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Objective: In the field of non-treatable muscular dystrophies, promising new gene
and cell therapies are being developed and are entering clinical trials. Objective
assessment of therapeutic effects on motor function is mandatory for economical
and ethical reasons. Main shortcomings of existing measurements are discontinuous
data collection in artificial settings as well as a major focus on walking, neglecting the
importance of hand and arm movements for patients’ independence. We aimed to
create a digital tool to measure muscle function with an emphasis on upper limb
motility.

Methods: suMus provides a custom-made App running on smartwatches.
Movement data are sent to the backend of a suMus web-based platform, from
which they can be extracted as CSV data. Fifty patients with neuromuscular diseases
assessed the pool of suMus activities in a first orientation phase. suMus performance
was hence validated in four upper extremity exercises based on the feedback of the
orientation phase. We monitored the arm metrics in a cohort of healthy volunteers
using the suMus application, while completing each exercise at low frequency in a
metabolic chamber. Collected movement data encompassed average acceleration,
rotation rate as well as activity counts. Spearman rank tests correlated movement
data with energy expenditure from the metabolic chamber.

Results: Our novel application “suMus,” sum of muscle activity, collects muscle
movement data plus Patient-Related-Outcome-Measures, sends real-time
feedback to patients and caregivers and provides, while ensuring data protection,
a long-term follow-up of disease course. The application was well received from the
patients during the orientation phase. In our pilot study, energy expenditure did not
differ between overnight fasted and non-fasted participants. Acceleration ranged
from 1.7 ± 0.7 to 3.2 ± 0.5 m/sec2 with rotation rates between 0.9 ± 0.5 and 2.0 ±
3.4 rad/sec. Acceleration and rotation rate as well as derived activity counts
correlated with energy expenditure values measured in the metabolic chamber
for one exercise (r = 0.58, p < 0.03).

Conclusion: In the analysis of slow frequency movements of upper extremities, the
integration of the suMus application with smartwatch sensors characterized motion
parameters, thus supporting a use in clinical trial outcome measures. Alternative
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methodologies need to complement indirect calorimetry in validating accelerometer-
derived energy expenditure data.
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dystrophies, outcome measures, smartwatch, apple watch

Introduction

Real world evidence and patient-related outcome measures
(PROMS) are increasingly replacing artificial functional tests for
outcome quantification in clinical trials (Marquis-Gravel et al.,
2109; Goldsack et al., 2020; Mantua et al., 2021). Sensitive digital
measures are of particular interest for genetic neuromuscular diseases,
severe progressive degenerative disorders. These chronic conditions
affect an estimated number of 500.000 patients in Europe, leading to
lifelong disability and imposing a significant burden on families and
healthcare system (Bhatt, 2016; Ryder et al., 2017; Dangouloff et al.,
2021).

Muscular dystrophies present with muscle weakness and atrophy,
with progressive reduction in strength and limitation of motor
function leading to wheelchair dependence, loss of arm motility
and, often, need for respiratory support.

After having been regarded as untreatable disorders, leaving room
for physiotherapy as unique care intervention, the field is now facing
major therapeutic advances and first causative therapies. Stem cell
technologies and the utilization of CRISPR/Cas9 tools for gene editing
are leading to justified hope for treatment options in muscular wasting
disorders. Exon skipping for Duchenne Muscular Dystrophy has been
developed (Takeda et al., 2021; Wilton-Clark and Yokota, 2022) and
mRNA-based precise and safe mutation correction is suitable in
primary human muscle stem cells (Escobar et al., 2021; Stadelmann
et al., 2022).

However, together with therapeutic developments, there is a great
need to improve clinical trial designs in terms of speed, relevance, and
costs. The current outcome measures standardized for assessing new
treatments in genetic muscle diseases are mostly focused on lower limb
motility and are tested in artificial hospital setting. Examples for
widely used motor scales are timed function tests (i.e., time to
stand from supine, time to run or walk 10 m, time to climb four
stairs), the North Star Ambulatory Assessment (NSAA) score and
quantitative muscle testing (Pane et al., 2012). The distance covered in
6 min (six-minute walk test) is also a well-known validated example
(Mah et al., 2022). Complementary to functional scales, muscle
magnetic resonance imaging is sensitive to depict subtle changes in
fat replacement of muscles and can provide patterns of muscle
involvement. However, it is costly and assesses muscle tissue
quality at single time points (Burakiewicz et al., 2017; Naarding
et al., 2020).

