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Background: Current research suggests that continuous aerobic exercise can be
effective in improving vascular endothelial function, while the effect between
different intensities and durations of exercise is unclear. The aim of this study was
to explore the effect of different durations and intensities of aerobic exercise on
vascular endothelial function in different populations.

Methods: Searches were performed in PubMed, Web of Science, and EBSCO
databases. We included studies that satisfied the following criteria: 1) randomized
controlled trials (RCTs); 2) including both an intervention and control group; 3)
using flow-mediated dilation (FMD) as the outcome measure; and 4) testing FMD
on the brachial artery.

Results: From 3,368 search records initially identified, 41 studies were eligible for
meta-analysis. There was a significant effect of continuous aerobic exercise on
improving flow-mediated dilation (FMD) [weighted mean difference (WMD), 2.55,
(95%CI, 1.93–3.16), p < 0.001]. Specifically,moderate-intensity [2.92 (2.02–3.825),
p < 0.001] and vigorous-intensity exercise [2.58 (1.64–3.53), p < 0.001]
significantly increased FMD. In addition, a longer duration [<12 weeks, 2.25
(1.54–2.95), p < 0.001; ≥12 weeks, 2.74 (1.95–3.54), p < 0.001], an older age
[age <45, 2.09 (0.78–3.40), p = 0.002; 45 ≤ age <60, 2.25 (1.49–3.01), p < 0.001;
age ≥60, 2.62 (1.31–3.94), p < 0.001], a larger basal body mass index (BMI) [20 <
BMI < 25, 1.43 (0.98–1.88), p < 0.001; 25 ≤ BMI < 30, 2.49 (1.07–3.90), p < 0.001;
BMI ≥ 30, 3.05 (1.69–4.42), p < 0.001], and a worse basal FMD [FMD < 4, 2.71
(0.92–4.49), p = 0.003; 4 ≤ FMD < 7, 2.63 (2.03–3.23), p < 0.001] were associated
with larger improvements in FMD.

Conclusion: Continuous aerobic exercise, especially moderate-intensity and
vigorous-intensity aerobic exercise, contributed to improving FMD. The effect
of continuous aerobic exercise on improving FMD was associated with duration
and participant’s characteristics. Specifically, a longer duration, an older age, a
larger basal BMI, and a worse basal FMD contributed to more significant
improvements in FMD.

Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/
display_record.php?RecordID=341442], identifier [CRD42022341442].
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Introduction

The most common cause of mortality and morbidity
worldwide is cardiovascular disease (CVD) (Townsend et al.,
2015; Timmis et al., 2018; Kajikawa and Higashi, 2021), and
studies have shown that CVD increases the incidence and
mortality of other diseases (Clerkin et al., 2020), e.g., patients
with underlying CVD may be at an increased risk for COVID-19
infection and mortality (Huang et al., 2020). Early evidence
suggests that endothelial dysfunction, especially impaired
endothelium-dependent vasodilation, is closely correlated with
the emergence of various CVDs, such as hypertension,
atherosclerosis, cardiac failure, and apoplexia (Lloyd-Jones
et al., 2010; Tornero-Aguilera et al., 2022). Endothelial
dysfunction is the initiating link of atherosclerosis (Thijssen
et al., 2011), and early intervention in this link can effectively
reverse the development of atherosclerosis (Thijssen et al., 2019).
Flow-mediated dilation (FMD) describes the vasodilatory
response to increasing shear stress in the brachial artery,
which is currently used as a golden standard in evaluating
endothelial function (Anderson and Mark, 1989). Several
studies have shown that brachial artery FMD is a freestanding
predictor of cardiovascular events (Gokce et al., 2002) and all-
cause mortality (Xu et al., 2014a).

There is no doubt that absence of physical activity is one of
the most significant CVD risk factors that can be modified
(Haskell et al., 2007; Lee et al., 2012). The epidemiologic
studies have shown that regular exercise, especially regular
aerobic exercise, can promote cardiovascular function and
reduce overall disease mortality (Bernardo et al., 2018; Wu
et al., 2019). And even substantial evidence suggests that
people who are physically active have a much higher
percentage of survivors after a cardiovascular incident than
those who are sedentary, and also describes the beneficial
effects of physical activity on heart failure (Brandt et al.,
2018). Previous studies have shown that aerobic exercise is
superior to other types of exercise in improving vascular
endothelial function (Kwon et al., 2011; O’Brien et al., 2020).
Short-term aerobic exercise has been shown to significantly
ameliorate the function of the endothelium of the brachial
artery in male patients with chronic stable heart failure
(Belardinelli et al., 2005). Meanwhile, a randomized
controlled study found that 12 weeks of continuous aerobic
exercise did not significantly improve endothelial function
(Molmen-Hansen et al., 2012). And the relationship between
aerobic exercise intensity and improvement in endothelial
function is currently controversial. One study found that
vigorous-intensity aerobic exercise significantly ameliorated
endothelial function, whereas moderate-intensity aerobic
exercise did not improve FMD (You et al., 2021). However,
some studies show that low- or vigorous-intensity aerobic
exercise does not improve FMD, a moderate-intensity aerobic
exercise program can improve endothelial-dependent

vasodilation (Goto et al., 2003; Goto et al., 2007). Therefore,
the duration and the intensity of the continuous aerobic exercise
are the key factors that affect the effects of intervene.
Additionally, aerobic exercise affects vascular endothelial
function differently based on the characteristics of the
individual. However, some studies showed that aerobic
exercise has no significant associations with FMD and
baseline endothelial function in non-elderly healthy men and
obese patients with type 2 diabetes (Wycherley et al., 2008; Swift
et al., 2012; Shenouda et al., 2017).

