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Introduction: Globally, hypertension (HT) is a substantial risk factor for
cardiovascular disease and mortality; hence, rapid identification and treatment
of HT is crucial. In this study, we tested the light gradient boosting machine
(LightGBM) machine learning method for blood pressure stratification based on
photoplethysmography (PPG), which is used in most wearable devices.

Methods: We used 121 records of PPG and arterial blood pressure (ABP) signals
from the Medical Information Mart for Intensive Care III public database. PPG,
velocity plethysmography, and acceleration plethysmography were used to
estimate blood pressure; the ABP signals were used to determine the blood
pressure stratification categories. Seven feature sets were established and used to
train the Optuna-tuned LightGBM model. Three trials compared normotension
(NT) vs. prehypertension (PHT), NT vs. HT, and NT + PHT vs. HT.

Results: The F1 scores for these three classification trials were 90.18%, 97.51%, and
92.77%, respectively. The results showed that combining multiple features from
PPG and its derivative led to amore accurate classification of HT classes than using
features from only the PPG signal.

Discussion: The proposed method showed high accuracy in stratifying HT risks,
providing a noninvasive, rapid, and robust method for the early detection of HT,
with promising applications in the field of wearable cuffless blood pressure
measurement.
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1 Introduction

Globally, cardiovascular disease (CVD) is the main cause of mortality (Al-Makki et al.,
2022). The World Health Organization predicts that the death rate from CVD will
increase from 246 per million people in 2015 to 264 per million people in 2030 (Roth et al.,
2015; Ribas Ripoll et al., 2016). Over 25% of adults worldwide suffer from hypertension
(HT), which is the major cause of CVD events and mortality. Since HT typically has no
symptoms or indicators in its early stages, it is referred to as the silent killer (Mensah,
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2019; Polak-Iwaniuk et al., 2019). Consequently, many people are
unaware that they are suffering from high blood pressure and are
not treated in a timely manner. Early diagnosis, treatment, and
management of HT are crucial for preventing and treating CVDs.

Blood pressure measurement methods can be invasive or
noninvasive. The former is referred to as arterial puncture
measurement as it requires making a puncture or incision in a
blood vessel. Thus, it is only suitable for critically ill patients and not
daily monitoring. Korotkoff’s sound and oscillometric methods,
which require the use of an upper arm cuff and use the cuff
pressure and release process to identify systolic and diastolic
blood pressure levels, are the most widely used noninvasive
blood pressure measuring techniques. Medical personnel and
patients appreciate the reliability of these two approaches
(Martínez et al., 2018). However, the Korotkoff’s sound and
oscillographic methods can only provide intermittent blood
pressure measurements, with a 2-min interval between
measurements. Therefore, they are not suitable for real-time
prediction and assessment of HT (Slapničar et al., 2019).
Developing a method to determine the classification of HT that
can be applied continuously and for which the results can be
obtained instantly has become a popular topic of research in the
digital health industry (Hosanee et al., 2020).

In the last 10 years, photoplethysmography (PPG), a
noninvasive technique for monitoring changes in
microvascular blood volume, has been the method most
frequently studied (Elgendi et al., 2019; Park et al., 2022).
Research on PPG is typically focused on two aspects: 1) the
PPG-based pulse arrival time (PAT) and 2) PPG-based time and
frequency domain parameters. The PAT of the former method is
calculated from the PPG and the electrocardiographic (ECG)
signal. However, this method requires simultaneous
measurement at two different sites on the body, which can be
inconvenient and challenging for some patients (Elgendi, 2020).
The latter approach models PPG time and frequency domain
factors to determine blood pressure. However, the analysis and
information extraction of the PPG waveform morphology is
extremely demanding in terms of calculating time-frequency
domain parameters. This method is extremely sensitive to
noise and requires high-quality PPG signals, for example, with
a high sample rate and accurate sampling, which limits its wide
application.

A number of scholars have conducted research to overcome
these problems. In 2020, Tjahjadi et al. classified blood pressure
values using the K-nearest neighbors (KNN) method based on
PPG. The suggested technique improves classification accuracy
without the PPG waveform shape (Tjahjadi and Ramli, 2020).
However, before KNN is applied to the dataset, feature scaling
(standardization and normalization) is needed, adding a data
preprocessing step. Recently, deep learning approaches have been
effectively used to address this issue. Sun et al. (2021) suggested a
deep learning approach for classifying blood pressure using a
PPG signal as well as its first and second derivative signals. They
employed a convolutional neural network based on the
Hilbert–Huang transform. Compared to feature extraction
approaches, the method obtained greater accuracy in HT risk
categorization and demonstrated that PPG derivatives include
crucial information on blood pressure. However, deep learning

methods require training using large-scale data, and the training
time consumption is often greater than 5 h (Tjahjadi and Ramli,
2020).

