in Physiology

RECEIVED 23 June 2022
ACCEPTED 10 August 2022
PUBLISHED 15 September 2022

CITATION

Plappert F, Wallman M, Abdollahpur M,
Platonov PG, Östenson S and
Sandberg F (2022), An atrioventricular
node model incorporating
autonomic tone.
Front. Physiol. 13:976468.
doi: 10.3389/fphys.2022.976468

COPYRIGHT

© 2022 Plappert, Wallman, Abdollahpur,
Platonov, Östenson and Sandberg. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fphys.2022.976468

https://www.frontiersin.org/articles/10.3389/fphys.2022.976468/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.976468/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.976468&domain=pdf&date_stamp=2022-09-15
mailto:felix.plappert@bme.lth.se
https://doi.org/10.3389/fphys.2022.976468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.976468


safety profile and contraindications rather than predicted

efficacy. Therefore, the complex mechanisms of AF have to be

better understood to personalize the treatment and reduce the

burden of AF on the healthcare system.

It has been shown that the autonomic nervous system (ANS)

is contributing to the initiation andmaintenance of AF (Shen and

Zipes, 2014). Either a predominance in sympathetic or in

parasympathetic modulation has been observed to initiate an

episode of paroxysmal atrial fibrillation (PAF); and in some

patients, both the sympatho-vagal and vagal predominances

have been observed to initiate PAF episodes (Lombardi et al.,

2004). Hence, differences in the ANS activity among patients

may be an important factor behind the inter-patient differences

in response to treatment. To investigate the ANS-induced

changes to the pathophysiology of AF, the effect of the ANS

has to be quantified. One common method to quantify the

autonomic tone during normal sinus rhythm (NSR) is by

heart rate variability (HRV) (Sassi et al., 2015). In sinus

rhythm, HRV can be used to obtain information about the

function of the sinoatrial (SA) node. This information is

valuable for the quantification of the autonomic tone, because

the SA node is densely innervated by the ANS (Shen and Zipes,

2014; George et al., 2017). In AF, however, HRV cannot be used

to quantify the autonomic tone, because the heart beats are not

initiated in the SA node.

Instead, the ventricular rhythm during AF is determined by

the atrial electrical activity and the subsequent AV nodal

modulation. Since the AV node is densely innervated by the

ANS, characterizing the AV nodal behavior during AF may give

valuable information about the autonomic tone. Results from

previous studies suggest that the heart rate, as well as the heart

rate variability, quantified by RR rmssd, and heart rate

irregularity, quantified by RR sample entropy, are affected by

β-blocker induced changes in sympathetic response (Corino

et al., 2015). We hypothesize that such changes in the heart

rate and its variability and irregularity reflect ANS-induced

changes in the AV node. The ANS-induced changes on the

cardiac electrophysiology can be studied using head-up and

head-down tilt test, which in a previous study was shown to

affect electrophysiological properties of atrial myocardium

during AF (Östenson et al., 2017). It is unclear if the changes

in the heart rate and its variability and irregularity are explained

by the changes in the atrial electrophysiology alone or also by

changes in the AV nodal properties. Investigating how the ANS is

modulating the heart rate during AF is a complex task and

requires a model based analysis.

Previously, several AV node models have been proposed that

incorporate important characteristics of the AV nodal structure

and electrophysiology in their design. Characteristic for the AV

node is its dual-pathway physiology enabling a parallel excitation

propagation of impulses with different electrophysiological

properties (George et al., 2017). For example, the slow

pathway (SP) has a longer conduction delay and shorter

refractory period compared to the fast pathway (FP) (George

et al., 2017). Furthermore, the refractory period and conduction

delay are dynamic and depend on the recent history of the

conducted and blocked impulses in the AV nodal tissue

(George et al., 2017; Billette and Tadros, 2019). Early models

of the AV node did not account for the dual-pathway physiology

(Cohen et al., 1983; Jørgensen et al., 2002; Rashidi and

Khodarahmi, 2005; Mangin et al., 2005; Lian et al., 2006).

Later models have incorporated this feature, represented by

separate refractory periods (Corino et al., 2011; Henriksson

et al., 2016; Inada et al., 2017; Wallman and Sandberg, 2018)

and separate conduction delays (Climent et al., 2011b; Inada

et al., 2017; Wallman and Sandberg, 2018). However, no models

have explicitly incorporated ANS-induced changes in their

model description.

Therefore, the aim of the present study is to incorporate

ANS-induced changes into the AV node network model

previously proposed by Wallman and Sandberg, (2018). The

extension of the AV node model was guided by a distribution-

based sensitivity analysis (Pianosi and Wagener 2018) and

incorporates ANS-induced changes in the computation of the

refractoriness and conduction delay. The extended model is

evaluated with respect to its ability to replicate changes in

heart rate and RR series variability and irregularity observed

during head-up and head-down tilt test.

2 Materials and methods

First, the clinical tilt test data is described in Section 2.1. The

RR series characteristics are defined in Section 2.2, followed by

the description of a network model of the AV node (Section 2.3).

A sensitivity analysis on the AV node model is described in

Section 2.4, that identifies the influence of changes in model

parameters on the RR series characteristics. Based on the

sensitivity analysis, the AV node model is modified to account

for ANS-induced changes in AV node characteristics (Section

2.5). The ability of the modified AV node model to replicate ANS

induced changes in RR series characteristics observed during tilt-

test is assessed in Section 2.6. Finally, the statistical analysis is

described in Section 2.7, that is used to determine significant

differences in AFR and RR series characteristics between tilt

positions.