Therefore, this systematic review and meta-analysis was
conducted to investigate the effect of different durations and
intensities of continuous aerobic exercise on the vascular
endothelial function in people with different characteristics.

Methods

Design

According to PRIMA guidelines, this meta-analysis was
conducted following preferred reporting items for systematic
reviews and meta-analysis (PRISMA) (Page et al., 2021). The
protocol for this systematic review has been registered on
PROSPERO (CRD42022341442).

Search strategy

For this systematic review and meta-analysis, we searched
PubMed, Web of Science, and EBSCO electronic databases,
through December 2021. The initial search consisted of the
following MESH terms and keywords: aerobic exercise, flow-
mediated dilation, and vascular endothelial function. We also
hand-searched reference lists of all identified studies and, in
addition, references of reviews and meta-analyses for any
additional relevant studies that could be added to the relevant
literature. Two authors (XT and YC) completed the process
independently using a standardized form. If there was
disagreement between the two authors, a third author (LY)
would join the discussion until the three reach a consensus.

Eligibility criteria

We included studies that satisfied the following criteria: eligible
studies should 1) be randomized controlled trial (RCTs); 2) include
both an intervention and control group with the only difference
between them being the addition of continuous aerobic exercise in
the intervention group; 3) use FMD as the outcome measure; and 4)
the location of the FMD test was the brachial artery. In the analysis,
non-English published articles, animal model publications, reviews,
and conference articles were excluded.
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Data extraction

Two authors (XT and YC) independently performed the data
extraction, mainly including: 1) characteristics of included studies
(first author’s last name, year of study publication); 2) characteristics
of continuous aerobic exercise (intensity, frequency, duration,
session duration); 3) participant’s characteristics [n, gender, age,
basal FMD, and basal body mass index (BMI)]; 4) treatment effects
[mean and standard deviation (SD) values reflecting the change in
FMD from baseline and to post-intervention in the continuous
aerobic exercise and control groups. The corresponding authors of
the original study were emailed when the results of the original study
were incomplete.

Methodological quality assessment

According to the Cochrane risk of bias criteria, we assessed the
methodological quality of the studies included in this review (Higgins
et al., 2011), and the quality assessment of eligible studies was based on
factors including selection bias, performance bias, detection bias,
attrition bias, reporting bias, and other biases. Independent
assessments of methodological quality were conducted by two
authors (XT and YC), and disagreements were resolved through
discussion and consensus with a third author (LY).

Statistical analysis

Each study’s mean and SD values reflecting the change in
FMD from baseline to post-intervention have been extracted for
pooling purposes. Data were pooled using random-effects
models to obtain the weighted mean differences (WMDs)
and 95% confidence intervals (CIs). When I2 is < 50%, data
were pooled using fixed effects models to obtain the WMD and
95% CIs; when I2 is ≥ 50%, data were pooled using random
effects models to obtain the WMD and 95% CIs (Li et al., 2022).
If there was a high heterogeneity (I2 > 60%), sensitivity analysis
and subgroup analysis were used to interpret the results
(Shamseer et al., 2015; Zhang et al., 2022; Zhen et al., 2022).
In the subgroup analyses, we attempted to use durations of
continuous aerobic exercise (<12 weeks, ≥12 weeks), intensities
of continuous aerobic exercise (low-intensity, moderate-
intensity, vigorous-intensity), participants’ age (young, age <
45; middle-aged, 45 ≤ age <60; elderly, age ≥60), basal BMI
(normal weight, 20 < BMI < 25; overweight, 25 ≤ BMI < 30;
obese, BMI ≥ 30) (Pi-Sunyer et al., 1998), and basal FMD
(abnormal, FMD < 4; critical, 4 ≤ FMD < 7; normal, FMD ≥
7) (Tanaka et al., 2018) to explore the impact on FMD. The
analysis result, funnel plots, and forest plots were generated
using RevMan 5.0 software. In terms of overall impact, p <
0.05 was considered statistically significant.

FIGURE 1
PRISMA flowchart of study selection.
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TABLE 1 Characteristics of included study participants.

Studies Participants Exercise intervention Results
on FMD

Gender
(M/F)

Age y) Population Type Intensity Duration Frequency Times

Beck et al. (2013) IG: 9/4 IG: 20.1 ± 1.1 Prehypertension Walking/
running

65%–85% HRmax 8 weeks 3 days/week 60 min/day Increase

CG: 9/6 CG: 21.6 ± 2.7

Belardinelli et al. (2005) IG: 30/0 IG: 55.9 ± 15 CHF Cycling 60% VO2max 8 weeks 3 days/week 60 min/day Increase

CG: 29/0 CG: 58 ± 12

Bhutani et al. (2013) IG: 23/1 IG: 42 ± 2 Obese adults Cycling 60%–75% HRmax 12 weeks 3 days/week 40 min/day No change

CG: 15/10 CG: 49 ± 2

Boeno et al. (2020) IG: 8/7 IG: 45.8 ± 6.8 Hypertension Walking/
running

60%–80% HRR 12 weeks 3 days/week 55–60 min/day Increase

CG: 5/7 CG: 44.3 ± 8.3

Boff et al. (2019) IG: 5/4 IG: 23.7 ± 5.8 T1DM Cycling 50%–65% HRmax 8 weeks 3 days/week 40 min/day No change