We sought to address these limitations while reducing the
impact of morphological methods on model stability, and we
proposed a method to classify blood pressure using Tsfresh and
an Optuna-tuned light gradient boosting machine (LightGBM)
based on PPG and its derivatives. The suggested technique
worked well for classifying blood pressure in real time. Tsfresh is
a Python tool for time series feature extraction. Optuna-tuned
LightGBM has the advantages of better model training accuracy
and lower memory consumption in comparison to traditional
classification algorithms, making it suitable for use in wearable
devices.

The key contributions of this study are:

1) We classified blood pressure as normotension (NT),
prehypertension (PHT), and HT according to the seventh
report of the United States Joint National Committee on
Prevention, Detection, Evaluation and Treatment of High
Blood Pressure (JNC7). Our proposed method allows users to
instantly know their blood pressure condition and provides a
warning system for patients that may possibly have
hypertension.

2) With our proposed method, only one physiological pulse wave
signal is needed, and our research shows that PPG and its
derivatives can be used to predict blood pressure in place of
the combination of ECG and PPG. This advantage has great
application potential in wearable devices, as, in general,
traditional smart bracelets and smart watches can easily
obtain a stable PPG signal.

3) Our proposed method has no requirement in terms of PPG
signal quality and does not require extraction of pulse wave
morphological features.

4) To obtain a shorter training period and lower computational
complexity, our proposed method uses machine learning rather
than deep learning.

2 Materials and methods

2.1 Data acquisition

In this study, arterial blood pressure (ABP) signals, measured
with a catheter in the radial artery, were used to categorize the
PPG signals based on the blood pressure values. They were
obtained from the Medical Information Mart for Intensive
Care III (MIMIC-III) database (Saeed et al., 2011; Johnson
et al., 2016), a large, free, public database that contains
complex-parameter recordings of more than 40,000 intensive
care unit (ICU) patients, including laboratory test data,
demographic information data, and physical measurements. In
this paper, only the PPG and ABP signal data were used as the
original data source. To correctly obtain blood pressure labels, we
excluded recordings, such as missing peaks, double-peaked
pulses, and no signal (Liang et al., 2018a; Liang et al., 2019).
Ultimately, the recordings of 121 subjects were collected, each
lasting 120 s, with a sampling frequency of 125 Hz.
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2.2 Signal preprocessing

Each recording included ABP and PPG signals as the target
source and prediction source, respectively, and the recording was
divided into 5-s segments. Next, to create the training data, we
adopted the signal function extreme value search algorithm, which
was mainly used to detect the peak and trough points in the ABP
signal and to extract the diastolic blood pressure (DBP) and systolic
blood pressure (SBP). According to JNC7 (Chobanian et al., 2003),
the blood pressure conditions were classified as NT, PHT, or HT.
Figure 1 illustrates the structure of the signal processing.

The PPG signal was then processed by primary and secondary
differentiation to obtain its first and second derivative signals, which
represent velocity plethysmography (VPG) and acceleration
plethysmography (APG), respectively (Elgendi et al., 2018).
Because a signal collected manually or by machine is inevitably
subject to disturbance by the environment and other factors, such as
circuit interference, resulting in the presence of various kinds of
noise in the collected signal, noise reduction was an essential part of
signal processing. Current noise reduction methods include filters,
digital filters, Fourier transforms, wavelet transforms, etc. In the

study discussed in this paper, the noise was reduced using a
0.5–10 Hz Butterworth bandpass filter. Then, to map the data to
the same scale, the filtered PPG signals were mean-variance
normalized. Figure 2 shows the PPG, VPG, and APG waveforms
for the three different blood pressure categories.