In less than half of currently recruiting or active trials for muscular
dystrophies (http://www.clinicaltrials.gov, September 2022), primary
endpoints include upper limb function. Non-ambulant patients are
then more easily excluded from recruitment, although upper-limb-
motility is crucial for quality of life and independence (Schuster et al.,
2022). In the case that upper limb strength is part of the outcome
measures, this consists of observer performance in a controlled
medical environment and questionnaires (Mayhew et al., 2013;
Domingos and Muntoni, 2018). These tests are not able to quantify

changes in small movements, neither to extrapolate daily fluctuations
in motor function nor to provide information on patient-related tasks
or PROMS.

Triaxial accelerometers loaded on activity trackers or
smartwatches are effective and promising tools in monitoring
movement disorders in both clinical and research settings
(Varghese et al., 2021). Movement data derived from
accelerometers can also extrapolate energy expenditure (EE) and
values of physical activity. Once again, most of the studies focused
on lower limbs (e.g., treadmill, running trials, cycling) (Freedson et al.,
2005; Crouter et al., 2006; Dooley et al., 2017; Zhang et al., 2019; Jeng
et al., 2020). It is not feasible to apply these data for assessing upper
limb function, since regression equations based on lower limb
parameters underestimate EE quantification in non-locomotive
activities (Bassett et al., 2000; Murakami et al., 2019; Fernández-
Verdejo et al., 2021).

Thus, there is still an unmet need for a standardized digital system
able to provide real-world upper limb movement metrics and
quantification of physical muscle activity for patients affected by
neuromuscular diseases. We therefore created the digital
application (App) “suMus (sum of muscle activity).” suMus utilizes
inertial sensors loaded on an Apple Watch, thus providing continuous
reading of arm movements. In a first orientation phase,
80 standardized exercises were tested by 50 patients affected by
different genetic muscular disorders over a seven-month period.

In a second step, we validated suMus derived motility parameters
in healthy subjects in a metabolic chamber, to correlate accelerometer-
derived measures of upper limb movements with EE.

Materials and methods

Study design

The study was structured in three sequential stages:

1. Designing and programming of the suMus research smartwatch
App and the suMus web-based platform.

2. Orientation phase, 50 patients affected by different genetic
neuromuscular disorders trained at home and tested different
exercises from a pool of 80 activities via the suMus web-based
platform.

3. Validation phase of the suMus App, i.e., movement analysis in
healthy subjects.

Study cohort

For the orientation phase, patients were recruited from the
Outpatient Clinic for Muscular Diseases at the Experimental and
Clinic Research Center (ECRC) at Charité, Berlin and by information
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through patients’ organization groups (http://www.dgm.org [LGMD-
group]). Before inclusion, all patients or their parents provided signed
informed consent. The study included ambulant and not ambulant
patients older than age of 14 years and with genetic confirmation of a
neuromuscular disease. No specific exclusion criteria were introduced.

For the movement analysis healthy volunteers were recruited at
our institution.

Study protocol

A randomized protocol of four exercises was completed in a
metabolic chamber while wearing the suMus-Apple watch on the
left wrist.

The metabolic chamber is a comfortable, airtight room (width:
2.5 m, depth: 2.0 m, height: 2.2 m) that is constantly supplied with
fresh air like an open circuit indirect calorimeter. Carbon dioxide
(CO2) production and oxygen (O2) consumption were measured to
calculate resting and exercise EE, as previously described (Mähler
et al., 2012).

Activity protocol
Subjects were tested in groups of three per day (early morning, late

morning, early afternoon). The first subject of the day was analyzed
after a 12 h overnight fast, the second and the third subjects had no
dietary restrictions.

Clinical history and anthropometric measurements (body mass
index, blood pressure, and heart rate) were recorded before starting the
exercises. A questionnaire focused on caloric intake and physical
activity of the day preceding the examination was fulfilled.