CG: 4/5 CG: 20.8 ± 2.6

Braith et al. (2008) IG: 9 IG: 54.4 ± 13.1 Heart transplant recipients Walking RPE:12-14 12 weeks 3 days/week 35–40 min/day No change

CG:7 CG: 54.3 ± 9.5

Choi et al. (2012) IG: 38 IG: 53.8 ± 7.2 T2DM Walking 65%–85% HRmax 8 weeks 3 days/week 60 min/day Increase

CG: 37 CG: 55.0 ± 6.0

Desch et al. (2010) IG: 11/3 IG: 62.3 ± 6.2 CAD Cycling 75% HRmax 24 weeks 3 days/week 30 min/day Increase

CG: 8/4 CG: 62.3 ± 6.5

Erbs et al. (2010) IG: 18 IG: 60 ± 11 CHF Cycling 60% VO2max 12 weeks 7 days/week 20–30 min/day Increase

CG: 19 CG: 62 ± 10

Ghardashi et al. (2018) IG: 7/10 IG: 53.1 ± 4.8 T2DM Cycling 70% HRmax 12 weeks 3 days/week 42 min/day Increase

CG: 9/8 CG: 54.2±5.61

Haynes et al. (2021) IG: 3/14 IG: 61.9 ± 5.4 Healthy adults Walking 55%–65% HRmax 24 weeks 3 days/week 20–30 min/day No change

CG: 4/12 CG: 61.8 ± 7.3

Haynes et al. (2021) IG: 3/15 IG: 62.2 ± 7.4 Healthy adults Walking 55%–65% HRmax 24 weeks 3 days/week 20–30 min/day Increase

CG: 4/12 CG: 61.8 ± 7.3

(Continued on following page)
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TABLE 1 (Continued) Characteristics of included study participants.

Studies Participants Exercise intervention Results
on FMD

Gender
(M/F)

Age y) Population Type Intensity Duration Frequency Times

Blumenthal et al. (2005) IG: 32/10 IG: 62 ± 10.5 IHD Walking 50–85%HRR 16 weeks 3 days/week 35 min/day No change

CG: 31/17 CG: 63 ± 9

Jo et al. (2020) IG: 0/22 IG: 61.8 ± 10.1 PW + high cardiovascular risk Running 42–82%HRR 12 weeks 3 days/week 40 min/day Increase

CG: 0/21 CG: 62 ± 13.9

Jo et al. (2020) IG: 0/22 IG: 57.3 ± 8.4 PW + high cardiovascular risk Walking/
jogging

60%–80% HRmax 12 weeks 3 days/week 40 min/day Increase

CG: 0/21 CG: 62.5±13.9

Jones et al. (2014) IG: 25/0 IG: 58 ± 5 PCA Walking 55%–100%
HRmax

24 weeks 5 days/week 30–45 min/day Increase

CG: 25/0 CG: 61 ± 5

Kelly et al. (2004) IG: 5/5 IG: 11 ± 0.6 Overweight children Cycling 50%–80% HRmax 8 weeks 4 days/week 20–30 min/day Increase

CG: 4/6 CG: 11 ± 0.7

King and Pyke (2020) IG: 16/0 IG: 22 ± 3 Healthy adults Cycling 80% HRR 4 weeks 3 days/week 30 min/day Increase

CG: 12/0 CG: 21 ± 2

Kirkman et al. (2019) IG: 5/10 IG: 55 ± 13 CKD Cycling 60%–85% HRR 12 weeks 3 days/week 45 min/day Increase

CG: 4/12 CG: 62 ± 9

Kobayashi et al. (2003) IG: 12/2 IG: 55 ± 2 CHF Cycling Borg: 13 12 weeks 2–3 days/
week

30 min/day No change

CG: 8/6 CG: 62 ± 2

Kwon et al. (2011) IG: 0/13 IG: 55.5 ± 8.6 T2DM Not clear 3.6–6.0 METs 12 weeks 5 days/week 60 min/day Increase

CG: 0/15 CG: 58.9 ± 5.7

Lavrencic et al. (2000) IG: 14 IG: 53 ± 5 MS Cycling 80% HRmax 12 weeks 3 days/week 50 min/day Increase

CG: 15 CG: 51 ± 7

McDermott et al. (2009) IG: 24/27 IG: 71.7 ± 8.7 PAD Walking RPE: 12-14 24 weeks 3 days/week 15–40 min/day Increase

CG: 25/28 CG: 68.5±11.9

Meyer et al. (2006) IG: 33 IG: 14.2 ± 1.9 Obese children Not clear Not clear 24 weeks 3 days/week 60–90 min/day Increase

CG: 34 CG: 14.7 ± 2.2

(Continued on following page)
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TABLE 1 (Continued) Characteristics of included study participants.