2.3 Feature extraction

Previous PPG research faced challenges in terms of the effective
location and extraction of feature points, and the traditional manual
method of extracting signal feature points did not work well for
poor-quality PPG signals (Chan et al., 2019). In this study, the
Python package Tsfresh was used to extract signal segment
characteristics (Christ et al., 2018). Tsfresh is a feature
engineering tool for relational databases dealing with time series.
It provides 77 time series characterization methods, with a total of
794 time series features that can be computed with different
parameters (Gedam and Paul, 2020; Hunter et al., 2020). In real-
world scenarios, time series often contain noise and redundant or
irrelevant information. To avoid extracting features with low

FIGURE 1
A signal processing structure. Note: ABP stands for arterial blood pressure; PPG, VPG, and APG refer to photoplethysmography, velocity
plethysmography, and acceleration plethysmography, respectively. JNC7 stands for the seventh report of the United States Joint National Committee on
Prevention, Detection, Evaluation and Treatment of High Blood Pressure.
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relevance, we obtained p-values by performing univariate feature
significance tests, which were then evaluated using the
Benjamini-Hochberg procedure, retaining the features with
high correlation with the classification label in order to
identify the features that best explained the trend (Li and
Barber, 2019; Phillips et al., 2021).

Multiple temporal subsegments with classification labels y were
simultaneously imported into the Tsfresh function, and the
numerical features of the temporal subsegments were extracted;
thus, 794 features were extracted for each temporal subsegment
(Simjanoska et al., 2020). We then filtered out the features that did
not have a significant impact on the recognition result. A total of
189 features were obtained for each PPG timing subsegment,
200 features for each VPG timing subsegment, and 190 features
for each APG timing subsegment. All the features can be found in
the Supplementary Material.

The following are some of the Tsfresh-calculated features:

1) Absolute energy: this term refers to the absolute energy of the
time series and is the sum of the squared values.

E � ∑
i�1,...,n

x2i (1)

2) Continuous wavelet transform (CWT) coefficients: these are
used to perform a CWT on the Ricker wavelet.

cwt � 2���
3a

√
π

1
4

1 − x2

a2
( ) exp − x2

2a2
( ) (2)

3) Fast Fourier transform (FFT) coefficients: these are the Fourier
coefficients of the one-dimensional discrete Fourier transform of
real input by a fast Fourier transformation algorithm.

Ak � ∑n−1
m�0

am exp −2πi mk
n

{ }, k � 0, . . . , n − 1 (3)

4) Mean second derivative central: this is the mean value of a central
approximation of the second derivative.

Ad � 1
2 n − 2( ) ∑

i�1,...,n−1

1
2

xi+2 − 2 · xi+1 + xi( ) (4)

FIGURE 2
Signal derivatives for three different blood pressure categories. Note: PPG, VPG, and APG refer to photoplethysmography, velocity
plethysmography, and acceleration plethysmography, respectively.
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5) Mean absolute change: this is the mean over the absolute
differences between the subsequent time series values.

Aac � 1
n − 1

∑
i�1,...,n−1

xi+1 − xi| | (5)

2.4 Machine learning methods and
hyperparameter tuning

After the redundant features were removed, the remaining
features were input into the LightGBM classifier for blood
pressure classification. LightGBM is a new gradient boosting
decision tree extension proposed by Microsoft (Ke et al., 2017).
The algorithm incorporates exclusive feature bundling (EFB)
and gradient-based one-side sampling (GOSS). To optimize the
feature values, the algorithm uses the histogram-based
algorithm instead of the traditional presorted traversal
algorithm. LightGBM offers better model training accuracy
and prevention of overfitting than traditional classification
algorithms, such as decision trees (Song and Ying, 2015) and
random forests (Biau, 2012). To better demonstrate the
scientific nature of the experiment, we used a decision tree,
AdaBoost, a gradient boosting decision tree (GBDT), random
forest, XgBoost, and LightGBM to conduct comparative
experiments.

To improve the predictive performance of the LightGBM model
and avoid overfitting, a Bayesian optimization library, called
Optuna, was employed to effectively adjust the hyperparameters
and empirically benchmark its performance. Optuna is a framework
created to automate and accelerate hyperparameter optimization
experiments (Akiba et al., 2019). It has three core concepts: objective
function, single trial, and study. Optuna continually calls for and
assesses the objective function for various parameter values to arrive
at the best result (Dong et al., 2020; Lacerda et al., 2021). In this
study, 1,000 Bayesian optimization trials were used to maximize the
accuracy score and 10 LightGBM hyperparameters. Table 1 shows
the 10 LightGBM hyperparameters.