2.1 Tilt test study

The autonomic influence on the RR series characteristics was

analysed using ECG data recorded during a tilt test study

performed by Östenson et al. (2017). Recordings from

24 patients with persistent AF were considered of sufficient

quality for analysis and were included in the present study;

their age was 66 ± 9 (mean ± std), and 63% were men. None
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of the patients had abnormal levels of thyroid hormones, severe

renal failure requiring dialysis, or heart valve disease. None of the

patients were ablated for AF or on any of the Class I or Class III

antiarrhythmic drugs. The tilt test was performed between 1 and

3 p.m. in a quiet study room. Standard 12-lead ECGwas recorded

during supine position, followed by head-down tilt (HDT, -30°)

and then head-up tilt (HUT, +60°). The tilt table was manually

operated and had hand grip and ankle support for HDT and foot

board support for HUT; the patients remained in each position

approximately 5 min. ECG preprocessing and R-peak detection

was performed using the CardioLund ECG parser (www.

cardiolund.com).

2.2 RR series characteristics

The RR series consists of the intervals between consecutive

heartbeats, where the time of a heartbeat is determined by the

corresponding R peak in the ECG signal. In this work, three

statistical measures of the RR series characteristics were used,

quantifying heart rate, heart rate variability and heart rate

irregularity, respectively, defined according to Eqs. 1–3. The

mean of the RR intervals (RR) is computed as

RR � 1
N

∑N
i�1

RRi, (1)

where RRi denotes the i:th RR interval in the RR series. The

root mean square of successive RR interval differences (RRV,

variability) is computed as

RRV �

��������������������
1

N − 1
∑N−1

i�1
RRi+1 − RRi( )2

√√
. (2)

The sample entropy of the RR series (RRI, irregularity) is

computed as

RRI � −ln ∑N−m
i�1 ∑N−m

j�1,j≠ib
m+1
i,j r( )∑N−m

i�1 ∑N−m
j�1,j≠ib

m
i,j r( )

⎛⎝ ⎞⎠, (3)

where the binary variable bli,j(r) with l ∈ m{ , m + 1} has the
value 1 if the maximum absolute distance between corresponding

scalar elements in the vectors Vl
i � RRi{ , RRi+1, . . ., RRi+l−1} and

Vl
j is below the tolerance r times the standard deviation of the RR

interval series, otherwise the value is zero (Richman and

Moorman, 2000). In this study, the parameters were set to

m = 2 and r = 0.2.

2.3 Network model of the human
atrioventricular node

The AV node is modelled by a network of 21 nodes (cf.

Figure 1) (Wallman and Sandberg, 2018; Karlsson et al., 2021).

The AV nodal dual-pathway physiology with a slow pathway

(SP) and a fast pathway (FP) is represented with two chains of

10 nodes each. The last nodes of the two pathways are connected

to each other and to an additional coupling node (CN). Impulses

enter the AV node model simultaneously at the first node of each

pathway and leave the model over the CN. Retrograde

conduction is possible due to the bidirectional conduction

within the pathways and between the last nodes of SP and FP.

Each node represents a section of the AV node and is

described with an individual refractory period RP(Δtk) and

conduction delay DP(Δtk) defined as

RP Δtk( ) � RP
min + ΔRP 1 − e−Δtk/τPR( ), (4)

DP Δtk( ) � DP
min + ΔDPe−Δtk/τPD , (5)

where P ∈ {SP, FP, CN} denotes the association to a pathway.

The electrical excitation propagation through the AV node is

modelled as a series of impulses that can either be passed on or

blocked by a node. This decision is based on the interval Δtk
between the k:th impulse arrival time tk and the end of the (k–1):

th refractory period computed as

Δtk � tk − tk−1 − RP Δtk−1( ). (6)

If Δtk is positive, the impulse is conducted to all adjacent

nodes, otherwise the impulse is blocked due to the ongoing

refractory period RP(Δtk−1). The conduction delay DP(Δtk)
describes the time delay between the arrival of an impulse at a

node and its transmission to all adjacent nodes. If an impulse is

conducted, RP(Δtk) and DP(Δtk) of the current node are updated
according to Eqs. 4–6. For the computation of RP(Δtk) and

DP(Δtk), the nodes in each pathway are characterized by six

parameters, defining minimum refractory period, RP
min;

maximum prolongation of refractory period, ΔRP; time

constant τPR; minimum conduction delay, DP
min; maximum

prolongation of conduction delay, ΔDP; and the time constant

τPD. The SP, FP and CN are modelled with separate vectors

θP � [RP
min, ΔRP, τPR, D

P
min, ΔDP, τPD], all with fixed values.

FIGURE 1
A schematic representation of the AV node model. Note that
retrograde conduction is possible within the AV node model. For
simplicity, only a subset of the ten nodes in each pathway is shown.
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The AV node model processes the impulse propagation

chronologically and node by node, using a priority queue of

nodes, sorted by impulse arrival time; details can be found in

Wallman and Sandberg (2018). The input to the AV node model

is a series of atrial impulses that is used to initialize the priority

queue. As the impulses are conducted to adjacent nodes, new

entries are added to the priority queue. The output of the AV

node model is a series of impulses activating the ventricles.

