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Purpose: The aim of this study was to explore the acute effects of Blood Flow
Restriction Training (BFRT), Whole-Body Vibration (WBV), and BFRT +WBV on the
20m sprint, muscle activation, and metabolic accumulation in male sprinters.

Method: Sixteen male sprinters randomly performed BFRT, WBV, or BFRT + WBV
interventions with 72 h intervals. Electromyography (EMG) signals were collected
before and during interventions. Fingertip blood was taken before, immediately
after, and 15 min after the intervention. 20 m sprint was performed before and
3min after the intervention.

Results: 1) 0–10m and 0–20m sprint performance were significantly improved
after WBV and BFRT + WBV interventions (p < 0.05), 0–20m sprint performance
was significantly improved after all three interventions (p < 0.05), 2) After BFRT +
WBV intervention, the EMG amplitude of the vastus lateralis and soleus were
significantly improved. Greater increases in EMG activity of the tibialis anterior
muscle (p < 0.05)and blood lactate (p < 0.05)were observed following BFRT
intervention compared to BFRT + WBV intervention.

Conclusion: For sprint performance, BFRT and WBV had similar post-activation
enhancement effects to BFRT + WBV, and the metabolic accumulation
immediately following the BFRT were higher than that following BFRT + WBV
in male sprinters.
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1 Introduction

Following a conditioning activity (CA), there are significant improvements in the
subsequent lower-body explosive performance. The acute increase in muscle
performance is known as post-activation potentiation (PAP) (Berriel et al., 2022).
Although the exact underlying mechanism for PAP is not fully clear, physiological
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changes (e.g., muscle temperature, fiber water content, and muscle
activation) may contribute to these potential benefits.

Previous studies demonstrated that an appropriate CA could
induce significant potential enhancement in jump performance
(García-Pinillos et al., 2015). Seven-second maximal voluntary
contraction (MVC) intervention significantly improved
subsequent vertical jump performance (Robbins and Docherty,
2005). Hoffman et al. (2007) reported that vertical jump
performance was significantly improved following back squat
intervention in male college rugby players. These acute potential
enhancements were also observed in sprint performance (Low et al.,
2015). After performing the sled pull sprint exercise, acute
improvement in the 15 m sprint was observed in well-trained
rugby players (Winwood et al., 2016). Research indicated that
body-loaded squat training with whole-body vibration (WBV)
significantly increased subsequent on-ice10m and 20 m sprint
performance in ice-hockey players (Rønnestad et al., 2016).
Notably, Hamada et al. (2003) suggested that to induce ideal
potential benefits, the intervention was required to involve high-
loading or submaximal-loading. However, high-intensity resistance
training also induces acute fatigue, which was related to the
increased risk of sports injury and subjective discomfort.

Recently, low-loading resistance training with blood flow
restriction training (BFRT) has been proved to induce similar
muscle adaptions (e.g., strength and hypertrophy) compared to
high-intensity resistance training without BFRT. Thus, this
strategy has gained much attention from sports practitioners.
BFRT training is a method of restricting blood flow to the
intended muscles using special compression devices such as
pressure bands and elastic bandages (Scott et al., 2015). Loenneke
et al. (2012b) reported that 15%–30%1RM resistance training with
BFRT (2,3 times per week) significantly improved muscular strength
and muscular hypertrophy, moreover, no significant differences in
these improvements were observed between low-intensity with
BFRT group and high-intensity resistance training without BFRT.
Cook et al. (2014) also demonstrated that 8-week (three times per
week) low-intensity resistance training with BFRT training
significantly improved 40 m sprint performance and vertical
jump height in male rugby players. These findings suggested that
short- and long-term low-loading resistance training with BFRT is
an effective method to induce positive muscle adaptions.