Whilst being seated in a comfortable chair in the metabolic
chamber measurements were started at first for air equilibration
(30 min) and then for assessing subjects resting EE (30 min). Then,
subjects started the four exercises according to a protocol in a
randomized order including alternating arm elevation at 180°

(exercise 1: “cherry picking”), parallel arm elevation at maximal 45°

(exercise 2: “little flyer”), alternate anterior arm extension at shoulder
height (exercise 3: “boxing”), and hand biking on an ergometer
(exercise 4) (Theravital Medica GmbH, DE).

In exercises 1-3, a metronome set at 15 beats per minute regulated
the frequency of repetitions, while the speed of the movement was left
free. The hand-ergometer was adjusted to a low workload of
0.02 W/kg body weight with a speed of 40–45 rounds per min.

Each exercise had to be performed for 10 continuous minutes due
to the sampling frequency of the metabolic chamber. Between
exercises, subjects completely rested for 10 min to prevent
interference among the different movements.

The suMus App was activated by the subjects only at the
beginning of each single exercise. Through video-monitoring
researchers tracked the time of each exercise and provided
verbal cues to the participants to transition to next phase. The
difference between absolute values of exercise EE and resting EE
(ΔEE) was calculated every 10 min between each exercise
(Figure 1).

suMus smartwatch app

suMus provides a custom-made App written in Objective-C
that runs on the Apple smartwatch as well as on an iPhone
connected to the watch via Bluetooth, which is available on
Apple’s AppStore. Movement data and feedbacks are collected
by suMus with a Universally Unique Identifier (UUID). Per
default, data are transferred to the iPhone and are available in
Apple’s Health and Activity App-HealthKit (https://developer.
apple.com/documentation/healthkit/data_types) but are not sent
to an Apple server. When connected to WLAN, common network
standards (HTTPS, JSON, REST) send the data attitude quaternion
(x, y, z, w), rotation rate (x, y, z), gravity (x, y, z), user acceleration
(x, y, z), magnetic field (x, y, z, c), heading (angle) directly from the
HealthKit-App to a suMus server. Data are hence stored in the
subject’s specific folder in the backend of the suMus web-based
platform, from which they can be extracted as CSV data
(Supplementary Figure S1).

The suMus server-side application is implemented in Python
using the Django web framework. It manages all patients and
therapists and allows care givers to maintain patient-specific
exercise plans on a weekly basis.

FIGURE 1
Study design for calorimetry and movement measuements. Subjects performed four different exercises in the metabolic chamber with defined resting
periods. Movementmeasurement were recorded during exercises indicated in orange, while themetabolic chamber recorded also during the resting periods.
ΔEE: difference of energy expenditure between exercise and pause phase.
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Data processing

For quantification of EE, measured maximal Oxygen
consumption VO2 data (mL/min) were multiplied by 1,000 to
obtain VO2 in L/min, and then multiplied by 4.867 kcals/L to
obtain kcals/min.

Movement data from the suMus-Apple Watch were
continuously recorded with a 20 Hz sampling frequency rate.
We set the starting point of analysis of the raw data at the
beginning of a rhythmic movement. The shortest execution
was for 8 min and twenty second; for uniformity of data
points, we cut all the exercises for this duration. CSV files were
processed in Matlab (MathWorks, Natick, MA, United States) to
extract acceleration in meter per square second (m/sec2) and the
rotation rate in radians per sec (rad/sec).

To complete a linear regression analysis of accelerometer-
predicted EE values versus measured-EE, acceleration data were
converted to activity counts per 1 s epochs.

For exercises 1, 2, 3, given the high interference noise signal,
activity counts were calculated for each participant by inserting a
variable threshold at mean acceleration plus two times the
standard deviation (SD). For exercise 4, in which no noise
signal was detected because of continuity of the movement on
the hand-ergometer, the threshold was fixed at 0.05 m/sec2 for
each subject.

For all exercises, low activity counts were defined as values above
the threshold, medium activity counts were defined as values higher
than two times the threshold.