Studies Participants Exercise intervention Results
on FMD

Gender
(M/F)

Age y) Population Type Intensity Duration Frequency Times

Mitranun et al. (2014) IG: 5/9 IG: 61.7 ± 2.7 T2DM Walking 60%–65%
VO2max

12 weeks 3 days/week 40 min/day Increase

CG: 5/10 CG: 60.9 ± 2.4

Molmen-Hansen et al.
(2012)

IG: 16/12 IG: 53.6 ± 6.5 Hypertension Walking/
running

60% VO2max 12 weeks 3 days/week 47 min/day No change

CG: 17/12 CG: 51.3 ± 9.2

Tjønna et al. (2011) IG: 8 Not clear MS Walking/
running

70% HRmax 16 weeks 3 days/week 47 min/day Increase

CG: 9

Pierce et al. (2011) IG: 11/15 IG: 63 ± 1 Healthy adults Not clear 70%–75% HRmax 8 weeks 6 days/week 50 min/day Increase

CG: 10 CG: 60 ± 1

Pugh et al. (2014) IG: 22/12 IG: 48 ± 15.3 NAFLD Cycling 30%–60% HRR 16 weeks 3 days/week 30–45 min/day Increase

CG: 8/12 CG: 47 ± 13.1

Belardinelli et al. (2006) IG: 15 IG: 55.1 ± 14 CHF + Implantable cardioverter defibrillator Cycling 60% VO2max 8 weeks 3 days/week 60 min/day Increase

CG: 12 CG: 55.1 ± 14

Belardinelli et al. (2006) IG: 15 IG: 53.1 ± 15 CHF + Implantable cardioverter defibrillator + cardiac
resynchronization therapy

Cycling 60% VO2max 8 weeks 3 days/week 60 min/day Increase

CG: 10 CG: 53.1 ± 15

Shenouda et al. (2017) IG: 10 IG: 28 ± 9 Healthy adults Cycling 55% VO2max 6 weeks 3 days/week 50 min/day Increase

CG: 6 CG: 26 ± 8

Shenouda et al. (2017) IG: 10 IG: 28 ± 9 Healthy adults Cycling 55% VO2max 12 weeks 3 days/week 50 min/day No change

CG: 6 CG: 26 ± 8

Sherwood et al. (2016) IG: 12/39 IG: 51.1 ± 7.0 MDD Walking/
jogging

70%–85% HRR 24 weeks 3 days/week 30 min/day Increase

CG: 11/38 CG: 51.2 ± 7.8

Sherwood et al. (2016) IG: 14/39 IG: 52.8 ± 7.9 MDD Not clear 70%–85% HRR 24 weeks 3 days/week 30 min/day Increase

CG: 4/12 CG: 51.2 ± 7.8

Sixt et al. (2008) IG: 10/3 IG: 64 ± 6 DM + CHD Cycling 70% HRmax 4 weeks 6 days/week 15 min/day Increase

CG: 7/3 CG: 64 ± 6

(Continued on following page)
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TABLE 1 (Continued) Characteristics of included study participants.

Studies Participants Exercise intervention Results
on FMD

Gender
(M/F)

Age y) Population Type Intensity Duration Frequency Times

Sprung et al. (2013) IG: 0/10 IG: 28 ± 9.8 PCOS Not clear 30%–60% HRR 16 weeks 5 days/week 30 min/day Increase

CG: 0/7 CG: 28 ± 9.8

Swift et al. (2012) IG: 0/68 IG: 57.4 ± 5.8 Hypertension + PW Cycling 50% VO2max 24 weeks Not clear Not clear Increase

CG: 0/23 CG: 56.8 ± 5.4

Swift et al. (2012) IG: 0/32 IG: 55.9 ± 6.0 Hypertension + PW Cycling 50% VO2max 24 weeks Not clear Not clear Increase

CG: 0/23 CG: 56.8 ± 5.4

Swift et al. (2012) IG: 0/32 IG: 56.3 ± 6.8 Hypertension + PW Cycling 50% VO2max 24 weeks Not clear Not clear Increase

CG: 0/23 CG: 56.8 ± 5.4

Tjønna et al. (2008) IG: 4/4 IG:52 ± 10.6 MS Walking/
running

70% VO2max 16 weeks 3 days/week 47 min/day Increase

CG: 5/4 CG:49.6 ± 9

Vona et al. (2004) IG: 21/7 IG: > 70 MI Cycling 75% HRmax 12 weeks 3 days/week 40 min/day Increase

CG: 19/5 CG: > 70

Vona et al. (2009) IG: 39/13 IG: 56 ± 6 MI Cycling 75% HRmax 4 weeks 4 days/week 60 min/day Increase

CG: 37/13 CG: 58 ± 7

Westhoff et al. (2007) IG: 14/13 IG: 67.2 ± 4.8 Healthy adults Walking Not clear 12 weeks 3 days/week 30 min/day Increase

CG: 14/13 CG: 68.9 ± 5.2

Westhoff et al. (2008) IG: 5/7 IG: 66.1 ± 4 Hypertension Upper-limb
cycling

Not clear 12 weeks 3 days/week 30 min/day Increase

CG: 6/6 CG: 68.4 ± 9.7

Wisløff et al. (2007) IG: 7/2 IG: 74.4 ± 12 CHF Walking 70%–75% HRmax 12 weeks 3 days/week 47 min/day Increase

CG: 6/3 CG: 75.5 ± 13

Wycherley et al. (2008) IG: 6/7 IG: 51.7 ± 2.4 T2DM Walking/
jogging

60%–80% HRmax 12 weeks 4–5 days/
week

25–60 min/day Increase

CG: 10/6 CG: 53 ± 1.8

Yoshizawa et al. (2010) IG: 0/10 IG: 57 ± 1 PW Walking/cycling 60%–75% HRmax 8 weeks 3–5 days/
week