In this study, the series of atrial impulses during AF is

modelled as a point-process with independent inter-arrival

times according to a Pearson Type IV distribution (Climent

et al., 2011a). Hence, the atrial activation (AA) series is

completely characterized by four parameters, namely the

mean μ, standard deviation σ, skewness γ and kurtosis κ.

2.4 Distribution-based sensitivity analysis

The sensitivity of the three RR series characteristics y �
[RR, RRV, RRI]T to the AV node model and AA series

parameters x � [θSP, θFP, μ, σ]T is evaluated by applying a

distribution-based sensitivity analysis, based on the work of

Pianosi and Wagener, (2018). For the sensitivity analysis,

cumulative distribution functions (CDF) are estimated using a

dataset of K = 250 000 randomly generated model parameter sets

x and the characteristics y of the corresponding simulated RR

series. For each simulation, an atrial impulse series with

60 000 AA intervals was generated using the Pearson Type IV

distribution, with μ randomly drawn from U[100, 250]ms, σ

randomly drawn from U[15, 30]ms, and γ and κ kept fixed to

1 and 6, respectively. The γ and κ were kept fixed since they

cannot be estimated from the f-waves of the ECG. Negative AA

intervals were excluded from the impulse series. The model

parameters θSP and θFP were randomly drawn from bounded

uniform distributions given in Table 1, as previously done in

Karlsson et al. (2021). The θCN were kept fixed according to

Table 1, corresponding to RP(Δtk) and DP(Δtk) of the CN equal to

250 ms and 0 ms, respectively.

The RR series characteristics were computed using a series of

4000 RR intervals corresponding to the first impulses that left the

AV nodemodel through the CN. Two selection criteria were used

to remove non-physiological parameter sets. First, a model

parameter set was only included if the slow pathway had a

lower refractory period RSP(Δtk) < RFP(Δtk) and higher

conduction delay DSP(Δtk) > DFP(Δtk) than the fast pathway

for all Δtk. Second, the resulting RR was required to be in the

range 300 ms ≤RR≤ 1000 ms, corresponding to heart rates

between 60 bpm and 200 bpm. Heart rates below 60 bpm are

disregarded, because the pacemaker function of the AV node,

that becomes relevant in this case (George et al., 2017), is not

incorporated in the AV node model. Heart rates above 200 bpm

are disregarded based on a reported minimum refractory period

in the bundle branches of around 300 ms (Denes et al., 1974).

A sensitivity coefficient Sn,m is computed for each pair of

model parameter xn and RR series characteristic ym, where xn is

the n:th element in x and ym is the m-th element in y. The Sn,m

indicates how much a change in model parameter xn affects the

distribution of ym and is defined as

Sn,m � median
c�1,...,C

median
d�1,...,D

KS F d( )
ym

ym( ), Fym |xn ym|xn ∈ I c( )( ),
(7)

where KS(F(d)
ym

(ym), Fym|xn(ym|xn ∈ I c)) is the

Kolmogorov-Smirnov (KS) distance between the

unconditional CDF F(d)
ym

(ym) and the conditional CDF

Fym |xn(ym|xn ∈ I c). When estimating Fym|xn(ym|xn ∈ I c), the
range of variation of xn is split into C = 15 equally spaced

conditioning intervals I c, with c = 1, . . ., C (cf. Figure 2A). All

samples within I c are used to estimate the corresponding

Fym |xn(ym|xn ∈ I c) (cf. Figure 2B). To generate the set of

F(d)
ym

(ym), with d = 1, . . ., D, a subset of K/C samples are

bootstrapped D = 1000 times (cf. Figures 2A,B). The KS

distance is defined as

KS F1 y( ), F2 y( )( ) � max
y

F1 y( ) − F2 y( )∣∣∣∣ ∣∣∣∣. (8)

As the F(d)
ym

(ym) and Fym|xn(ym|xn ∈ I c) are approximations

based on a finite number of samples, parameters that have no

influence on ym can result in Sn,m above zero. The impact of

approximation errors on Sn,m can be estimated for each ym using

a dummy parameter Dm defined as

Dm � median
d�2,...,D

KS F d( )
ym

ym( ), F 1( )
ym

ym( )( ), (9)

A model parameter xn is determined to have influence on ym
if and only if Sn,m >Dm.

2.5 Extended atrioventricular node model
accounting for autonomic nervous system
induced changes

The results from the sensitivity analysis (Section 3.1) indicate

that changes in both the AV node model parameters and the AA

TABLE 1 Model parameters used for the sensitivity analysis.

Parameters SP (ms) FP (ms) CN (ms)

Rmin U[250, 600] U[250, 600] 250

ΔR U[0, 600] U[0, 600] 0

τR U[50, 300] U[50, 300] 1

Dmin U[0, 30] U[0, 30] 0

ΔD U[0, 75] U[0, 75] 0

τD U[50, 300] U[50, 300] 1
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series parameters have an influence on the RR series

characteristics. Based on this, the AV node model described in

Section 2.3 is extended to account for ANS-induced changes in

the AA series by allowing μ(t) and σ(t) of the Pearson Type IV

distribution to vary over time. Moreover, the AV nodemodel was

extended by two scaling factors AR and AD, accounting for the

effect of changes in autonomic tone on refractory period (AR) and

on conduction delay (AD).

RP Δtk, AR( ) � AR · RP Δtk( ) � AR RP
min + ΔRP 1 − e−Δtk/τPR( )( )

(10)
DP Δtk, AD( ) � AD ·DP Δtk( ) � AD DP

min + ΔDPe−Δtk/τPD( ) (11)

The factors AR and AD model the combined effect of changes

in sympathetic and parasympathetic activity and do not differ

between the SP, FP and CN.