WBV training is also a popular strength training method as
WBV exercise with lower load intensity and shorter intervention
duration can significantly improve muscle strength and lower-body
explosive performance (Bosco et al., 2000). The underlying
mechanisms for WBV training involve the principle of vibratory
tension reflex, which induces notable physiological changes in
muscle spindle and joint mechanoreceptors (Cook et al., 2014),
leading to increasing muscle strength adaptions. Bosco et al. (1999)
demonstrated that WBV intervention could significantly increase
subsequent muscle power, indicating positive muscle responses to
acute WBV intervention. Arora et al. (2021) suggested that WBV
significantly increased the neuromuscular activity and the peak
power during vertical jump. Furthermore, previous studies
reported that WBV intervention with a vibration frequency of
20–50 Hz and an amplitude of 1–12 mm might be an optimal
strategy for improving muscle electromyographic responses
(Ritzmann et al., 2013; Alam et al., 2018). This finding was in

line with the result of the study by Simsek (2017), the author
suggested that isometric squat exercise with 40 Hz vibration
frequency and 4 mm amplitude could induce activate muscle
activity to a greater extent. In this case, adding WBV to low-
loading resistance training with BFRT could induce greater
muscle activation and motor unit recruitment, resulting in
improving subsequent explosive performance compared to
resistance training with BFRT alone and resistance training with
WBV alone. Unfortunately, little evidence was found in previous
studies.

Overall, this study aims to explore the acute effects of BFRT,
WBV, and BFRT + WBV interventions on sprint performance,
muscle activation, and metabolic accumulation in college male
sprinters. We hypothesized that 1) BFRT + WBV intervention
would be superior to the BFRT and WBV intervention in
inducing increased sprint performance, muscle activation, and
metabolic accumulation, and 2) there would be no significant
differences in testing variables between BFRT and WBV. The
findings of this study will provide alternative strategies for
improving sprint performance, etc. We will also suggest future
research direction.

2 Participants and methods

2.1 Participants

Participants included in this study were required to meet the
following inclusion criteria: 1) elite and sub-elite 100 m or 200 m
male sprint athletes; 2) at least 2 years of resistance training
experience. 18 male sprinters voluntarily participated in the
present study, but only 16 participants complete all tests (mean ±
SD; age: 22.93 ± 0.78 years; height: 176.84 ± 3.46 cm; mass: 72.31 ±
4.27 kg; thigh circumference: 56.25 ± 1.59 cm; pressure value of
pressure bands: 268.33 ± 20.83 mmHg; training years: 3.40 ±
1.25 years).

All participants should follow all requirements of this study: 1)
no high-loading physical activity or consumption of caffeine or
alcoholic beverages within 24 h prior to the experiment (Dello
Iacono et al., 2018); 2) sufficient intake of water and no food for
4 h before the test (Carbone et al., 2020); 3) no high-intensity
training during the experiment. The study has been approved by
the ethics committee of blinding for review (2022216H) and all
participants signed a consent form.

2.2 Procedures

A randomized crossover-controlled design was used in this
study. All participants visited the lab four times. The first session
was designed to familiarize with the experimental process and
isometric squat technique. Also, baseline data including MVC,
EMG, blood lactate, and 20 m sprint was collected. In brief, after
sitting for 10min, the fingertip blood collection was taken. Then, all
participants completed a standardized 5–8 min warm-up session
including jogging and dynamic stretch (Figueroa et al., 2012). After a
2–5 min recovery, EMG signals were recorded during MVCs and
isometric squat without BFRT and WBV, then participants

Frontiers in Physiology frontiersin.org02

Zhang et al. 10.3389/fphys.2023.1149400

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1149400


performed 20 m sprint. All testing programs were performed
3 times, allowing 2–5 min of recovery between tests. In the
second to fourth visits, after a standardized warm-up session and
a 2–5 min rest interval, all participants randomly performed five sets
of 30 s isometric squat exercises (feet keep shoulder-width apart and
knees flex to 120°) with a 60s inter-set interval with BFRT or WBV,
or BFRT + WBV interventions with 72 h intervals (Dello Iacono
et al., 2018; Centner et al., 2019).

EMG was recorded during all three interventions. Moreover,
fingertip blood was collected immediately and 15 min following
intervention (Contreras et al., 2016; Gómez-Bruton et al., 2017;
Centner et al., 2019). Sprint performance was assessed at 3 min post-
intervention. During the intervention and testing period, the room
temperature was 19.7°C–21.6 °C, and the humidity level was 67%–86%.