20–30 min/day Increase

CG: 0/10 CG: 58 ± 1

Abbreviation: M, male; F, female; y, year; IG, intervention groups; CG, control groups; VO2max, maximal oxygen consumption; HRmax, maximum heart rate; HRR, heart rate reserve; METs, metabolic equivalents; RPE, rating of perceived exertion; CAD, coronary artery

disease; MS, metabolic syndrome; NAFLD, non-alcoholic steatohepatitis; IHD, ischemic heart disease; PW, postmenopausal women; PCA, prostate cancer; CKD, chronic kidney disease; MDD, major depressive disorder; PAD, peripheral arterial disease; CHF, chronic

heart failure; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; PCOS, polycystic ovarian syndrome; MI, myocardial infarction; CHD, coronary artery heart disease; DM, diabetic mellitus; FMD, flow-mediated dilation.
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Results

Study selection

Figure 1 showed the situation, preliminary results have been
retrieved for 3,346 search records, and 22 records have been
identified through other means. Following the exclusion of
duplicate studies, 2,758 studies remained, and 2,104 studies
were not eligible for inclusion through the title and abstract
screening. Six hundred and four studies were excluded by
reading the full text of 654 studies: 1) non-RCTs (n = 245);
2) no control group (n = 94); 3) the intervention was resistance
training (n = 58); 4) a combination of treatments was used in the
experimental group (n = 56); 5) no relevance was found in the
outcomes (n = 94); 3); and 6) data could not be extracted (n =
57). Finally, 50 studies examining the effect of continuous
aerobic exercise on FMD were considered eligible for
systematic review, of which 41 studies were considered
eligible for meta-analysis.

Description of the included studies

The main characteristics of interventions and participants
were presented in Table 1. There were 1959 participants enrolled
in the 41 studies. Of the 41 studies, six studies involved diabetes
participants (Wycherley et al., 2008; Kwon et al., 2011; Choi
et al., 2012; Mitranun et al., 2014; Ghardashi et al., 2018; Boff
et al., 2019), five studies involved healthy participants
(Yoshizawa et al., 2010; Pierce et al., 2011; Shenouda et al.,
2017; King and Pyke, 2020; Haynes et al., 2021), five studies
involved high blood pressure participants (Westhoff et al., 2007;
Westhoff et al., 2008; Molmen-Hansen et al., 2012; Beck et al.,
2013; Boeno et al., 2020), four studies involved obese
participants (Kelly et al., 2004; Meyer et al., 2006; Swift et al.,
2012; Bhutani et al., 2013), four studies involved heart failure
participants (Kobayashi et al., 2003; Belardinelli et al., 2005;
Wisløff et al., 2007; Erbs et al., 2010), three studies involved
metabolic syndrome participants (Lavrencic et al., 2000; Tjønna
et al., 2008; Tjønna et al., 2011), three studies involved coronary
artery disease participants (Sixt et al., 2008; Vona et al., 2009;
Desch et al., 2010), two studies involved heart disease
participants (Blumenthal et al., 2005; Braith et al., 2008), two
studies involved hormonal diseases participants (Sprung et al.,
2013; Jones et al., 2014), one study involved myocardial
infarction participants (Vona et al., 2004), one study involved
coronary heart disease (CHD) participants (Swift et al., 2012),
one study involved peripheral arterial disease participants
(McDermott et al., 2009), one study involved depression
participants (Sherwood et al., 2016), one study involved
kidney disease participants (Kirkman et al., 2019), one study
involved non-alcoholic fatty liver disease (NAFLD) participants
(Pugh et al., 2014), and one study involved high cardiovascular
risk participants (Jo et al., 2020). In studies examining the effect
of continuous aerobic exercise on endothelial function in
diseased participants, drug use did not change throughout the
intervention period. In addition, gender was not a factor in about
80% of studies, with only five studies targeting women

(Yoshizawa et al., 2010; Kwon et al., 2011; Choi et al., 2012;
Sprung et al., 2013; Jo et al., 2020) and four studies targeting men
(Lavrencic et al., 2000; Jones et al., 2014; Shenouda et al., 2017;
King and Pyke, 2020).

The overall duration varied from 4 weeks to 24 weeks. As stated
in the position statement regarding physical activity and training
intensity (Norton et al., 2010), following are the modifications we
made to the classification of continuous aerobic exercise intensity
according to the included research situation: 1.6 < metabolic
equivalents (METs) < 3, 20% < maximal oxygen uptake
(VO2max) < 40%, 40% < maximal heart rate (HRmax) < 55%,
20% < heart rate reserve (HRR) < 40%, or 8 < rating of
perceived exertion (RPE) < 10 were determined as low-intensity;
3 < METs < 6, 40% < VO2max < 60%, 55% < HRmax < 70%, 40% <
HRR < 60%, or 11 < RPE < 13 were determined as
moderate-intensity; 6 < METs < 9, 60% < VO2max < 85%, 70% <
HRmax < 90%, 60% <HRR < 85%, or 14 < RPE < 16 were determined
as vigorous-intensity.

Risk of bias

Evaluation of the methodological quality of the included
literature was conducted using the Cochrane risk assessment tool,
mainly from selection bias, performance bias, detection bias,
attrition bias, reporting bias and other biases. Quality was scored
according to three levels (low risk, high risk and unclear). The
quality of the included literature is divided into three levels from
high to low: high quality, medium quality and low quality (Figures 2,
3). Publication bias was assessed visually by inspecting the funnel
plot (Figure 4).

Meta-analysis results

The effect of continuous aerobic exercise on FMD
We found that continuous aerobic exercise had a significant

effect on increasing FMD when compared to the control group
[WMD, 2.55 (95% CI, 1.93–3.16), p < 0.001, Figure 5], while there
was a significant heterogeneity (I2 = 95%). Hence, a sensitivity
analysis in which 1 study was removed at a time, was performed
to evaluate the stability of the results. Sensitivity analysis results were
shown in Supplementary Figure S1, the pooled effect changed
slightly by removing each study, which confirmed the stability of
our results. Therefore, we used subgroup analyses to interpret the
results.

