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Photopletysmography (PPG) is a non-invasive and well known technology that
enables the recording of the digital volume pulse (DVP). Although PPG is
largely employed in research, several aspects remain unknown. One of these
is represented by the lack of information about how many waveform classes
best express the variability in shape. In the literature, it is common to classify
DVPs into four classes based on the dicrotic notch position. However, when
working with real data, labelling waveforms with one of these four classes is
no longer straightforward and may be challenging. The correct identification of
the DVP shape could enhance the precision and the reliability of the extracted
bio markers. In this work we proposed unsupervised machine learning and deep
learning approaches to overcome the data labelling limitations. Concretely we
performed a K-medoids based clustering that takes as input 1) DVP handcrafted
features, 2) similarity matrix computed with the Derivative Dynamic Time
Warping and 3) DVP features extracted from a CNN AutoEncoder. All the cited
methods have been tested first by imposing four medoids representative of the
Dawber classes, and after by automatically searching four clusters. We then
searched the optimal number of clusters for each method using silhouette score,
the prediction strength and inertia. To validate the proposed approaches we
analyse the dissimilarities in the clinical data related to obtained clusters.
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1 Introduction

The photoplethysmogram (PPG) signal contains precious information about the blood
vessels and heart activity. The digital volume pulse (DVP) is defined as the portion of
PPG signal corresponding to one cardiac cycle. In young individuals, the DVP exhibits
clearly defined systolic and diastolic peaks. The diastolic peak is attenuated with increasing
age (Dawber et al., 1973). The systolic peak is related to the forward pressure wave from
the heart to the finger. The diastolic wave, also called the reflected wave, depends on the
amount of reflection (due to muscular tone) in small arteries (Millasseau et al., 2006). DVP
shape changes with age (Allen and Murray, 2003), blood pressure (Millasseau et al., 2006),
atherosclerosis (Rozi et al., 2012), and other cardiovascular diseases such as arrhythmia
(Sardana et al., 2021) and coronary artery disease (Saritas et al., 2019). DVP wave shapes
vary between subjects and with the presence of pathologies. It can be used to assess a
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variety of cardiovascular properties, such as estimating blood
pressure (Kurylyak et al., 2013), detecting diabetes (Zanelli et al.,
2022), or assessing vascular ageing (Charlton etal., 2022). An
understanding of typical DVP wave shapes could contribute to the
physiological interpretation of wave shapes, and could help in the
development of robust DVP wave analysis algorithms. Most of the
DVP biomarkers extraction algorithms assume that DVPs have a
standardized shape. However real DVPs can show more than one
peak. In this case, the biomarker cannot be computed directly but
a suitable pre-processing has to be applied to the wave in order to
obtain an estimation. For our knowledge very few studies address
the DVP shape morphology classification topic.

In 1973, Dawber et al., 1973 defined four classes of DVP shape
based on the characteristics of the dicrotic notch (Figure 1). The four
classes range from a visible and clearly marked dicrotic notch (Class
1) to a non visible dicrotic notch (Class 4). However, DVPs exhibit
far more shape variations than are captured in the characteristics
of the dicrotic notch. Other attempts have been made to identify
typical DVP wave shapes: frequency analysis to classify the DVPs
into three classes based on the age (Sherebrin and Sherebrin,
1990); machine learning and deep learning methods trained over
handcrafted features to classify the DVPs shape into the four
classes proposed by Dawber et al. (Tigges et al., 2016); and second
derivative analysis used to obtain four DVP templates (Takada et al.,
1996). Wang et al., 2013 proposed a multi-Gaussian fitting to classify
DVPsinto five classes. With respect to Dawber et al., they introduced
an intermediate class where no notch develops but there is a notable
reflected wave in the systolic component of the pulse wave. The main
limitation of these studies is the pre-emptive choice of the number
of DVP classes.

We used non-supervised approaches to identify clusters of DVP
wave shapes as follows. First, we investigated different approaches for
clustering DVP waves with the aim of identifying the best approach.
K-medoids clustering was used to cluster DVP wave shapes based
on: 1) handcrafted DVP features; 2) Derivative Dynamic Time
Warping (DDTW) distances; or (iii) features extracted from a
convolutional neural network autoencoder (CNN AE). K-medoids
was used instead of K-means as it is less affected by outliers, and
it guarantees that each medoid (the DVP shape representing the
entire cluster) is an actual DVP (Park and June 2009). Second,
we investigated whether the optimal number of clusters is four, as
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suggested by Dawber etal., or a different number. To do so, all
the clustering methods were tested when the number of clusters
was fixed to four (with and without fixing the medoids to DVP
waves typical of Dawber’s four classes), and when the optimal
number of clusters was determined through one of: the prediction
strength method (Tibshirani and Walther, 2005); the silhouette score
(Shahapure and Nicholas, 2020); or clusters inertia (Syakur et al.,
2018). Third, we investigated whether any of the obtained clusters
were clinically relevant. To do so, we analysed the related clinical
data for each cluster to assess whether there were significant
differences between clusters. The dataset used in this study contained
approximately 11,000 DVPs from 300 subjects aged 20-80 years old.
Our contributions can be summarized as follows.

o We clustered DVP waves using a K-medoids approach with
three different feature sets. We compared the results obtained
with 1) a dataset composed by fourteen PPG handcrafted
features, 2) a dataset composed by DDTW pairwise distances
and 3) a dataset composed by features automatically extracted
from a CNN autoencoder.

o We tested the proposed approaches with four clusters to
compare the obtained results with the Dawber etal. classes.
Then, we investigated the optimal number of clusters using the
silhouette score, inertia and the prediction strength methods.
The approaches have been also tested by imposing four
representative medoids, selected by a human expert.

o Weinvestigate whether or not the obtained clusters are clinically
relevant by analysing the distribution of the clinical data
associated with each cluster.