2.3 Experimental intervention

2.3.1 Blood flow restriction
Participants performed the isometric squat exercise with

restricting blood flow. Participants stood upright and the tape
was placed at the 2/3 of the long axis between the anterior
superior iliac spine and the proximal border of the patella-the
top of the patella. When recording the thigh circumference, the
tape was snug and horizontal. In this study, the relative pressure
method was used to determine the individual exact pressure value of
the pressure bands, indicating that the exact pressure of the BFRT
bands was selected based on individual thigh circumference.
Previous studies have proved that the relative pressure method
could induce greater positive muscle adaptions compared with
the method of fixed pressure value (Loenneke et al., 2012a;
Natsume et al., 2015). Specifically, when the thigh circumference
was 45–50cm, 51–55cm, 56–59cm, >60cm, the pressure used was
200 mmHg, 250 mmHg, 300 mmHg, and 350 mmHg, respectively.

Before interventions, participants stood upright with the
pressure bands (B Strong, Utah, United States) wrapped around
the vertical thigh axis of the transverse gluteus muscle. Considering
the training safety, the pressure was gradually increased until the
target pressure value was reached. Moreover, in order to gain greater
muscle adaptions and decrease the negative effects induced by blood
flow restriction, the BFRT intervention was completed within
10min. The average pressure of the blood flow restriction band
used was 268.33 ± 20.83 mmHg in this study.

2.3.2 Vibration training
All participants performed the isometric squat exercise when

they stood barefoot on a vibration plate (Power Plate pro 5 AIR
daptiv, United States) with their feet shoulder-width apart and knees
flexed at 120°. In order to measure the knee flexion angle, an
electronic goniometer was placed in the right lower limb with
one end parallel to the thigh and aligned with the greater
trochanter of the femur and the other end parallel to the thigh
and aligned with the lateral ankle of the fibula of the calf fibula
(Centner et al., 2019). During the BFRT and BFRT + WBV
interventions, pressure bands were wrapped to both proximal
thighs (Loenneke et al., 2012b). During the WBV, and BFRT +
WBV interventions, the vibration plate was set at a frequency of
40 Hz and an amplitude of 4 mm (Figueroa et al., 2012).

2.4 Testing

2.4.1 20m sprint
The 20 m sprint performance was measured using three pairs of

timer gates (Swift EZE Jump, Version2.5.28, Brisbane, Australia),
which were placed at 0m, 10m, and 20 m. To avoid touching the
timer, all athletes started in a three-point position 50 cm behind the
start line (Haff and Travis Triplett, 2015). All participants were
allowed three attempts with 1–2 min interval time.

2.4.2 EMG
The EMG activity from six muscles of the dominant leg (vastus

lateralis (VL), vastus medialis (VM), rectus femoris (RF), tibialis
anterior (TA), gastrocnemius medialis (GM), soleus (SOL)) was
collected using surface EMG electrodes (Ambu Blue Sensor P, Bad
Nauheim, Germany) according to a previous study (Simsek, 2017).
Prior to testing, the skin surface was cleaned and wiped with alcohol
cotton balls at the VL, VM, RF, TA, GM, and SOL belly positions.
The electrodes were placed on the muscle belly of each of the six
muscles (Detail information was shown in Table 1) according to the
previous studies (Gorsuch et al., 2013; Kazemi et al., 2017; Simsek,
2017) and guidebook (Konrad, 2005). The longitudinal axis of the
electrodes followed the orientation of the fibers of the corresponding
muscles. All signals are pre-amplified (1,000×), band-pass filtered
(10–500 Hz) and sampled at 2 kHz.

Prior to intervention, the EMG signal was recorded when
performing the 30s isometric squat (feet keep shoulder-width
apart and knees flex to 120°) without BFRT and WBV, and the
mean EMG value of the second 10s of all three trials was calculated.
Also, the EMG signal was recorded during theMVCs (5s). TheMVC
test for VL, VM, and RF was according to the study by Roelants et al.
(2006), and the MVC test for GM, SOL, and TA was performed
following suggestions from Konrad (2005) and Roelants et al.
(2006). Both tests were performed 3 times, and the trial showing
the highest MVC force was used to further analysis. During all
interventions, the EMG signals were recorded during the last three
sets of exercise and the mean values were used for analysis.