Subgroup analysis
Different results were shown when considering duration of

intervention (Figure 6). The subgroup analysis indicated that a
longer duration was associated with larger improvements in
FMD [< 12 weeks, WMD, 2.25 (95%CI, 1.54–2.95), p < 0.001,
I2 = 88%; ≥ 12 weeks, WMD, 2.74 (95%CI, 1.95–3.54), p < 0.001,
I2 = 95%].

Different results were shown when considering exercise
intensity (Figure 7). Specifically, compared with the control
group, moderate-intensity exercise [WMD, 2.92 (95%CI,
2.02–3.82), p < 0.001, I2 = 87%] and vigorous-intensity
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exercise [WMD, 2.58 (95%CI, 1.64–3.53), p < 0.001, I2 = 95%]
significantly increased FMD, while low-intensity exercise had no
significant effect on FMD [WMD, 2.10 (95%CI, −1.36–5.55), p =
0.23, I2 = 87%].

Different results were shown when considering participants’
characteristics. The subgroup analysis indicated that an older
age [young, age < 45, WMD, 2.09 (95%CI, 0.78–3.40), p = 0.002,
I2 = 81%; middle-aged, 45 ≤ age <60, WMD, 2.25 (95%CI,
1.49–3.01), p < 0.001, I2 = 94%; elderly, age ≥60, WMD, 2.62
(95%CI, 1.31–3.94), p < 0.001, I2 = 97%, Figure 8], a larger basal
BMI [normal weight, 20 < BMI < 25, WMD, 1.43 (95%CI,
0.98–1.88), p < 0.001, I2 = 0%; overweight, 25 ≤ BMI < 30,
WMD, 2.49 (95%CI, 1.07–3.90), p < 0.001, I2 = 92%; obese,
BMI ≥ 30, WMD, 3.05 (95%CI, 1.69–4.42), p < 0.001, I2 = 92%,
Figure 9], and a worse basal FMD [abnormal, FMD < 4, WMD,
2.71 (95%CI, 0.92–4.49), p = 0.003, I2 = 99%; critical, 4 ≤ FMD <
7, WMD, 2.63 (95%CI, 2.03–3.23), p < 0.001, I2 = 90%, Figure 10]
were associated with larger improvements in FMD. However,
continuous aerobic exercise had no significant effect on FMD in
people with normal basal FMD [WMD, 1.66 (95%
CI, −0.28–3.59), p = 0.09, I2 = 60%, Figure 10].

Discussion

The effect of continuous aerobic exercise on
endothelial function

This systematic review and meta-analysis indicated that
continuous aerobic exercise significantly improved endothelial
function, as revealed by increased FMD, which was consistent
with the results of You et al. (2021), showing that aerobic
exercise improved endothelial function. Our study showed that
continuous aerobic exercise contributed to an overall
improvement in the FMD by 2.55 (WMD), which has a clinical
importance for public health. The mechanism of continuous aerobic

exercise improving vascular endothelial function had not been fully
revealed, the following potential mechanisms might explain the
beneficial effects of continuous aerobic exercise on vascular
endothelial function.

First, flow shear stress (FSS), the frictional force exerted by
blood on the vessel wall, is considered a regulator of the vascular
endothelium (Girard and Nerem, 1995). Numerous studies have
shown that aerobic exercise increase blood flow shear stress
(Goto et al., 2003; Tinken et al., 2010) that can directly induce
increased NO synthesis and release from vascular endothelium
(Green et al., 2004; Thijssen et al., 2010), increasing NO
bioavailability (Taddei et al., 2000) and secondary
enhancement of endothelial nitric oxide synthase (eNOS)
expression (Hambrecht et al., 2003; Newcomer et al., 2011).
Second, it has been suggested that inflammation plays a central
role in endothelial dysfunction (a critical step in the progression
of CVD) (Rathod et al., 2017), aerobic exercise can reduce
plasma biomarkers of low-grade inflammation [highly
sensitive C-reactive protein (hs-CRP), serum amyloid A
(SAA), soluble intercellular adhesion molecule-1 (sICAM-1),
interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis
factor-α (TNF-α)], endothelial dysfunction biomarkers [soluble
vascular adhesion molecule-1 (sVCAM-1) and soluble
E-selectin (sE-selectin)] (Vandercappellen et al., 2022), levels
of l-arginine, and ratios of l-arginine to citrulline, citrulline to
ornithine, and l-arginine to ornithine (Tsukiyama et al., 2017).
Third, oxidative stress is one of the risk factors for vascular
endothelial disorders (Yilmaz et al., 2020). Aerobic exercise can
modulate oxidative stress, increase the expression of
antioxidant enzymes, and regulate reactive oxygen species
(ROS) in mitochondria, and ROS induces nuclear
transcriptional coactivators PPAR-gamma co-activator-
1 alpha/beta (PGC1α/β) and activates several nuclear
transcription factors, including peroxisome proliferator-
activated receptor gamma (PPARγ) and its targets superoxide
dismutase (SOD) 1, SOD2, glutathione peroxidase (GPx) 1, and