2 Material and methods

2.1 Dataset

The dataset used in this study contains PPG signals recorded
from 300 different subjects, providing a total of about 11,057 DVPs.
Table 1 presents the subject characteristics: the subjects ranged from
19 to 83 years old; and included normotensives, hypertensives and
hypotensives. Figure 2 represents the age distribution of the dataset.
The PPG signals were acquired at 1 kHz with the pOpmetre device

Class 1 Class 2

Time (s) Time (s)

FIGURE 1

Class 3 Class 4

o
o
0 05 1 0 05 1 0 05 1 o0 05 1

Time (s) Time (s)

Example of digital volume pulse Dawber classes. Data sourced from Charlton et al. (2016). Figure: Classes of photoplethysmogram (PPG) pulse wave
shape: Examples of the four classes of pulse wave shape proposed by Dawber et al. Reproduced form https://commons.wikimedia.org/wiki/File:
Classes_of_photoplethysmogram_(PPG)_pulse_wave_shape.svg, licensed under CC-BY4.0.
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TABLE 1 Clinical data. Mean, standard deviation, minimum and maximum
values of the clinical data related to the used DVPs dataset.

Feature Mean (= std) Min Max
Age[years] 44.31 +14.34 19.48 83.00
Weight[kg] 74.60 £ 16.99 45.00 180.00
Height[cm] 170.04 + 8.45 140.00 196.00
PWV[m/s] 7.99 £291 3.70 26.10
PAS[mmHg] 124.77 £ 16.01 90.00 190.00
PAD[mmHg] 76.10 £9.73 48.00 120.00
BMI[kg/mz] 25.78 £5.12 6.00 56.00
BPM[bpm] 71.82 +14.89 40.00 185.00
Age distribution
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FIGURE 2
Age distribution of the used dataset.

(Axelife, France) (Obeid et al., 2017). pOpmetre is a medical device
that measures the pulse wave velocity (PWV) between the finger and
the toe in order to assess arterial stiffness. Prior to measurement,
subjects were asked to lie down and rest for about 5 min. The
device utilizes transmittance PPG with red and infrared light. Each
measurement takes up to 14 s to be computed. Some subjects in
the dataset had more than one measurement taken. Only the finger
signals were used in this study. The quality assessment process
described in (Zanelli et al., 2021) was used to select only the high
quality parts of the signals. Signals were then segmented into DVPs.
DVP waves were normalised in time (100 samples) and amplitude
(between zero and one). The employed dataset is composed only
of DVP waves without any other information related to the shape.
Since no labels are available, we propose an unsupervised approach
to cluster the waves, using three different DVP extracted features.
This process is further explained in the next section.

The dataset was split into train and test sets using 70% and
30% of the available data respectively. Since one subject can have
different DVP shapes along the same measurement, one subject can
contribute to the train, validation or test set at the same time. The
validation set is composed of 30% of the training test. The same train,
validation and test sets were used with all the proposed methods
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in order to be able to compare the results. The train and validation
sets were used to train the CNN AE while the test set was used for
clustering.

2.2 Clustering pulse waves

The K-medoids technique was used to cluster DVP waves.
K-medoids is a partitional algorithm firstly proposed in 1980
(Rdusseeun and Kaufman, 1987). Its objective is to split a dataset
into k clusters by minimising the distance between the center of
each cluster and the samples assigned to that cluster. The center of
the cluster (also known as a medoid) is defined as the sample in
the cluster whose average dissimilarity to all the remaining objects
in the cluster is minimal. The chosen medoid is an actual sample
of the dataset, in contrast to the k-means algorithm. Furthermore,
because k-medoids minimizes the sum of dissimilarities between
two samples of the dataset instead of the sum of squared euclidean
distances, it is more robust to noise and outliers than k-means
(Kaur et al., 2014). In this study, we applied the K-medoids in three
ways, as now described.

2.2.1 Using handcrafted features

Clustering was performed using twenty one handcrafted features
were extracted from the DVPs contained in the dataset. The features
include those proposed in the literature to assess DVP morphology
(Tigges etal., 2016), second derivative features (Mouney etal.,
2021), and statistical shape features such as kurtosis and skewness.
We performed the correlation analysis to identify and remove highly
correlated features. This resulted in fourteen handcrafted features
being selected, as reported in Table 2. After checking the feature
distributions, we applied a logarithmic transformation to three of the
remaining features. We then standardized the features by subtracting
the mean and scaling to unit variance. The fourteen features were
clustered using the K-medoids approach.