2.5 Hypertension classification

A recent study (Berstad et al., 2018) showed that multiple binary
classifiers resulted in a more robust model than a single network
multiclass implementation. In other words, examining several binary
classifiers can provide more robust and increased classification accuracy.
Here, we focused on formulating the classification problem into a binary
classification based on clinical importance. Therefore, we implemented
the one-vs-onemulticlass and the one-vs-rest multiclass strategies. In the
one-vs-one multiclass strategy, it is crucial to differentiate between NT
from PHT and NT from HT. With regards to the one-vs-rest multiclass
strategy, distinguishing NT + PH from HT is also clinically essential.
Consequently, a total of 1,158 NT cases, 950 PHT cases, and 850 HT
cases were obtained based on the HT classifications reported by JNC7.
Three HT classification trials were established: NT vs. PHT, NT vs. HT,
and NT + PHT vs. HT. Seven feature sets were used to classify the
different blood pressure categories: one containing only PPG features,
one containing only VPG features, one containing only APG features,
one containing both PPG and VPG features, one containing both PPG
andAPG features, one containing bothVPG, andAPG features, and one
containing PPG, VPG, and APG features. We designed these seven
feature sets for two purposes. First, we used them to compare the three
waveforms, PPG, VPG, and APG, to predict blood pressure levels.
Second, we verified whether a feature set containing PPG, VPG, and
APG is superior to a single PPG feature set for blood pressure prediction.
Figure 3 shows the flow chart for this study.

We used eight assessment methods in this study: specificity (SP),
sensitivity (SN), accuracy (ACC), precision (PRE), F1 score, Matthew’s
correlation coefficient (MCC), Cohen’s kappa coefficient (Kappa), and
area under the receiver operating characteristic (ROC) curve (AUC).
These methods are defined as follows:

SP � TN
TN + FP

(6)

SN � TP
TP + FN

(7)

ACC � TP + TN
TP + TN + FT + FN

(8)

PRE � TP
TP + FP

(9)

F1 score � 2 ×
TP

2TP + FP + FN
(10)

MCC � TP × TN( ) − FP × FN( )������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (11)

Kappa � P0 − Pe

1 − Pe
(12)

TP, FP, TN, and FN stand for true positive, false positive, true
negative, and false negative, respectively. P0 denotes the level of
observed agreement among the raters, and Pe indicates the
hypothesized likelihood of chance agreement. AUC refers to the
area under the ROC curve, representing the sum of the measured
classification performance across all possible thresholds.

In this study, a total of 2958 signal segments were obtained and
then randomly divided the dataset into 70%, and 30%, of which 70%
was the training set with a total of 2070 signal segments and 30% was
the testing set with a total of 888 signal segments. The bootstrap
method was used based on the recommendation by Xu and
Goodacre (2018) who conducted a comparative study of cross-

TABLE 1 Hyperparameter settings of LightGBM used for the Bayesian
optimization.

Parameters Search space

learning_rate (1e-8, 1.0,’log-uniform’)

lambda_l1 (1e-8, 1.0,’log-uniform’)

lambda_l2 (1e-6, 1.0,’log-uniform’)

bagging_fraction (0.3, 1.0,’uniform’)

feature_fraction (0.3, 1.0,’uniform’)

bagging_freq (2, 10,’int’)

min_child_samples (1, 50,’int’)

max_depth (2, 20,’int’)

num_leaves (2, 1024,’int’, step = 2)

n_estimators (100, 4000,’int’, step = 5)
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FIGURE 3
the flow chart of this study. Note: ABP stands for arterial blood pressure, PPG, VPG, and APG denote photoplethysmography, velocity
plethysmography, and acceleration plethysmography, respectively.

TABLE 2 Classification performance of the proposed machine learning method. Note, NT, PHT, and HT denote normotension, prehypertension, and hypertension,
respectively. SP stands for specificity, SN stands for sensitivity, ACC stands for accuracy, PRE stands for precision, MCC stands for Matthew’s correlation coefficient,
Kappa stands for Cohen’s kappa coefficient, AUC stands for Area under curve. Values in Bold indicate highest scores achieved for each classification per evaluation
metric.

Model Trail SP (%) SN (%) ACC (%) PRE (%) F1 score (%) AUC (%) MCC (%) Kappa (%) Time (s)