FIGURE 2
Risk of bias summary.
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catalase (CAT) (St-Pierre et al., 2006). Fourth, studies have
shown that regular aerobic exercise can normalize the basal
overactivity of the sympathetic nervous system (Antunes-
Correa et al., 2010), muscle sympathetic nerve activity
(MSNA) is a method that records sympathetic nerve passage,
which is reduced by aerobic exercise (Notarius et al., 2015). NO

also regulates vascular endothelial function by interacting with
the autonomic nervous system (Gamboa et al., 2012). Finally,
aerobic exercise can increase endothelial progenitor cell (EPC)
number and differentiation capacity (Landers-Ramos et al.,
2019), as well as vascular endothelial growth factor (VEGF)
and insulin growth factor-1 (IGF-1) (Vonderwalde and Kovacs-
Litman, 2018), which can contribute to vascular regeneration
and angiogenesis, and aerobic exercise can promote the
secretion of active protective factors, such as endothelin
(ET), prostacyclin I2 (PGI2), angiotensin II (Ang II),
arginase, and other biologically active molecules (Beck et al.,
2013), which have a positive effect on endothelial function. It
may be possible to use endothelial progenitor cells as a
surrogate biologic marker for cardiovascular function and
cumulative morbidity (Hill et al., 2003; Koutroumpi et al.,
2012).

Subgroup analysis

In the studies we included, continuous aerobic exercise
significantly improved vascular endothelial function, while
there was considerable heterogeneity between groups.
Therefore, we used subgroup analysis to interpret the
results. First, the effect of aerobic exercise is closely related
to the duration and intensity of the intervention, so we
performed subgroup analyses about intervention duration
and exercise intensity. Our results showed that the duration
of ≥ 12 weeks and < 12 weeks both improved the vascular
endothelial function significantly, and ≥ 12 weeks of
continuous aerobic exercise was more effective in improving
FMD than < 12 weeks. Previous studies have found that short-
term training can increase the bioavailability of eNOS and NO,
thereby improving vascular endothelial function (Sessa et al.,
1994; Sun et al., 1994; Kingwell et al., 1997). However, some
studies have found that long-term training can expand the
diameter of arteries (Leon and Bloor, 1968; Wyatt and Mitchell,
1978; Lash and Bohlen, 1992), the better effect of ≥ 12 weeks
may be due to structural changes in the vessel caused by long-

FIGURE 4
Funnel plot.

FIGURE 3
Risk of bias graph.
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term repetitive training, a phenomenon sometimes referred to
as “arterial remodeling’’ (Prior et al., 2003). Time-course
studies have shown that training firstly induces functional
changes, followed by structural remodeling that restores
function to baseline levels (Laughlin, 1995). While some
evidence suggests that diameter may not be significantly
enlarged in all situation at rest, this may be due to
compensatory increases in vasoconstrictor and relaxation
tone to regulate blood pressure and vascular resistance,
which can increase the flow shear stress, thereby improving
the vascular endothelial function (Green et al., 2012). Aerobic
exercise improves vascular endothelium, and there appears to
be an optimal training intensity. In our study, moderate-
intensity exercise and vigorous-intensity exercise
significantly increased FMD, and moderate-intensity exercise

having a greater effect than vigorous-intensity exercise, while
low-intensity exercise had no significant effect on FMD, which
was in line with the report by Goto et al. (2003), showing that
low-intensity aerobic exercise has no effect on vascular
endothelial function. In this context, low-intensity aerobic
exercise may not provide the optimal shear stress stimulus
with the potential to improve endothelial function (Green
et al., 2004), whereas moderate-intensity and high-intensity
aerobic exercise enhances endothelial-dependent vasodilation
in humans by increasing NO production, blood flow, blood
flow speed, and shear stress, and reducing ROS production
(Goto et al., 2003; Harrison et al., 2006; Tinken et al., 2010;
Ramos et al., 2015; Green et al., 2017). Therefore, we speculated
that there may be a dose-response relationship between the
duration of continuous aerobic exercise and FMD, and this

FIGURE 5
Meta-analysis results of the effect of continuous aerobic exercise on FMD. The pooled estimates were obtained from random effects analysis.
Diamonds indicated the effect size of each study summarized asWMD. The size of the shaded squares was proportional to the percentageweight of each
study. Horizontal lines represented the 95% CI and the vertical line represented the overall effect.
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relationship depends not only on duration but also on exercise
intensity. Discovering the optimal effect of exercise duration
and optimal intensity threshold may help to design more
effective and safe clinical prescriptions for patients with
endothelial dysfunction.

Studies have previously shown that increasing FMD is
positively related to reducing the risk of CVD, and that every
1% increase in FMD in the brachial artery decreases risk by 13%
(Inaba et al., 2010; Ras et al., 2013; Xu et al., 2014b; Matsuzawa

et al., 2015; Thijssen et al., 2019). Therefore, the changes of CVD
risk factors are closely related to the improvement of vascular
endothelial function, so in the subgroup analyses, we also sought
to determine the effects of participants’ characteristics (age, basal
BMI, and basal FMD). Our results showed that a worse basal
FMD was associated with a larger improvement in FMD, while
continuous aerobic exercise had no significant effect on FMD in
people with normal basal FMD, which was consistent with a
previous study, showing that when FMD was normal at baseline,

FIGURE 6
Meta-analysis results of the effect of different durations of continuous aerobic exercise on FMD. The pooled estimates were obtained from random
effects analysis. Diamonds indicated the size of the effect of each study summarized as WMD. The size of the shaded square was proportional to the
percentage weight of each study. Horizontal lines represented the 95% CI and the vertical dashed line represented the overall effect.
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there was no significant difference in the effect of the intervention
on FMD, but those with impaired endothelial function may have
greater improvement, and aerobic exercise would benefit
individuals most in need of improved endothelial function
(Swift et al., 2012; Ashor et al., 2015).