Statistical analysis—Movement analyses

Results were expressed as mean ± SD. Statistical analysis was
performed in Matlab (MathWorks, Natick, MA, United States). To
evaluate the relative dispersion of data points in a data series
around the mean, the coefficient of variation was calculated
(CV). Differences among exercises were tested with t-test.
Correlation between parameters was analyzed with Spearman’s
rank correlation coefficient.

A p-value <0.05 was considered significant for all statistical
tests.

Data availability

Anonymized data not published within this article will be made
available by request from any qualified investigator.

Ethic approval

The study was approved by the Local Ethics Committee of Charité
Universitätsmedizin Berlin (EA1/212/21).

Results

suMus smartwatch app

The suMus App contains 80 exercise videos for upper/lower
extremities, trunk, and respiratory muscles. On the individual
suMus profiles, patients can visualize their customized exercise
plan designed by their own therapists for the incoming weeks, the
corresponding instructional video, and the exercise details (number of
repetitions per day and per week and) (Figure 2A). During executing
the task, the watch inertial sensors register movement (Figure 2B).

After completing the exercise, patients are asked to answer questions
on difficulty level, whether they had pain during/after the exercises and
whether they had fun (Figure 2C). Once having completed thewhole daily
training plan, patients are informed through a visual input that rest is
suggested since excessive movement could be damaging (Figure 2D).

The movement data and feedbacks are sent to patient’s specific
folder in the suMus web-based platform. Here, through a therapist
profile, therapists/caregivers can visualize them and adjust accordingly
the exercise plans for the following weeks (Supplementary Figure S1).

suMus web-based platform (https://sumus.digital)
and orientation-phase

The acceptance profile of the suMus exercises and the accessibility
of the suMus web-based platform were initially tested by 50 patients
affected by different genetic muscle disorders, who agreed to perform
daily physical training according to their personalized suMus exercise
plans at home for seven-months. Through the platform, the patients

FIGURE 2
Programming of the suMus App: (A) Tailored exercise plans designed by the therapists are visualized in the App; (B) During the training, sensors register
acceleration and rotation rate; (C) After the exercise, the patient is asked to provide feedbacks; (D) After completing the whole exercise plan, patients are
informed through a visual input that rest is suggested.
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were able to confirm to their physiotherapists the execution of the
weekly training plan and to provide feedbacks. Acceptance was
monitored through weekly feedbacks and one questionnaire
(Supplementary Figure S3).

Muscular dystrophies were the most represented disease types in
the patient population register. They included 23 patients with limb
girdle muscular dystrophies and 13 with facioscapulohumeral
muscular dystrophy. Additionally, the study included congenital
and myofibrillar myopathies, myotonic dystrophy type I,
motoneuronal disorders, one McArdle’s disease and one hereditary
sensorimotor neuropathy (Supplementary Figure S2A).

The monthly monitoring of the feedbacks showed that the adherence
of the suMus exercises to the patients’ individual needs and the efficacy of
the patients’ physiotherapists communication gradually improved over
time, as the feedback “just right” and “I had no pain” raised from 38% to
64% and 52% to 83%, respectively, along the study. Similarly, the fun
factor increased from 20% to 47% (Figure 3).

During this orientation phase, we recorded for each exercise the
frequency of execution, the number of feedbacks “the exercise was just
right for me” and “I had no pain here.” The movements “cherry

picking” (exercise 1), “little flyer “(exercise 2), and “boxing” (exercise
3) displayed a very high acceptance profile and were hence selected for
the validation of the suMus smartwatch App in the upper extremities
(Supplementary Figure S2B, Supplementary Videos S1–S3). As a gold
standard for quantifying exercise, we added hand biking on a hand-
ergometer (exercise 4).

Movement analysis—Validation of the suMus
smartwatch app

Fifteen healthy participants (6 men and 8 women), aged
20–55 years, completed the randomized protocol of four exercises
in a metabolic chamber while wearing the suMus Apple watch on the
left wrist. None of the participants had chronic diseases that could
affect their metabolism or daily physical activity. Participant
anthropometric characteristics are summarized in Table 1.

All subjects except one were able to complete every task.
Accelerometer-derived measurements were correctly exported,
saved in the suMus web-based platform, and extracted for analyses
(Supplementary Figure S4).

Figure 4 shows the distribution of acceleration and rotation rate in
the 14 subjects according to the four exercises.