FIGURE 2
Illustration of the distribution-based sensitivity analysis. (A) RR plotted against one of the model parameters ΔRSP. The samples that are used to
estimate the conditional CDFs Fym |xn(ym|xn ∈ Ic) are illustrated as circles and the conditioning intervals Ic are illustratedwith vertical dotted lines. The
samples that are used to estimate the unconditional CDF F(d)ym

(ym) are illustrated as diamonds. (B) Fym |xn(ym|xn ∈ Ic) are illustrated as black lines,
where the leftmost line corresponds to Fym |xn(ym|xn ∈ I 1)with the lowest ΔRSP values and the rightmost line corresponds to Fym |xn(ym|xn ∈ I 15).
The 1,000 F(d)ym

(ym) lay all within the area illustrated by the red patch. (C) Each of the 15 squares correspond to
median
d�1,...,D

KS(F(d)ym
(ym), Fym |xn(ym|xn ∈ Ic)).

FIGURE 3
Schematic illustrating how the clinical and simulated RR series characteristic trends are computed.
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2.6 Tilt-induced changes in extended
atrioventricular node model

In this section, the extended AV node model proposed in

Section 2.5 is investigated with respect to its ability to mimic tilt-

induced changes in RR series characteristics.

The clinical ECG signals (cf. Section 2.1) are used to generate

AA series for the AV node model input and to compare the

characteristics of the simulated RR series to the clinical RR series

(cf. Figure 3). For this purpose, a continuous 15-min ECG signal

with 5 minutes per supine, HDT and HUT position was desired

for each patient. In the clinical data, however, the length of the

three tilt positions varied between patients with the supine

position being between 5 and 13 min, HDT being between

5 and 7 min and HUT being between 5 and 9 min. For two

patients, there was an additional minute in supine position

between the HDT and HUT. The ECG signals were aligned to

the middle of the HDT section and a 15-min long segment

centered around the same midpoint was chosen for each patient

(cf. Figure 4).

The clinical RR series characteristic trends RR
C(t, p),

RRC
V(t, p) and RRC

I(t, p) for each patient p are computed

from the RR intervals using a sliding window of length N

according to Eqs. 1–3 (cf. Figure 3). For RRV and RRI, N is

set to 200, because shorter RR interval series might lead to

inaccuracies in the sample entropy computation (Yentes et al.,

2013). For RR, N is set to 100, as its computation is more robust

than the computation of RRV and RRI and shorter RR interval

series allow for a better temporal resolution. RR intervals in the

clinical RR series preceding and following ectopic beats were

excluded. For the computation of RRI according to Eq. 3, vectors

Vl
i with excluded RR intervals were omitted. The RR series

characteristic trends of each patient RR
C(t, p), RRC

V(t, p) and

RRC
I(t, p) were averaged over all 24 patients to obtain

population-averaged clinical trends RR
C(t), RRC

V(t) and

RRC
I(t) (cf. Figure 3).

For the generation of the AA series, first, an atrial fibrillatory

rate (AFR) trend is estimated from each 15-min ECG segment

(cf. Figure 3). The AFR is estimated by fitting a complex

sinusoidal model to the f-waves of the ECG, following

spatiotemporal QRST cancellation, as described in Henriksson

et al. (2018). From each of the resulting AFR trends, the AA series

parameters μ(t, p) and σ(t, p) are estimated by the mean and

standard deviation of 1/AFR using 1-min sliding windows; the

resolution of the AFR trend is 0.02 s (cf. Figure 3). Then, μ(t, p)

and σ(t, p) are averaged over all 24 patients, resulting in the

population-averaged trends μ(t) and σ(t) (cf. Figure 3). Finally,

the AA series is iteratively generated (cf. Figure 3). The first AA

interval is drawn from the Pearson Type IV distribution with

μ(0) and σ(0), and each consecutive AA interval is drawn from

the distribution with μ(ti) and σ(ti) where ti corresponds to the

accumulated time of the previous AA intervals. The γ and κ of the

Pearson Type IV distribution were kept fixed to 1 and 6,

respectively.

For the simulations using the original and extended model, a

set of 240 AV node model parameter vectors x′ �
[θSP, θFP, θCN]T were generated (cf. Figure 3). Ten parameter

vectors per patient were selected from a set of randomly drawn

parameter sets based on their ability to replicate the RR series

characteristics of the 5-min long supine segment of the respective

patient. A detailed description of the parameter sets and the

selection process can be found in the Supplementary Section 1.

The ranges of the model parameters in the 240 parameter sets are

given in Table 2.

For the computation of simulated RR series characteristic

trends using the original and the extended model, respectively,

simulations were performed with each of the 240 parameter sets

using 10 different realizations of the AA series generated from

μ(t) and σ(t). In the original model, the scaling factors AR and AD

are not included, which is equivalent to the extendedmodel using

AR = 1 and AD = 1 (cf. Figure 3). In the extended model, AR and

AD were allowed to change between supine and HDT and

between HDT and HUT, respectively, but were assumed to

remain constant within each position. Hence, for the extended

model, AR and AD were set to 1 in the supine position, and

different combinations of AR ∈ {0.95, 1, 1.05} and AD ∈ {0.8, 1,

FIGURE 4
Tilt recordings of 24 patients divided into supine (blue), HDT
(red) and HUT (yellow). The bars represent the length of the
recorded ECG data. All recordings are centered along the middle
of the HDT section.