The raw EMGs for six muscles were converted to the root mean
square (RMS) values. To make EMG activity compared among
different muscles and participants, the raw EMG signal was
normalized to the maximum EMG activity recorded during the
MVCs (relative rmsEMG).

2.4.3 Blood lactate
Before the test, a cotton swab dipped in 75% alcohol

concentration was wiped on the fingertip, and then blood sample
was collected with a blood collection pen, and the first drop of blood
was wiped with a clean cotton swab after seeing the blood flow, while
10 mL blood sample was taken and mixed in the lactic acid lysis
reagent accompanying the lactic acid analyzer (EKF Biosen C-line,
Germany).

2.5 Statistical analyses

All data were presented as mean ± standard deviation (M ± SD)
and were analyzed using SPSS22.0 (SPSS Inc, Chicago, IL,
United States). All variables were examined for normal
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distribution and homogeneity. The repeated measures analyses of
variance (ANOVA) was used to analyze the interaction effects and
the Bonferroni correction was used for post hoc comparisons. The
effect size (ES) was calculated (η2), and value between 0.50 and
0.8 represented a medium effect size, value of >0.8 represented a
large effect (Cohen, 1992). The significance level was set at p < 0.05.

3 Results

3.1 20m sprint

Figure 1 indicates that following interventions, there were no
significant differences in 0–10 m (F = 1.095, p > 0.05), 10–20 m (F =
1.451, p > 0.05), and 0–20 m (F = 0.719, p > 0.05) sprint time
between BFRT, WBV, and BFRT +WBV.WBV (Pre VS. Post: 1.71 ±
0.05s VS. 1.82 ± 0.18s) and BFRT + WBV (1.69 ± 0.09s VS. 1.82 ±
0.18s) interventions significantly improved the 0–10 m sprint (p <
0.05, ES > 0.50). BFRT (2.90 ± 0.11s VS. 3.04 ± 0.14s), WBV (2.93 ±
0.11s VS. 3.04 ± 0.14s), and BFRT + WBV (2.85 ± 0.13s VS. 3.04 ±
0.14s) interventions significantly improved the 0–20 m sprint (p <
0.05, ES > 0.50).

3.2 EMG

Figure 2 displays that during interventions, there were
significant differences in EMG amplitude of the vastus lateralis
(F = 4.906, p < 0.05), tibialis anterior (F = 5.347, p < 0.05), and
soleus (F = 4.573, p < 0.05) between BFRT,WBV, and BFRT +WBV.

The EMG amplitude of the vastus lateralis, vastus medialis, tibialis
anterior, gastrocnemius medialis, and soleus during interventions
were significantly greater (p < 0.05, ES > 0.50) compared to isometric
squat without BFRT and/or WBV. Compared to BFRT, BFRT +
WBV intervention significantly improved the EMG amplitude of the
vastus lateralis and soleus (p < 0.05, ES > 0.50). Compared to BFRT +
WBV, BFRT intervention significantly improved the EMG
amplitude of the tibialis anterior (p < 0.05, ES > 0.50).

3.3 Blood lactate

Figure 3 shows that there were no significant differences in blood
lactate concentration at baseline (p > 0.05). However, the significant
main effect of time was observed in blood lactate concentrations (F =
4.694, p < 0.05), and a post hoc comparison revealed that blood
lactate concentrations were significantly higher after BFRT
intervention than BFRT + WBV (p < 0.05, ES > 0.50). The blood
lactate concentration at 15 min after all three interventions did not
reach a statistically significant difference (F = 0.831, p > 0.05), but
the blood lactate concentration at 15 min after BFRT and WBV
exercises was higher than that of BFRT + WBV, but the difference
was not statistically significant (p > 0.05).

4 Discussion

The main purpose of this study was to investigate the acute
effects of BFRT, WBV, and BFRT + WBV interventions on sprint
performance, muscle activation, and metabolic accumulation in

TABLE 1 Electrode placement.