Decision tree NT vs. PHT 84.44 70.88 72.83 72.89 72.85 72.65 45.22 45.22 0.23

NT vs. HT 80.39 79.60 79.93 80.30 80.02 79.99 59.49 59.34 0.28

(NT + PHT) vs. HT 96.26 65.88 80.41 80.41 80.41 76.07 52.14 52.14 0.57

AdaBoost NT vs. PHT 78.74 71.58 75.51 75.47 75.48 75.16 50.44 50.43 1.64

NT vs. HT 88.22 75.29 82.75 82.73 82.64 81.76 64.44 64.25 1.59

(NT + PHT) vs. HT 92.26 60.39 83.11 82.56 82.48 76.33 56.73 56.06 2.47

GBDT NT vs. PHT 83.62 77.54 80.88 80.86 80.86 80.58 61.32 61.30 7.24

NT vs. HT 93.10 82.35 88.58 88.62 88.48 87.73 76.50 76.30 6.79

(NT + PHT) vs. HT 96.37 66.27 87.72 87.75 87.15 81.32 68.85 67.63 11.30

Random forest NT vs. PHT 84.20 76.14 80.57 80.54 80.52 80.17 60.64 60.59 1.30

NT vs. HT 93.68 83.14 89.22 89.30 89.15 88.41 77.87 77.67 1.48

(NT + PHT) vs. HT 96.84 61.57 86.71 86.93 85.90 79.20 66.15 64.28 2.49

XgBoost NT vs. PHT 85.34 78.95 82.46 82.44 82.44 82.15 64.50 64.48 1.34

NT vs. HT 93.68 87.84 91.21 91.21 91.19 90.76 81.95 81.91 1.09

(NT + PHT) vs. HT 95.73 74.90 89.75 89.63 89.50 85.32 74.26 73.84 2.02

LightGBM NT vs. PHT 85.92 80.70 83.57 83.55 83.55 83.31 66.76 66.75 0.87

NT vs. HT 94.25 87.84 91.54 91.55 91.51 91.05 82.63 82.57 0.81

(NT + PHT) vs. HT 96.27 74.12 89.98 89.92 89.68 85.24 74.80 74.22 1.13
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validation, bootstrap, and systematic sampling for estimating the
generalization performance of supervised learning. They concluded
that most of the resampling methods produce similar correct
classification results; therefore, in this study, bootstrap method
was implemented instead of the cross-validation method because
of the need for parameter optimization using Optuna for LightGBM
model tuning. The optimized parameters include the bagging
fraction learning control parameter, which indicates the
proportion of data for each bootstrap aggregating (bagging); this
can improve the robustness of the model.

All signal processing, modeling, and evaluations were performed in
PyCharm software (Community version 2020.2.3), developed and
distributed by JetBrains (Prague, Czech Republic). Machine learning
algorithms were implemented using Python 3.8 based on the following
packages: LightGBM v3.2.1, Scikit-learn v1.0.1, Optuna v2.10.0, and
Tsfresh 0.19.0. The code was executed on a laptop with an Intel i7-
6700 as the CPU, 8 GB RAM, and NVIDIA GeForce GTX 960M as the
graphics card.

3 Results

As traditional classification algorithms, the decision tree and
random forest methods have made great contributions to the
development of machine learning (Jordan and Mitchell, 2015). To
better demonstrate the rigor of this experiment, the performance of

these traditional algorithms and LightGBM were compared. Table 2
presents a summary of the performance of the variousmachine learning
models using the PPG signal feature set extracted by Tsfresh, including
a decision tree, AdaBoost, GBDT, random forest, XgBoost, and
LightGBM, and provides the run times for 100 training runs. The
test set included 348 NT cases, 285 PHT cases, and 255 HT cases. The
best model performance is marked in bold font. As seen in Table 2, of
the six models, the decision tree had the shortest running time but the
worst classification performance. The classification performance was
slightly better for LightGBM than XgBoost and much better than the
other four tested models. The superior performance of the LightGBM
model was demonstrated by the fact that it ran in much less time than
the XgBoost model.

3.1 Hyperparameter tuning

As seen in Figure 4, the optimized LightGBM model with
Optuna performed better on the PPG signal feature set extracted
by Tsfresh. In the default setting of the LightGBM model, the
F1 scores of NT vs. PHT, NT vs. HT, and NT + PHT vs. HT
were 0.8355, 0.9151, and 0.8968, respectively. After the Bayesian
hyperparameters were modified, the improved LightGBM model
performed better in multiple classification tests. The corresponding
values for NT vs. PHT, NT vs. HT, and NT + PHT vs. HT were
0.8657, 0.9418, and 0.9170, respectively.