TABLE 2 Ranges of the 240model parameters used for the illustration
(mean ± std).

Parameters SP (ms) FP (ms) CN (ms)

Rmin 339 ± 77 493 ± 82 250 ± 0

ΔR 232 ± 112 369 ± 161 0 ± 0

τR 160 ± 77 162 ± 72 1 ± 0

Dmin 20 ± 7 7 ± 6 0 ± 0

ΔD 39 ± 20 23 ± 16 0 ± 0

τD 171 ± 71 163 ± 70 1 ± 0
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1.2} were used for the simulations during HDT and HUT. For

each simulation s, the mean RR interval trends RR
O(t, s) and

RR
E(t, s) were computed from the RR interval series using a

sliding window of length N = 100 (cf. Eq. 1). Whereas the RR

variability and RR irregularity trends RRO
V(t, s) and RRO

I(t, s), as
well as RRE

V(t, s) and RRE
I(t, s) were computed from the RR

interval series using a sliding window of lengthN = 200 (cf. Eqs. 2

and 3). The simulated RR series characteristic trends were

averaged over all parameter sets and realizations to obtain the

population-averaged simulated trends RR
O(t), RRO

V(t) and

RRO
I(t) for the original model and RR

E(t), RRE
V(t) and RRE

I(t)
for the extended model (cf. Figure 3).

2.7 Statistical analysis

A Wilcoxon signed rank test was applied to determine if

AFR, RR, RRV and RRI differed significantly between supine,

HDT and HUT. For the analysis, the AFR and RR series

characteristics were computed for each patient and tilt

position using the 5-min long ECG segments (cf. Figure 4). A

p-value < 0.05 was considered significant.

3 Results

3.1 Sensitivity analysis

Results from the distribution-based sensitivity analysis (described

in Section 2.4) with respect to the influence of the AV node model

parameters on RR series characteristics are shown in Figure 5. Heart

rate, quantified by RR is predominantly sensitive to changes in the

refractory period parameters with the four largest contributors being

the Rmin and ΔR parameters of both pathways. In contrast, the

changes in the conduction delay had little influence on the RR, with

ΔDSP being the only conduction delay parameter that is slightly above

the dummy threshold. Changes in the mean of the AA series μ were

also influential on the RR, while changes in the standard deviation σ

of the AA series are not considered to have influence to changes in

RR.

For RRV quantifying RR series variability, nearly all model

parameters of the refractory period, conduction delay and AA

series had sensitivity coefficients above the dummy threshold.

The four largest contributors to changes in the RRV were the ΔR
parameters of both pathways, as well as the minimum refractory

period and minimum conduction delay of the fast pathway, RFP
min

and DFP
min.

The RRI quantifying RR series irregularity was also influenced by

most model parameters of the refractory period, conduction delay

and AA series. The four largest contributors were the minimum

refractory period of the slow pathway RSP
min, the standard deviation σ

of the AA series and the maximum prolongation of the refractory

period and conduction delay of the slow pathway, ΔRSP and ΔDSP.

3.2 Clinical data

The AFR decreased significantly from the supine position to

HDT and increased significantly from HDT to HUT, where the

FIGURE 5
Distribution-based sensitivity indices describing the influence of changes in the 14 model parameters to changes in the three RR series
characteristics. A model parameter is assumed to have influence on the RR series characteristics if the sensitivity coefficient is above the threshold of
the dummy parameter (horizontal black line), otherwise it is not influential and illustrated with a white bar. The black vertical line illustrates the 95%
confidence interval of the t bootstrapping iterations of the sensitivity coefficient. The ranking of the four most influential model parameters for
each RR series characteristic is shown with the numbers above the bars.

TABLE 3 Mean ± std of AFR and RR series characteristics of the
24 patients in the study population for each tilt position.

Tilt Position Supine HDT HUT

AFR mean (Hz) 6.78 ± 0.64 6.62 ± 0.7** 6.84 ± 0.63*,†

RR (ms) 656 ± 126 642 ± 111* 613 ± 115**,†

RRV (ms) 192 ± 54 182 ± 45 176 ± 51**

RRI 2.09 ± 0.2 2.05 ± 0.28 1.95 ± 0.31**

HDT, head-down tilt; HUT, head-up tilt. *p < 0.05 vs Supine. **p < 0.01 vs Supine. †p <
0.05 vs HDT.
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AFR during HUT was significantly higher than during supine

(Table 3). The heart rate increased during HDT and increased

further during HUT (Table 3). The results align with the

observations of Östenson et al. (2017). The variability and

irregularity of the RR series decreased during HDT and

decreased further during HUT (Table 3). For the variability

and irregularity of the RR series, only the differences between

supine and HUT were statistically significant.

3.3 Tilt-induced changes in
atrioventricular node model

The average of μ(t) and σ(t) over all 24 patients is illustrated

in Figure 6. The μ(t) shows a clear variation during HDT and

HUT, but not in supine position, where μ(t) was approximately

constant around 150 ms. Compared to μ(t) during supine

position, μ(t) increased during HDT and decreased during

HUT (cf. Figure 6).