Exercises 1-3 displayed a higher distribution of the average, SD, and
maximum values in comparison to exercise 4, in which themovement was
guided by the instrument andwith a fixed speed (Acceleration,mean ± SD:
ex.1: 1.8 ± 1.1 m/sec2; ex.2: 1.7 ± 0.7 m/sec2; ex.3: 2.0 ± 1.9 m/sec2; ex.4:
3.2 ± 0.5 m/sec2. Rotation rate, mean ± SD: ex.1: 1.6 ± 0.9 rad/sec; ex.2:
0.9 ± 0.5 rad/sec; ex.3: 2.0 ± 3.4 rad/sec; ex.4: 1.2 ± 0.4 rad/sec) (Table 2).

Figure 5A illustrates theΔEE distribution in the 14 subjects according
to the four exercises as assessed by indirect calorimetry. The low ΔEE
values are in accordance with the low frequency of repetitions during the
four exercises (mean ± SD: ex.1: 1.03 ± 0.72; ex.2: 0.86 ± 0.91; ex.3: 1.31 ±
1.07; ex.4: 1.25 ± 0.78). The CVs of the ΔEE data for exercise 1 is 0.7, for
exercise 2 is 1.06, for exercise 3 is 0.83, and for exercise 4 is 0.64 (Table 3).

No significant differences in ΔEE was identified among the
individual four exercises and between overnight fasted (n = 5) and
non-fasted (n = 10) participants (Figure 5B).

For exercises 1–3, we converted acceleration data to total,
medium and low activity counts (Figures 6A–D). Among the
14 participants, the low counts (the data points just above the
variable threshold, mean acceleration + two times SD) displayed
in all four groups a CV between 0.65 and 1.05. In exercise 4, the
values of total activity (data points above the fixed threshold of
0.05 m/sec2) were highly homogenous showing a CV of 0.01
(Table 4).

FIGURE 3
Monthly feedbacks on difficulty, pain, and fun levels by the cohort
of patients in the seven-month period of orientation phase.

TABLE 1 Characteristics of the 15 participants of the movement study.

Characteristics Exercise cohort (n =15)

Age (years) 34.6 ± 9.2

Gender 7F/8M

Height (cm) 171 ± 10.5

Weight (kg) 72 ± 12

BMI (kg/m2) 24.8 ± 4.2

Data are given as mean ± SD; BMI, body mass index.
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The relationship between ΔEE measured in the metabolic
chamber, accelerometer-derived activity counts, acceleration and
rotation metrics was then evaluated through linear regression
analysis. Exercise 2 (Figure 7) yielded a statistically significant
correlation (r = 0.58, p < 0.03). A higher score of linear regression
was observed at higher ΔEE values. For exercise 1, 3, and 4 no linear
correlation was identified (data not shown).

Discussion

We present suMus, a new digital endpoint for upper limb movement
metrics in genetic muscle disorders. SuMus consists not only of an
innovative App using inertial sensors of a smartwatch but also of a

closed-loop feedback ecosystem involving patients, physiotherapists, and
physicians, plus highest-standard data protection measures.

We first tested suMus strategy and feasibility in 50 patients
affected by distinct muscle genetic disorders during a seven-month
orientation phase. The patients’ feedbacks confirmed easy accessibility
of the tool, good adherence of the proposed exercises to patients’
motoric profiles and improved communication with the therapists.

We next validated suMus movement sensors for the
characterization of upper limb movements in healthy
volunteers. They completed a protocol of four exercises at a
precise slow frequency in a metabolic chamber for parallel
assessment of indirect calorimetry. Indeed, the suMus
algorithm aims to extrapolate EE data from movement metrics
to display them to patients as well as to apply them as endpoints in

FIGURE 4
(A) Acceleration (m/sec2) and (B) rotation rate (grad/sec) during the four exercises in 14 healthy controls. Exercise 1: cherry picking, exercise 2: little flyer,
exercise 3: shadow boxing, exercise 4: hand biking.

TABLE 2 Acceleration (m/sec2) and rotation (Grad/sec) values during the four exercises in the 14 healthy subjects.