3.2 Model performance

To investigate the effects of different feature sets extracted by Tsfresh
on blood pressure classification, we used seven different feature sets and
trained the Optuna-tuned LightGBMmodel on each. Table 3 presents a
summary of the classification performance of different feature sets using
Optuna-tuned LightGBM models. The best performance is marked in
bold font. Based on the results presented in Table 3, we reached the
following conclusions. First, VPG outperformed PPG and APG in terms
of classification performance; the most significant difference in
performance improvement was seen between the NT and PHT
experiments. Second, the PPG, APG, and VPG datasets
outperformed the single PPG dataset, and similar results were
obtained in different classification experiments. Third, an increase in
the dataset size contributed to an improvement in the performance of
blood pressure classification.

3.3 Study comparison

In past research (Liang et al., 2018a; Liang et al., 2018b), the dataset
used in this study was employed to classify blood pressure using PAT
and PPG features extracted from ECG and PPG signals. The results
shown in Table 4 denote that the accuracy of the model used in this
study is greater than that of the classifier employing PAT and 10 PPG
morphological characteristics. Moreover, the method performs better
than the Google Net model using continuous wavelet transform. This
suggests the potential of the model proposed in this study, which only
employed PPG signals and their derivatives, as an alternative to ECG
and PPG HT classification methods.

FIGURE 4
Performance of LightGBM in the classification of hypertension.
Radar plot illustrations the performance of base and optimization
LightGBMmodel in (A)NT vs. PHT (B)NT vs. HT and (C) (NT + PHT) vs.
HT. Note, NT, PHT, and HT refer to normotension,
prehypertension, and hypertension, respectively. SP stands for
specificity, SN stands for sensitivity, ACC stands for accuracy, PRE
stands for precision, MCC stands for Matthew’s correlation coefficient,
Kappa stands for Cohen’s kappa coefficient, AUC stands for Area
under curve.
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4 Discussion

HT is routinely evaluated using blood pressure testing methods.
Elderly individuals generally have trouble reading and managing

blood pressure cuffs, limiting their use. In contrast, the PPG signal
has the advantage of being easy to collect and monitor over time,
making it an important tool for noninvasive cardiovascular health
screening. However, in a previous study (Chan et al., 2019) based on

TABLE 3 Classification performance on different feature sets using Optuna-tuned LightGBM models. Note, NT, PHT, and HT denote normotension,
prehypertension, and hypertension, respectively. PPG, VPG, and APG refer to photoplethysmography, velocity plethysmography, and acceleration
plethysmography, respectively. SP stands for specificity, SN stands for sensitivity, ACC stands for accuracy, PRE stands for precision, MCC stands for Matthew’s
correlation coefficient, Kappa stands for Cohen’s kappa coefficient, AUC stands for Area under curve. Values in Bold indicate highest scores achieved for each
classification per evaluation metric.

Feature sets Trail SP (%) SN (%) ACC (%) PRE (%) F1 score (%) AUC (%) MCC (%) Kappa (%)