In Figure 7, the characteristics RR
C(t), RRC

V(t) and RRC
I(t)

estimated from clinical data during tilt test are illustrated. It can

be seen that RR
C(t), RRC

V(t) and RRC
I(t) are decreasing from

supine to HDT and decreasing further fromHDT to HUT.When

performing the simulations with the original model, RR
O(t),

RRO
V(t) and RRO

I(t) are decreasing from supine to HDT, but

increasing fromHDT to HUT.When performing the simulations

with the extended model, RR
E(t), RRE

V(t) and RRE
I(t) are

decreasing from supine to HDT and decreasing further from

HDT to HUT. Comparing the clinical and simulated trends of

RR(t) and RRV(t), it can be seen that the extended model

accounting for ANS-induced changes can better replicate the

observed changes to the clinical RR series characteristics

compared to the original model. For RRI(t), both the original

and extended model produce RR series that are more regular

than the clinical RR series, as the irregularity quantified by the

sample entropy is higher for the clinical RR series. For the

simulated RR series characteristics of the extended model, the

average of RR
E(t), RRE

V(t) and RRE
I(t) during the 5 min in HDT

and HUT were illustrated for the nine different combinations of

AR ∈ {0.95, 1, 1.05} and AD ∈ {0.9, 1, 1.1}. For RRE(t), RRE
V(t) and

RRE
I(t), an increase in AR causes an increase, and for RR

E(t) and
RRE

V(t), an increase in AD causes an increase. However, for

RRE
I(t), an increase in AD instead causes a decrease. The RR

E(t),
RRE

V(t) and RRE
I(t) are obtained using AR = 1 and AD = 0.9

during HDT and AR = 0.95 and AD = 0.9 during HUT and are

displayed in Figure 7; the scaling factors were chosen so that the

resulting RR
E(t) and RRE

V(t) matches RR
C(t) and RRC

V(t).

4 Discussion

The aim of this study was to extend the AV node model

(Wallman and Sandberg, 2018) to incorporate ANS-induced

changes. The extension of the AV node model was guided by

a distribution-based sensitivity analysis. The sensitivity analysis

indicated that the refractory period and conduction delay

parameters as well as the atrial impulse series had a

significant influence on the heart rate as well as the variability

and the irregularity of the RR series, while the most influential

parameters were predominantly those describing the refractory

period. Rather than modelling the effect of the sympathetic and

parasympathetic activity separately, we describe the joint effects,

i.e., the autonomic tone. We proposed an extension to the AV

node model that accounts for the ANS-induced changes by

introducing scaling factors for the refractory period and

conduction delay. The capability of the extended AV node

model to replicate ANS-induced changes was investigated by

comparison to ECG data acquired during tilt test.

Our results (Figure 7) indicate that the extended model, but not

the original, could replicate the observed changes in the clinical RR

series characteristics during HUT and HDT, since the changes in RR

series characteristics could not be explained by changes in atrial

activity alone. TheRR
E(t),RRE

V(t) andRRE
I(t) (Figure 7) show that a

decrease in refractory period and conduction delay allow the model

to replicate the decrease in RR
C(t), RRC

V(t) and RRC
I(t). Conversely,

if the refractory period and conduction delay are kept fixed for

RR
O(t), RRO

V(t) and RRO
I(t), all three RR series characteristics

increase during HUT, which is the opposite direction of change

of RR
C(t), RRC

V(t) and RRC
I(t). When comparing RRO

I(t) and

RRE
I(t) with RRC

I(t), it can be seen that the sample entropy of

the simulated RR series is lower than that of the clinical RR series.

This highlights that the simulated RR series aremore regular than the

clinical RR series. One possible explanation for a lower irregularity in

simulated RR series is the lack of short-term variations in AV node

refractoriness and conduction delay. Such short-term variations may

be induced by respiratory modulation in ANS activity. Thus, a

natural next step in our model development will be to

incorporate the respiratory modulation of the ANS, likely via

periodical variations in the scaling factors AR and AD.

FIGURE 6
Averaged mean and standard deviation of the AA series
estimated from ECG recordings of 24 patients. The first 5 minwere
during supine position, followed by 5 min of HDT and 5 min of
HUT. The horizontal dotted line illustrates the average of the
μ trend during the first 5 min.
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Many electrophysiological (EP) studies have demonstrated

that an increase in sympathetic activity is causing a decrease in

the human AV nodal conduction delay (Lister et al., 1965;

Dhingra et al., 1973; Morady et al., 1988; Cossú et al., 1997)

and a decrease in the refractory period (Morady et al., 1988;

Cossú et al., 1997). Moreover, a decrease in sympathetic activity

in the human AV node is causing an increase in conduction delay

and refractory period (Morady et al., 1988). Head-up tilt is

associated with increased sympathetic tone, and it has been

demonstrated that the AV nodal conduction delay and

refractory period decrease when changing the posture from

supine to standing (Hashimoto et al., 1991). The results in

Figure 7 confirm that a reduction in the conduction delay

using AD = 0.9 and a reduction in the refractory period using

AR = 0.95 better replicate the observed changes in the clinical RR

series characteristics than the original model during HUT.

Decreases in refractory period and conduction delay of up to

30% in response to isoproterenol-induced increases in

sympathetic activity have been reported (Lister et al., 1965;

Dhingra et al., 1973; Cossú et al., 1997). However, when

considering that the reported changes in heart rate due to the

isoproterenol administration is larger than the observed changes

in RR during tilt, the parameter choice of AD = 0.9 and AR = 0.95

are reasonable for the tilt test data used in this study.