Acceleration Exercise 1 Exercise 2 Exercise 3 Exercise 4

Mean 1.8 1.7 2.0 3.2

SD 1.1 0.7 1.9 0.5

CV 0.57 0.43 0.66 0.15

Max value 2.4 2.0 5.5 3.7

Rotation Exercise 1 Exercise 2 Exercise 3 Exercise 4

Mean 1.6 0.9 2.0 1.2

SD 0.9 0.5 1.4 0.4

CV 0.58 0.56 0.67 0.33

Max value 2.2 1.3 3.9 1.7

Data are expressed as average of the means, SDs, CVs, and maximal (Max) values.
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observational/interventional clinical trials. In neuromuscular
disorders, the primary genetic defect is aggravated by secondary
metabolic alterations, which affect muscle cells energy production
and flexibility, leading to movement-induced muscle fatigue
(Lindsay et al., 2019; Peric et al., 2019). Patients with muscular
dystrophies display a less efficient pattern of systemic energy
exchange than healthy individuals (Boschmann et al., 2010 and
Boschmann et al. unpublished data). A precise quantification of
the impact of new therapeutic approaches on such energy
abnormalities would constitute a relevant additional outcome in
clinical studies.

The use of suMus proved to be easy and intuitive for all but one
participant.

The accelerometer-derived signals resulted in quantifiable arm
metrics and were able to differentiate in exercises 1-3 a comprehensive
range of acceleration and rotation measures, while they provided a
uniform set of data in exercise 4, where the speed of movement was fixed.

We measured the ΔEE between the four 10-min exercises and
10 min-pause phases in volunteers without any previous dietary
restriction. Consistently with our protocol including only slow
frequency arm movements without any changes in body posture
and activity of the lower limbs, the resulting ΔEE values were low
with means ranging from 0.86 to 1.31 kJ/min. In previous studies we
had quantified absolute EE in overnight fasted subjects performing a
single 40-min long exercise after a resting phase of 30 min (Mähler
et al., 2012). Hence, to control for the impact of postprandial processes

on ΔEE, five additional volunteers fasted in the 12 h preceding the
study. Interestingly, the quantification of the exercise-pause ΔEE
blunted the impact of post-prandial thermogenesis, as we did not
detect a statistical significance difference between the fasted and not
fasted groups.

Multiple reports developed regression equations to correlate
accelerometer-extrapolated EE and indirect calorimetry ΔEE values
but have provided inconsistent results (Freedson et al., 2005; Crouter
et al., 2006; Dooley et al., 2017; Roskoden et al., 2017). Previous
analyses, focused on upper extremities, measured arm motion and EE
in the context of various simulated free-living occupations, including a
wide range of indoor and outdoor movements of variable intensity,
with transition in body positions and directions, leading to possible
controversial conclusions (Roskoden et al., 2017; Murakami et al.,
2019; Kwon et al., 2021).

In the present study, the mean of 10 min accelerometer-derived
motion data (acceleration, rotation, activity counts) and the
corresponding ΔEE values were tested for correlation coefficient,
which resulted significant only in exercise 2 (parallel arm elevation
at maximal 45°). We link the limited correlation to the small range and
small number of data points. In our protocol, we excluded high and
medium frequency movements. Rather, we focused on validating the
threshold of signal acquisition by the accelerometers in slow frequency
activity as this is the only one feasible for patients affected by

FIGURE 5
(A) ΔEE (KJ/min) derived from indirect calorimetry using the
metabolic chamber during the four different exercises in 14 healthy
controls. Exercise 1: cherry picking, exercise 2: little flyer, exercise 3:
boxing, exercise 4: hand biking; (B) Differentiation of ΔEE (kJ/min)
during the four different exercises in 5 (blue dots) and 10 (black dots)
healthy controls with and without overnight fasting, respectively.

TABLE 3 ΔEE (KgJ/min) during the four exercises in the 14 healthy controls.

Exercise 1 Exercise 2 Exercise 3 Exercise 4

Mean 1.03 0.86 1.31 1.25

SD 0.72 0.91 1.07 0.78

Max value 2.40 2.45 3.69 2.71

Min value 0.04 −0.06 0.03 0.07

CV 0.70 1.06 0.82 0.62

Data are expressed as means, SDs, maximal (Max) and minimal (Min) values.