Muscle Electrode placement

Vastus lateralis The electrodes were placed 2/3 of the way on a line from the anterior spina iliaca superior to the lateral side of the patella

Vastus medialis The electrodes were placed 80% of the way on a line between the anterior spina iliaca superior and the joint space in front of the anterior
border of the medial ligament

Rectus femoris The electrodes were placed at 50% on the line from the anterior spina iliaca superior to the superior part of the patella to record EMG activity

Tibialis anterior The electrodes were placed one-third of the way between the head of fibula and the medial malleolus of ankle

Gastrocnemius medialis The quarter-way between the femoral condyles and the calcaneus was used to record the EMG activity

Soleus The electrodes were placed at 2/3 of the line between the media condylis of the femur to the medial malleolus

FIGURE 1
Change in 20 m Sprint time Before and after intervention.
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male sprinters. The sprint time of 0–10m and 0–20 m were
significantly improved after WBV and BFRT + WBV
interventions, 0–20 m sprint performance was markedly
improved after all three interventions. After BFRT + WBV
intervention, the increases in EMG amplitude of the vastus
lateralis and soleus were significantly greater than after BFRT
intervention. Moreover, the EMG amplitude of the tibialis
anterior and metabolic accumulations was significantly higher
after BFRT intervention than that after BFRT + WBV. These
findings indicate that BFRT and WBV can induce similar
potential enhancement in sprint performance compared to
BFRT + WBV intervention, while BFRT could induce a higher
metabolic accumulation than BFRT + WBV immediately after
interventions.

All three interventions significantly improved 0–20 m sprint
performance. Abe T and Yasuda, (2005) reported that low-loading

half squat (20% 1RM) with BFRT significantly improved 0–10m and
0–30 m sprint abilities in the track and field athletes. A study by
Manimmanakorn et al. (2013) demonstrated that low-loading
resistant exercise combined with BFRT significantly improved
0–5m and 0–10 m sprint abilities in female netball players.
Possible explanations for the improvement in sprint performance
are related to positive muscle responses, leading to increasing lower-
limb power output (Doma et al., 2020; Ienaga et al., 2022). Metabolic
accumulation (e.g., lactic acid) caused by restricting blood flow led to
cell swell and promotes the secretion of growth hormone, resulting
in increases in the muscle cross-sectional area and motor unit
recruitment (Takarada et al., 2000). Moreover, our findings are
also supported by the results of a study by Rønnestad and Ellefsen
(2011), who reported that WBV with a vibration frequency of 50 Hz
and an amplitude of 3 mm significantly improved 40 m sprint
performance in soccer players. Guggenheimer et al. (2009)

FIGURE 2
Before and after change in EMG activity level (A) Vastus laterails (B) Vastus Medials (C) Rectus femoris (D) Tibialis anterior (E)Gastrocnemius medialis
(F) Soleus.

FIGURE 3
Changes in blood lactate concentration before and after interventions.
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suggested that WBV intervention as part of a warm-up session
decreased 40 m sprint time by nearly 1/10th of a second.
Preconditioning WBV activity has been proved to increase twitch
potentiation, the rate of force development, and force and power
output (Cochrane et al., 2010). These changes may be explained by
increases in phosphorylation of the myosin light chain and/or
increased in excitation of involved motor units (Trimble and
Harp, 1998). Therefore, these findings suggest that both dynamic
and isometric resistance training with BFRT or WBV could
significantly improve sprint performance.

Notably, there were no significant differences in sprint
performance (0–10 and 0–20 m) following BFRT, WBV, and
BFRT + WBV interventions, suggesting that both BFRT and
WBV can induce comparable potential benefits in sprint
performance. Moreover, significant improvements in sprint
performance were also observed following the BFRT + WBV
intervention, but adding the BFRT to the WBV intervention has
no additional potential benefits to sprint performance. To our best
knowledge, no study has explored the acute and long-term effect of
BFRT + WBV intervention on sprint performance. The underlying
mechanism for this finding is not fully clear and it is also not the
scope of this study. We argued that the potential enhancement
benefits were influenced by the magnitude of fatigue, which was
greater due to the interaction of BFRT and WBV. Moreover, many
factors including the recovery level, loading volume, loading
intensity, and individual training status also influenced the
potential enhancement benefits.