PPG NT vs. PHT 87.64 85.26 86.57 86.58 86.57 86.45 72.88 72.88

NT vs. HT 96.26 91.37 94.20 94.21 94.18 93.82 88.09 88.05

(NT + PHT) vs. HT 97.16 78.82 91.89 91.89 91.70 87.99 79.75 79.32

VPG NT vs. PHT 91.09 87.37 89.42 89.41 89.41 89.23 78.60 78.59

NT vs. HT 96.84 92.16 94.86 94.88 94.85 94.50 89.46 89.42

(NT + PHT) vs. HT 97.31 79.22 92.12 92.12 91.93 88.27 80.33 79.90

APG NT vs. PHT 89.94 81.75 86.26 8629 86.21 85.85 72.19 72.09

NT vs. HT 95.40 94.12 94.86 94.86 94.86 94.76 89.47 89.47

(NT + PHT) vs. HT 96.21 73.73 89.75 89.68 89.45 84.97 74.22 73.64

PPG and VPG NT vs. PHT 90.23 88.77 89.57 89.58 89.58 89.50 78.95 78.95

NT vs. HT 97.70 93.33 95.85 95.88 95.84 95.52 91.51 91.47

(NT + PHT) vs. HT 97.79 80.00 92.68 92.73 92.50 88.89 81.78 81.31

PPG and APG NT vs. PHT 89.94 87.02 88.63 88.62 88.62 88.48 77.01 77.01

NT vs. HT 97.70 96.08 97.01 97.01 97.01 96.89 93.88 93.88

(NT + PHT) vs. HT 97.16 80.39 92.34 92.32 92.18 88.77 80.91 90.57

VPG and APG NT vs. PHT 91.67 85.96 89.10 89.11 89.08 88.82 77.95 77.90

NT vs. HT 97.41 95.29 96.52 96.52 96.51 96.35 92.85 92.86

(NT + PHT) vs. HT 97.16 80.00 92.23 92.21 92.06 88.58 80.62 80.26

PPG, VPG and APG NT vs. PHT 92.82 87.02 90.21 90.23 90.18 89.92 80.20 80.14

NT vs. HT 98.28 96.47 97.51 97.51 97.51 97.37 94.90 94.90

(NT + PHT) vs. HT 97.31 81.96 92.91 92.89 92.77 89.64 82.34 82.06

TABLE 4 Classification performance of the proposed machine learning method and deep learning method and feature-based methods on the same recordings
from theMIMIC-III database. Note, NT, PHT, and HT refer to normotension, prehypertension, and hypertension, respectively. PAT stands for pulse arrival time, CWT
stands for continuous wavelet transform, and KNN stands for k-nearest neighbors.

Trial Feature Classifier F1 (%)

This study (Only PPG) NT vs. PHT Tsfresh feature extraction LightGBM 90.18

NT vs. HT Tsfresh feature extraction LightGBM 97.51

(NT + PHT) vs. HT Tsfresh feature extraction LightGBM 92.77

Based on PAT and PPG features (ECG & PPG) Liang et al. (2018b) NT vs. PHT PAT and 10 PPG features KNN 84.34

NT vs. HT PAT and 10 PPG features KNN 94.84

(NT + PHT) vs. HT PAT and 10 PPG features KNN 88.49

Based on CWT and GoogLeNet (Only PPG) Liang et al. (2018a) NT vs. PHT CWT scalogram GoogLeNet 80.52

NT vs. HT CWT scalogram GoogLeNet 92.55

(NT + PHT) vs. HT CWT scalogram GoogLeNet 82.95

Frontiers in Physiology frontiersin.org08

Hu et al. 10.3389/fphys.2023.1072273

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1072273


PPG signals, the researchers had trouble recognizing and extracting
feature points because patient age, motion, and respiration all
interfere with PPG signals. We have provided a potential solution
to these difficulties through using the Tsfresh method, which
automatically and robustly extracts features from the original
signal and uses the Optuna-tuned LightGBM machine learning
model for classification.

LightGBM enables effective parallel training, which can speed
up standard GBDT model training 20-fold. It also has reduced
memory usage, improved accuracy, and rapid data processing
(He et al., 2020). LightGBM has often been used to perform
classification and regression tasks (Zeng et al., 2019; Xu et al.,
2020). The results shown in Table 2 demonstrate the superior
performance of the LightGBM model in terms of training time
overhead when using different machine learning models to
classify the same dataset.

However, tuning is more difficult for LightGBM than for
traditional machine learning techniques, which only need the
adjustment of one or two parameters to ensure model
correctness and resilience. The grid-search strategy is the most
common method for optimizing the 10 LightGBM parameters.
However, this method has no pruning operation, resulting in a
long search time. Optuna optimization techniques may be used to
solve this problem by modifying the hyperparameters (Bergstra
et al., 2013). As seen in Figure 3, the baseline LightGBM model
could be improved via Optuna optimization by over 3.6%, 2.9%,
and 2.1% (ACC value), 3.6%, 2.9%, and 2.3% (F-value), 9.2%, 6.6%,
and 6.6% (MCC value), and 3.8%, 3.0%, and 3.2% (AUC value) for
NT vs. PHT, NT vs. HT, and NT + PHT vs. HT, respectively,
thereby verifying the effectiveness of Optuna optimization.

To study the influence of the first- and second-order derivatives of
PPG on the classification results, seven different feature sets were used
for the classification experiments. The results shown in Table 3
demonstrate that the combined feature set of PPG, VPG, and APG
outperformed the single PPG feature set in the blood pressure
classification model. VPG denotes the aortic blood flow velocity and
APG indicates the change in the velocity of blood flow. Because
hypertensive patients have high blood pressure, blood flows more
rapidly into the aorta when the aortic valve is open. Additionally, the
descending branch of the PPG signal is steeper in hypertensive patients
who lack vascular elasticity than in the general population, which is
reflected in the APG. Consequently, adding PPG derivative information
to the dataset can make blood pressure classification more accurate.