FIGURE 6
(A) Total activity counts, (B) medium activity counts, and (C) low
activity counts derived from the accelerometry data for free arm
movement exercises 1–3 in 14 healthy controls. (D) total activity counts
for exercise 4 in 14 healthy controls. Exercise 1—cherry picking,
exercise 2—little flyer, exercise 3—shadow boxing, exercise 4—hand
biking.
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neuromuscular diseases. Secondly, the inclusion in the analysis of
three subgroups of subjects in a very different metabolic state
(overnight fasted, not fasted in the morning, after lunch in the
early afternoon) caused a high dispersion in the measured ΔEE
data and therefore a weaker correlation with accelerometer-
predicted values. However, our goal was the assessment of activity
tracking under normal conditions of daily life. Finally, we correlated
two methods characterized by a very different temporal accuracy. The
accelerometer inertial sensors transferred a detectable signal every
0.05 s, while the metabolic chamber is limited to a 10-min temporal
resolution and provided one single EE value for each exercise (Chen
et al., 2018). Thus, we could not analyze data from shorter interval
periods (2 min, for example) and then apply additional statistical
models such as a multilevel correlation analysis (Grittner and
Lahmann, 2015).

An alternative approach for our indirect calorimetry
quantification could constitute the canopy breath-by-breath
method using facemasks. This system has a minimum of 15 s of
data processing and is therefore suitable to the analysis of rapid
changes in the dynamic of metabolic signals such as in subjects
performing exercises (Schoeffelen and Plasqui, 2018). We
nevertheless chose a metabolic chamber for the first proof of
suMus in healthy volunteers as we aimed to validate a method,
which could have been realistically adopted in following studies in
patients with neuromuscular diseases. The atrophy of the facial

musculature and the restrictive ventilatory insufficiency, which can
often affect these patients, render the use of a tight facemask rather
impracticable, while the near free-living environment of a metabolic
chamber enables various types of studies.

Alternative approaches for arm movement tracking in
neuromuscular diseases were previously introduced. First, the
stereo camera-based reachable workspace analysis, currently
adopted as endpoint in clinical trials for facioscapulohumeral
muscular dystrophy, measures relatively simple well visible
movements to be performed inside the precise working volume of
the device. The system is nevertheless restrained by a low efficiency in
capturing free motion and is limited by significative ceiling and
floor effects, which exclude the recruitment of patients with
respectively light or severe form of disease. A similar bias is displayed
by Microsoft-Kinect gaming interfaces associated to skeleton tracking

TABLE 4 Total, medium, and low activity counts during each individual exercise
in the 14 healthy subjects.

Exercise 1 Total Medium Low

Mean 197.8 115.4 82.4

SD 31.1 51.2 54.2

CV 0.17 0.44 0.66

Max value 266 176 157

Exercise 2 Total Medium Low

Mean 216.4 133.3 83.1

SD 72.9 49.5 87.3

CV 0.34 0.37 1.05

Max value 326 237 236

Exercise 3 Total Medium Low

Mean 176.8 119.9 56.9

SD 38.9 18.0 37.0

CV 0.22 0. 5 0.65

Max value 259 156 146

Exercise 4 Total

Mean 503.1

SD 6.3

CV 0.01

Max value 505

Data are expressed as means, SDs, CVs, and maximal (Max) values.

FIGURE 7
Linear regression analysis of ΔEE values with (A) average
acceleration values, (B) average rotation levels and (C) acceleration-
derived average total activity counts for exercise 2. Coefficients of
determination (r2) and the statistical significance p-value are
indicated.
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algorithms (Han et al., 2016; Heutinck et al., 2018; Alfano et al., 2020;
Gotthelf et al., 2021). Wearable sensors provided sensitive indicators of
clinical changes in Duchenne Muscular Dystrophy and Spinal Muscle
Atrophy (Le Moing et al., 2016; Chabanon et al., 2018; Annoussamy
et al., 2021; Bouman et al., 2021). The stride velocity 95th centile,
measured at the ankle by using the wearable-device Actimyo (Sysnav,
France), received qualification from the European Medicine Agency as
an acceptable secondary endpoint in clinical trials of ambulant patients
affected by Duchenne Muscular Dystrophy (Servais et al., 2021). Upper
limb activity (wrist acceleration, wrist rotation angle, elevation rate),
measured by Actimyo in a two-year longitudinal study in type 2 and type
3 Spinal Muscle Atrophy patients, significantly decreased at 6 months of
analysis, while the standardizedmuscle function scale (MFM32) detected
a change at only 24 months (Annoussamy et al., 2021). In these
approaches, however, the data are transferred to researchers only,
without any patient involvement.