Bordessa et al. (2021) suggested that following BFRT training,
quadriceps EMG amplitude was considerably increased in
34 healthy adults. This finding was in line with the present
study, we found that BFRT intervention dramatically increased
EMG amplitude of the tibialis anterior muscle. Sumide et al.
(2009) demonstrated that downhill walking with BFRT increased
the EMG amplitude of the soleus muscle, lateral head of the
gastrocnemius, and vastus lateralis. The mechanisms for this
might be that the oxygen concentration in the muscles is reduced
due to restricted blood flow and more muscle fibers or motor
units are recruited to perform the intended action. Thus, a greater
EMG amplitude was observed. Moreover, hypoxia condition
caused by BFRT also enhances phosphocreatine consumption
and lower PH value, allowing for the greater activation of type II
muscle fibers during exercise (Yasuda et al., 2010).

The BFRT + WBV intervention significantly increased the
EMG amplitude of the vastus lateralis, medial head of the
gastrocnemius, and soleus muscle, and all three interventions
significantly increased the EMG amplitude of the vastus medialis
and rectus femoris. Cai et al. (2018) indicated that the EMG
values from the rectus femoris and vastus lateralis during the
WBV + BFRT session were significantly higher than those during
the WBV session (p < 0.05). It is reasonable to assume that when
BFR is applied with WBV, the primary muscles would have a
greater EMG amplitude to accommodate the greater effort, as the
blood flow is restricted. Currently, the mechanism of acute WBV
remains unclear, but there are two possible explanations for the
mediated response of WBV to increased muscle activity. First, the
improved EMG amplitude may be due to the fact of a one-to-one
firing rate in muscle spindle primary afferents by vibration
frequencies up to approximately 70 Hz (Roll et al., 1989).

Afferent feedback contributes in reflex to spinal and
supraspinal inputs, thereby increasing excitatory influx to the
motor neuron pool (Macefield et al., 1993). Thus, it is convinced
that WBV with a frequency of 40 Hz may produce muscle
spindles to fire at a rate of 40 impulses per second, resulting
in a largely increased excitatory stimulation of the motoneuron
pool. Second, WBV intervention has been proven to lower the
recruitment threshold of the motor unit, especially in high-
threshold motor units, and improve the synchronization of the
motor units (Romaiguère et al., 1993). Thus, these factors
combined may contribute to increased activation of working
muscles.

Blood lactate concentration is an important indicator of
metabolic accumulation and is influenced by many factors
such as mechanical loading, hypoxia, and skeletal muscle
involvement. Blood lactate changes are the result of the
interaction between the rate of lactate production and the rate
of lactate elimination (Cairns, 2006). High lactate tolerance
training maximizes the ability of the glycolytic system to
supply energy to stimulate the adaptation of the physical
system to a certain blood lactate level, improving buffering
capacity and muscle lactate dehydrogenase activity, which is
directly related to explosive performance. According to the
results of this study, peak blood lactate concentrations
occurred immediately following the BFRT training
intervention, indicating that the glycolysis system could supply
energy faster and generate more energy following the BFRT
intervention in male sprinters.

Although the mechanisms underlying how increased blood
lactate affects neuromuscular activity are unclear, a previous
study suggested that metabolic accumulation may facilitate
stimulation of group III and IV afferent nerves, thereby
inhibiting alpha motor nerve excitability and increasing muscle
recruitment to maintain muscle power output (Yasuda et al.,
2009), which may provide some support for our findings.

The main limitation of this study. Firstly, the participants in this
study were male college sprinters, so the results are not applicable to
female, elite, or teenage sprinters. Secondly, the benefits induced by
BFRT,WBV, and BFRT +WBV cannot be completely isolated in the
present study because of the lack of a control group (isometric
squat). Future studies should use a control group in their design.
Thirdly, all participants in the present study were required not to
participate in heavy physical activities and drink performance-
enhancing beverages 48 h before all interventions. In this case,
theoretically, no significant difference in sprint performance
would occur for all participants. However, sprint performance
will fluctuate with changes in mental state. Thus, it is preferable
to assess sprint performance before all three interventions
respectively.

5 Conclusion

Blood flow restriction training alone or vibration training had
similar post-activation enhancement effects as blood flow restriction
combined with vibration training in sprint running, and the
immediate post-activation metabolic accumulation of blood flow
restriction training alone was higher than that of blood flow

Frontiers in Physiology frontiersin.org06

Zhang et al. 10.3389/fphys.2023.1149400

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1149400


restriction combined with vibration training intervention in the
male sprinters.
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