NT, PHT, and HT are the different stages of blood pressure that
the human body exhibits with age or the cause of disease, and also
reflect the state of cardiovascular health. Globally, compared with
PHT and HT, the number of NT is the largest, from the
normotensive population screening to identify PHT and HT
samples is of great significance, through one-to-one binary
classification research, we can more intuitively observe the actual
effect of the proposed scheme in the screening of PHT and HT.
Thus, in the machine learning approach using Tsfresh and Optuna-
tuned LightGBM, three classification trials for HT were conducted:
NT vs. PHT, NT vs. HT, and NT + PHT vs. HT. The classification
performance results of the three classification tests are shown in
Table 3. The F1 scores of the tests were found to be greater than .85.
The combined feature set of PPG, VPG, and APG was associated
with the highest F1 scores, with .9018, .9751, and .9277 in different

classification experiments, respectively. All the feature sets had
F1 scores greater than .9. These findings indicate this method’s
potential for detecting HT. Figure 5 shows the performance of the
main models used in this study with different feature sets.

It is worth noting that we obtained a total of 1158 NT cases,
950 PHT cases, and 850HT cases, and the ratios of positive and negative
examples for the classification trials were: 1.22 for NT/PHT, 1.36 for
NT/HT, and 2.48 for (NT + PHT)/HT. According to García’s study
(García et al., 2012), they defined data with positive and negative sample
ratios less than 3 as low-imbalance data. They studied the impact of
imbalance ratios and classifiers on the performance of several
resampling strategies for processing imbalanced datasets and found
no significant differences for the low-imbalance data. The data ratios in
this paper are all less than 3, which are considered low-imbalance data;
therefore, upsampling and downsampling are not needed.

PAT has been examined extensively in novel cuffless blood
pressure detection systems (Ding et al., 2017; Zhang et al., 2017).
A previous study classified blood pressure using PAT and PPG
parameters taken from ECG and PPG signals (Liang et al., 2018b),
and the present study used the same dataset. The results presented in
Table 4 show that the approach employed in this study has greater
accuracy than the method previously utilized. Thus, using the
Tsfresh and Optuna-tuned LightGBM method easily yields better
performance than extracting PAT and PPG morphological features
using the same low-quality signals based on those collected from
elderly ICU patients. Therefore, the approach suggested in this
research has more practical usefulness and prospective applications.

This research mainly focused on novel blood pressure detection
and HT risk categorization, in which extracting features from
physiological signals with different qualities has been difficult. It
proposed a machine learning-based classification method using
Tsfresh for feature extraction and Optuna-tuned LightGBM for
HT classification. Experiments were conducted using machine
learning techniques, and the results showed that the proposed
model has good performance and strong potential for application
in the field of wearable cuffless blood pressure measurement.

The method proposed in this study has some advantages and
disadvantages. As for the advantages, first, the proposed method
does not require the extraction of morphological characteristics.
Additionally, there are no special requirements regarding the quality
of the PPG signal. Third, this process can be completely automated.
Finally, this process does not require a high level of processing
power, the procedure is simple, and the processing time is short.
These advantages will make it easier to implement the method in
wearable cuffless blood pressure management devices. As for the
disadvantages, this process is not suitable for the real-time
processing of large-scale data and a small dataset was used. One
of the next steps is test the performance of the proposed algorithm
on a different dataset with bigger sample size with different ethnic
groups. Ethnicity plays a major role in creating bias in the PPG
signal (Sjoding et al., 2020). The MIMIC database used in this study
suffer from ethnicity bias (Sinaki et al., 2022). As the algorithm
proposed in the study was trained and tested to differentiate between
subjects, the study was designed as an inter-subject stratification
approach. The algorithm is expected to perform well in assessing
each subject over time if the intra-subject stratification is explored.
Although, getting subjects for intra-subject stratification whose
blood pressure variation is regularly changing between NT, PH,
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and PHT is challenging. Such subjects are usually in critical health
situations where medication is needed to move them from HT to
NT. However, it is an area worth exploring.

5 Conclusion

The method proposed in the study discussed in this paper
(using Tsfresh and Optuna-tuned LightGBM) increases
classification accuracy without requiring the extraction of PPG
morphological characteristics or a high-quality PPG signal.
Comparison of the results of blood pressure classification
trials in various models revealed that our proposed model has
higher accuracy than decision tree, AdaBoost, GBDT, random
forest, and XgBoost models. Our study also showed that the first-
and second-order derivatives of PPG include significant
information about blood pressure, allowing PPG, VPG, and
APG to be used in place of PAT and PPG for blood pressure
prediction. The proposed method automatically diagnoses HT,
providing a noninvasive, rapid, and low-cost method for the early
detection of HT in low- and middle-income countries.
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