Increased parasympathetic activity has been associated with

an increased conduction delay (Martin, 1977); studies in dogs

reported an increased conduction delay with acetylcholine

administration (Priola et al., 1983; Bertrix et al., 1984) and

vagal stimulation (Spear and Moore, 1973; Martin, 1975;

Pirola and Potter, 1990). Moreover, there are indications that

an increased parasympathetic activity is associated with an

increased refractory period (Martin, 1977); experimental

studies using rabbit hearts reported an increased AV-nodal

refractory period (West and Toda, 1967) and occurrences of

2:1 AV nodal block (Cranefield et al., 1959) with acetylcholine

administration, and studies in dogs reported occurrences of AV

block with acetylcholine administration (Hageman et al., 1985)

and vagal stimulation (Spear and Moore, 1973; Hageman et al.,

1985).

It is unclear how the HDT affects the sympathetic and

parasympathetic activity. The results in Figure 7 show that a

reduction in the conduction delay using AD = 0.9 and no

modification of the refractory period using AR = 1 better

replicate the observed changes in the clinical RR series

characteristics than the original model during HDT. These

results are consistent with possible slight increase in

sympathetic tone provoked by HDT. However, other

interpretations are possible. Nagaya et al. (1995) postulated a

diminished sympathetic activity in HDT. Under that hypothesis,

the results in Figure 7 suggest a decrease in parasympathetic tone

to revert the direction of change caused by a decreased

sympathetic tone. It should be noted that the model presented

here does not distinguish between these two possibilities, since

FIGURE 7
Average clinical RR series characteristics (A) RR

C(t) (B) RRC
V(t)

and (C) RRC
I (t) (yellow) and average simulated RR series

characteristics for the original model (A) RR
O(t) (B) RRO

V (t) and (C)
RRO

I (t) (red) and average simulated RR series characteristics
for the extended model (A) RR

E(t) (B) RRE
V(t) and (C) RRE

I(t) (blue).
The dashed black lines mark the transition between the supine and
HDT, and HDT and HUT, respectively. Horizontal black lines show
5-min averages of RR

E(t), RRE
V(t) and RRE

I(t) during HDT or HUT
with AR as indicated and AD = 1. Arrows show the impact of
perturbing AD by +0.1 (arrow pointing up) or −0.1 (arrow pointing
down).
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AD and AR are modelling the joint effect of changes in

parasympathetic and sympathetic activity. Hence, the scale

factor AD = 0.9 during HDT could be reflecting either a slight

increase in sympathetic activity, a slight decrease in

parasympathetic activity, a larger increase in sympathetic

activity combined with an increase in parasympathetic

activity, or a large decrease in parasympathetic activity

combined with a decrease in sympathetic activity.

The set of scaling factors AR and AD used to create RR
E(t),

RRE
V(t) and RRE

I(t) in Figure 7 results in RR series characteristics

similar to that observed during HDT and HUT. The results in

Figure 7 show that a scaling factor AR below 1, i.e., a decrease of

the refractory period, causes a decrease in RR
E(t), RRE

V(t) and
RRE

I(t). Conversely, a scaling factorAR above 1, i.e., an increase of

the refractory period, causes an increase in RR
E(t), RRE

V(t) and
RRE

I(t). A scaling factor AD below 1, i.e., a decrease in conduction

delay, causes a decrease in RR
E(t), RRE

V(t) and vice versa. The

opposite relationship can be seen for the RR series irregularity,

where a scaling factor AD below 1 causes an increase in RRE
I(t)

and vice versa. Moreover, when considering one RR series

characteristic at a time, it can be anticipated in Figure 7 that

the same 5-min average value of the RR series characteristics can

be achieved with different combinations of AR and AD. Hence,

considering all three RR series characteristics simultaneously

increases the likelihood of identifying a unique pair of scaling

factors AR and AD that fits the observed data.

To reduce the complexity of the model, the refractoriness and

conduction delay of the SP, FP and CN aremodified with the same

AR and AD. However, due to the structural and molecular

heterogeneity of the different pathways, it is likely that the

ANS-induced changes affect each pathway differently (George

et al., 2017). In rabbit hearts, it was reported that acetylcholine

strongly affects fibers of the atrionodal junction but does not show

any effect in the lower part of the node or the bundle of His

(Trautwein, 1963). In the description of the AV node model, the

CN is merging the impulses from the SP and FP and its refractory

period and conduction delay is independent of Δtk. In contrast to

Karlsson et al. (2021),RCN
min was set to theminimumof the bounded

uniform distributions for the RSP
min and the RFP

min given in Table 1.

Further, the conduction delay of the CN was set to 0, as other

choices of a constant conduction delay would not have changed the

resulting RR series. In previous work on the network model

(Wallman and Sandberg, 2018; Karlsson et al., 2021), the AA

interval series was modelled as a Poisson process. However, based

on results of Climent et al. (2011a), a Pearson Type IV distribution

better reproduces the statistical properties of the AA interval series

during AF and was therefore chosen in the present study. The

mean and standard deviation of the Pearson Type IV distribution

were determined from the mean and standard deviation of the

AFR. However, the skewness and kurtosis were fixed, as their

sensitivity coefficients were uninfluential (data not shown) and

since there is no straight-forward way to estimate these parameters

from the f-waves of the ECG.