suMus differs from these digital tools, since the “patient perspective
and empowerment” was the very starting point of our concept. Apps
loaded on smartwatches can actively engage patients in studies by
collecting their PROMS and sending them feedbacks on their daily
motor function. The increasing popularity and affordability of these
technologies offers a much higher usability profile in patients’ social
environment than research-based activity monitors, known to suffer from
low long-term patients’ compliance (Servais et al., 2021). This opens the
possibility of extended acquisition of precise longitudinal data. Further,
the smartwatch-technology is a proved relevant source of objective
motility monitoring, allowing great precision in recording subtle
changes in any patients’ home environment. In large cohorts of
patients affected by Parkinson’s disease, smartwatch accelerometer data
could quantify low hand-tremor amplitudes and frequencies with high
accuracy (Hadley et al., 2021; Powers et al., 2021).

The strength of our study consisted in the application of a precise
randomized exercise protocol exclusively designed for upper limbs
and with controlled frequency of motion. However, our results
confirm the limitations of prediction equations when applying
accelerometer signals to EE estimation, particularly in the case of
very light activities (Lyden et al., 2011; LaMunion et al., 2020). Our
next strategy will be the collection of large amounts of personalized
suMus accelerometer data to be analyzed by machine learning
systems, able to identify and pattern patient’s physical activity
profiles (Mardini et al., 2021).

Set of tailored exercises will be chosen in accordance with the specific
patients’ motor function. Structured (exercise-based) and unstructured
(free-style) movement data will be collected. The goals are to define

individualized trajectory plots of disease course. The long-term acceptance
of the suMusApp at home, the reliability of the data over intervals of time,
the sensitivity to detect clinical meaningful changes in correlation with
standard outcome measures, the concordance of suMus metrics with
patients PROMS and the development of learning algorithms for EE are
our next research questions (Figure 8).

Conclusion

suMus is a user-friendly, engaging, and digital sensor-based
research system capable of providing arm metrics data in small
frequency movements. Application in clinical trials addressing
muscular dystrophies and other muscle wasting diseases is foreseeable.

This first exploratory study sets a baseline in healthy individuals.
We will go further now to validate the suMus App in several patients
affected by distinct genetic muscular disorders and different degree of
muscle weakness.
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SUPPLEMENTARY FIGURE S1
(A)On the platform, the therapist creates weekly exercise plans for the patients
and, (B, C), can monitor their compliance to adjust the plan accordingly to the
patients’ feedbacks.

SUPPLEMENTARY FIGURE S2
(A) Disease distribution of the patients in the orientation phase (n = 50) and (B)
selection of the three exercises for the validation study based on the high
acceptance. The feedbacks to the exercises obtained by patients using the
suMus web-based platform in the period April-October 2021 were recorded
and the three exercises for the upper limbs displaying a high acceptance
profile (high number of executions, high number of answers “The exercise is
just right” and “I had no pain during or after the exercise”) were selected.
Abbreviations- FSHD, Facio-scapular-muscular-dystrophy; LGMD, Limb
Girdle Muscular Dystrophy.

SUPPLEMENTARY FIGURE S3
Patients in the orientation phase provided feedback of their suMus experiences
(n = 27). Their responses were collected via an optional, anonymised online-
survey after they used the platform three months.

SUPPLEMENTARY FIGURE S4
Movement data obtained during the four exercises. Plotted are the device’s
acceleration measured in increments of the gravitational acceleration, with
the value 1 representing an acceleration of 9.8 m per second in the given
direction of the watch. In addition, we recorded the rotation rate in radians per
second around the device’s three primary axes.
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