In atddition, our results showed that an older age was
associated with a larger improvement in FMD, which was
consistent with previous studies (Skaug et al., 2013;
Konigstein et al., 2022). There is no doubt that endothelial
function is affected by age (Ungvari et al., 2018). During
aging, the vascular system produces excess superoxide and
hydrogen peroxide, both of which inhibit the vasodilatory
activity of NO and lead to the formation of free radicals (e.g.,
proximities), whereas aging results in a low-grade inflammatory

phenotype in the vascular system (El Assar et al., 2013). The
vascular endothelial function is impaired due to the oxidative
stress increase and other factors, while aerobic exercise reduces
oxidative stress by inhibiting oxidation and stimulating
antioxidant pathways (Seals et al., 2019). Obesity is an
independent predictor of CVDs, with progressive increases in
BMI associated with increased risk of CVD (Hubert et al., 1983;
Donato et al., 2018). Therefore, we divided the included studies
based on their participants’ basal BMI into three groups: normal
weight, overweight, and obese. Our results showed that
compared with the control group, continuous aerobic exercise
significantly improved FMD in normal weight, overweight, and
obese people. In addition, a larger basal BMI was associated with
larger improvements in FMD, indicating that continuous

FIGURE 7
Meta-analysis results of the effect of different intensities of continuous aerobic exercise on FMD. The pooled estimates were obtained from random
effects analysis. Diamonds indicated the size of the effect of each study summarized as WMD. The size of the shaded square was proportional to the
percentage weight of each study. Horizontal lines represented the 95% CI and the vertical dashed line represented the overall effect.
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aerobic exercise had a better effect on FMD in higher BMI people
than in lower BMI people. The concept that obesity is
characterized by low levels of chronic and subclinical
inflammation is becoming more widely accepted (Hajer et al.,
2008). Excessive BMI produces high levels of inflammatory
factors, and the pro-inflammatory state in adipose tissue leads
to local insulin resistance and impaired inhibition of free fatty
acids (FFA) release by insulin (Gustafson, 2010). Continuous

aerobic exercise can reduce inflammatory factors and increase
antioxidant capacity (Gielen et al., 2010; Vandercappellen et al.,
2022). Aerobic exercise reduces BMI in obese individuals, and
endurance training is associated with increased circulating high-
density lipoprotein (HDL) levels and decreased very low-density
lipoprotein (LDL) (Halverstadt et al., 2007). It improves insulin
sensitivity (Newsom et al., 2013) and insulin signaling within the
vascular endothelium promotes Akt-dependent

FIGURE 8
Meta-analysis results of the effect of continuous aerobic exercise on FMD in young, middle-aged, or elderly people. The pooled estimates were
obtained from random effects analysis. Diamonds indicated the size of the effect of each study summarized as WMD. The size of the shaded square was
proportional to the percentage weight of each study. Horizontal lines represented the 95% CI and the vertical dashed line represented the overall effect.
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phosphorylation and activation of eNOS to produce the
vasodilator NO (Steinberg et al., 1994), thereby improving
vascular endothelial function. In short, age and obesity are
the main factors causing vascular endothelial dysfunction,
and the different effects of continuous aerobic exercise to
FMD can be proved by the intervention effect to participants
with different age basal BMI.

Limitations of the review

It is important to acknowledge some potential limitations of
this meta-analysis. As for the inclusion criteria, all included
studies were RCTs using continuous aerobic exercise
interventions, which could not be completely blinded. As a

result, subjective factors will contribute to a certain degree of
deviation in quality evaluation. Additionally, there was a high
degree of heterogeneity, which may be due to multiple risk factors
such as smoking, food and alcohol intake, blood pressure, and
blood lipids. Moreover, previous studies have shown that high-
intensity intervals training (HIIT) can also be effective in
improving FMD (Molmen-Hansen et al., 2012; Ghardashi
et al., 2018; Boff et al., 2019), but our study only focused on
the effect of continuous aerobic exercise on FMD, and future
studies should take HIIT into account to make the results more
comprehensive. Furthermore, gender differences were not
considered due to the limited availability of separate male and
female studies in this study. Finally, because of the significant
heterogeneity in the results of the meta-analysis, the results of our
study should be interpreted with caution.

FIGURE 9
Meta-analysis results of the effect of continuous aerobic exercise on FMD in normal weight, overweight, or obese people. The pooled estimates
were obtained from random effects analysis. Diamonds indicated the size of the effect of each study summarized as WMD. The size of the shaded square
was proportional to the percentage weight of each study. Horizontal lines represented the 95% CI and the vertical dashed line represented the overall
effect.
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Conclusion

Our analysis indicated that continuous aerobic exercise,
especially moderate-intensity and vigorous-intensity aerobic
exercise, contributed to improving FMD. The effect of

continuous aerobic exercise on improving FMD was associated
with duration and participant’s characteristics. Specifically,
a longer duration, an older age, a larger basal BMI, and a
worse basal FMD contributed to more significant improvements
in FMD.

FIGURE 10
Meta-analysis results of the effect of continuous aerobic exercise on FMD in people with normal, critical, or abnormal basal FMD. The pooled
estimates were obtained from random effects analysis. Diamonds indicated the size of the effect of each study summarized as WMD. The size of the
shaded square was proportional to the percentage weight of each study. Horizontal lines represented the 95%CI and the vertical dashed line represented
the overall effect.
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