In the present study, the ability of the extended model to

mimic tilt-induced changes was investigated using data from a

previous study (Östenson et al., 2017), with tilt angles fixed to

-30° in HDT and 60° in HUT, respectively. Different tilt angles of

the tilt, i.e., different magnitude of the orthostatic stimulus, may

affect the ANS response and hence the resulting RR series

characteristics. Previous results from patients in normal sinus

rhythm show that the sample entropy of the RR series was

decreasing during HUT from 0° to 60° but remained roughly

constant from 60° to 90° (Porta et al., 2007). Based on these

results, we assume that the tilt angle of 60° is sufficiently large to

induce changes in autonomic tone. Access to data from patients

with AF during other tilt-inclinations could potentially be used to

refine the model to take the degree on inclination into account.

The tilt-induced changes in RR series irregularity observed in the

present study are in line with the results in Patel et al. (2018),

where a decrease in RR sample entropy in response to HUT in

patients with AF was reported. The tilt-induced changes in RR

series irregularity observed in the present study are also in line

with the changes reported for patients in normal sinus rhythm

during HUT (Porta et al., 2007). Results from previous studies

suggest that the RR series irregularity during normal sinus

rhythm increase in response to HDT (Porta et al., 2015),

whereas a slight but not significant decrease was observed in

the present study with patients in AF. However, it should be

noted that origin of RR series variability and irregularity during

AF differs from that during normal sinus rhythm and hence, the

interpretation of the results with respect to autonomic tone may

be different.

The effect of the ANS-induced activity was investigated with

respect to its ability to mimic the population-averaged changes

observed during tilt test. The RMSSD and sample entropy were

used to quantify RR series variability and irregularity,

respectively, since these statistical measures have been used in

previous studies to assess changes in RR series characteristics

during AF in response to drugs (Corino et al., 2015) and tilt-test

(Patel et al., 2018). Population-averaged trends were chosen over

the trends of individual patients to reduce the uncertainty in the

estimation of the clinical RRV and RRI trends. The parameter sets

used for the simulations in Section 2.6 were selected to be

representative of the patients in the present study based on

their ability to replicate RR series characteristics observed

during supine position. However, it should be noted that

fitting of the model to individual patients is outside the scope

of the present study. Due to the short measurement duration of

the clinical data, a robust estimation of individual model

parameters is not to be expected with the present

methodology (Karlsson et al., 2021). Longer measurements

from more patients will allow model development and

evaluation on a patient-specific basis, forming an attractive

next step.

A distribution-based sensitivity analysis was chosen over a

variance-based method, because the distributions of the
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simulated RR series characteristics are highly-skewed and multi-

modal. Hence, variance alone cannot adequately represent the

uncertainty (Pianosi andWagener, 2018). Instead, a distribution-

based method characterizes the uncertainty and sensitivity by

investigating the entire distribution of the model outputs

(Pianosi and Wagener, 2018). The results of the sensitivity

analysis in Figure 5 indicate that τSPD is the only model

parameter that is uninfluential, since the sensitivity

coefficients for all three RR series characteristics are below the

dummy threshold. One important outcome of the sensitivity

analysis therefore is that the refractory period and conduction

delay of the AV node as well as the atrial input are influencing the

RR series characteristics. For simplicity, we are proposing a linear

scaling of refractory period and conduction delay parameters, but

it would be interesting to refine this model description in the light

of additional clinical data. It should be noted that the sensitivity

coefficients Sn,m are quantifying sensitivity on a global scale, and

that there may be large local variations. As a result, the extent of

variation in RR(t), RRV(t) and RRI(t) for a set of scaling factors

AR and AD depend on the model parameters. For example, in

Figure 7, it is clear that the scaling factor AD affects RR(t), while
the sensitivity analysis (Figure 5) indicates that the influence of

changes in conduction delay on RR(t) is very limited on a global

scale.

In the present study, the estimates in RRE
V(t) and RRE

I(t)
were based on sliding windows of N = 200 RR intervals. The

choice of N is a tradeoff between estimation accuracy and

time resolution. The sample entropy estimation is expected to

stabilize with greater N and a minimum of N ≥ 200 was

recommended by Yentes et al. (2013). In the present study, N

was chosen as short as possible in favour of time resolution to

investigate the ANS-induced changes in the RR series

characteristics during tilt. To accommodate the estimation

uncertainty resulting from a small N, the simulated RR series

characteristics trends were averaged over 10 repeated

simulations for 240 different parameter sets. For the

sensitivity analysis, N was chosen to be 4,000 in favour of

estimation accuracy since the simulation was stationary.

While ANS modulation has been extensively studied

during normal sinus rhythm (Porta et al., 2007; Porta

et al., 2015; Sassi et al., 2015; Patel et al., 2018), no

attempts have been made towards the estimation of ANS

modulation during persistent AF. The present study is a first

step towards developing a model of the AV node that will

ultimately be used to quantify ANS modulation on a patient

specific basis by fitting to RR interval series and information

on atrial electrical activity obtained from clinical ECG

recordings. The results (Figure 7) show that the proposed

extended model of the AV node accounting for changes in

autonomic tone can better replicate changes in RR series

characteristics observed during tilt-test than the original

model, implying that this is a viable approach to take.

Further developments are needed to incorporate ANS

modulation in the model and methodology for robust

estimation of such modulation from clinical data.

5 Conclusion

Wepresent an extended AVnodemodel that incorporates ANS-

induced changes. The extension was guided by a distribution-based

sensitivity analysis showing that changes in refractoriness and

conduction delay of the AV node as well as changes in atrial

activity significantly influence the RR series characteristics. We

demonstrate that the model extension is needed to replicate the

changes in heart rate and RR series variability and irregularity

observed during head-up and head-down tilt.
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