2.2.2 Using dynamic time warping

Dynamic Time Warping (DTW) is an algorithm employed to
estimate the similarity between two time series (Miiller, 2007). DTW
was first introduced around 1960 and applied in speech recognition
around 1975 (Senin, 2008). Over the years, this algorithm has been
demonstrated to be very effective in matching time series of all
kinds (Bagnall et al., 2016), such as for handwriting classification
(El-Yacoubi et al., 2019). It has already been applied to PPG and
ECG signals in various fields to assess signal quality (Li and Clifford,
2012), identify fine finger gestures (Zhao et al., 2018), or for human
verification systems (Hwang et al., 2021). We define two time series
as X = (x,%p,...,%,) and Y= (¥, V55 . V)

The DTW similarity measure is computed as the minimal
cost of aligning the two time series as described in Algorithm 1
(Sakoe and Chiba, 1978). Several adaptations have been proposed
to improve the efficiency and the effectiveness of this algorithm.
Local constraints such as the Itakura parallelogram (Itakura, 1975)
or the Sakoe-Chiba band (Sakoe and Chiba, 1978) have been
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TABLE 2 DVPs features used for clustering with the handcrafted DVP feature approach. Abb: feature name abbreviation.

Feature Abb Description

Dicrotic-diastolic notch DDR Ratio between dicrotic notch and diastolic peak amplitude. Set to 1.1 if no diastolic point is detected
Relative downslope sum RDS Area under the curve from the maximum descendet slope to the end of the pulse

Downslope derivative mean DDM Mean value of the pulse derivative after the systolic peak

Skewness Skew Measure of the pulse asymmetry

Max second derivative P_b_2Dev_A First minimum amplitude of the second derivative

Index min second derivative P_b_2Dev_i Index of the first minimum amplitude of the second derivative

Min second derivative P_a 2Dev_A Maximum amplitude of the second derivative

Index max second derivative P_a_2Dev_i Index of the maximum amplitude of the second derivative

Integral of the curve S_P_Onde Total area under the curve

Number of peaks nbr_peaks Number of peaks inside the pulse

Logarithm of Rise time log (RT) Logarithm of the rise time

Logarithm of Kurtosis log (Kurt) Logartimic measure of the “tailedness”

Augmentation index Al_bin Augmentation index, binary variable. If augmentation index could be computed the variable has high value
Down slope derivative variance log (DDV) Logarithm of the variance of the pulse derivative variance during the down slope

Dynamic time warping

FIGURE 3

Dynamic time warping and derivative dynamic time warping comparison. It is observable how DDTW is able to match the same shape modifications
with respect to the DTW that matches points that have low relative distance.

Derivative dynamic time warping

found to reduce the computational complexity of the unconstrained
DTW and also improve accuracy when used with a 1 Nearest-
Neighbor (1-NN) classifier (Geler et al., 2019). We implemented
DDTW using a SakoeChiba window of length w = 20 samples.
DTW is likely to be successful when applied to two sequences
that are similar except for local accelerations and decelerations
in the time axis. However, in our case the DVPs differed mostly
on the Y-axis. We found that DTW did not provide successful
results, as the algorithm matched points with lower mutual distance
rather than points with similar shapes. Therefore, we implemented
Derivative Dynamic Time Warping (DDTW), in which the time
series X and Y are substituted with their derivatives X’ and Y’
This takes into consideration the slopes of the DVPs in order
to compute the minimal cost (Keogh and Pazzani, 2001). DVPs

Frontiers in Physiology

were further Z-normalised before performing DDTW measures.
Figure 3 shows the application of classical DTW and DDTW.
The DDTW similarities were clustered using the K-medoids
approach.

2.2.3 Convolutional neural network
autoencoder

A Convolutional Neural Network (CNN) AutoEncoder model
was used to automatically extract features from DVP waves
(Chafik et al.,, 2019). CNNs are widely employed in biomedical
signal processing (Alaskar, 2018) since they are capable of extracting
features by exploiting the convolution operation between the input

frontiersin.org
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Require: n,m>0
int DTW[O..n, 0..m]
int i, j,
s: array [1..n], t:
=1 to n do
for j
DTW[i, j] =
end for
end for
DTW[@, o] = ©
=1 to n do
for j
cost= abs(s[i] - t[j])
DTW[i, j] = cost + minimum(DTW[i-1, j 1,
DTW[i , j-1], DTW[i-1, j-11])
end for

cost
array [1..m]
for i

7 to m do

infinity

for 1
=1 to m do

end for
return DTW[n, m]

Algorithm 1. Calculating the dynamic time warping (DTW) distance between
time series.

and learnt filters (Lietal, 2017). The autoencoder is trained
to extract features from the input (performing a dimension
compression step) and reconstruct it using the learnt features
by minimising the Mean Squared Error (MSE) between the
reconstructed input and the actual input. The model is composed
of 6 convolutional layers and three dense layers. A flattening
layer is added after the last convolution in order to reduce the
dimensions and pass the feature maps to the fully connected layer.
Relu activation functions inside CNN layers were used, while a
sigmoid activation function was used for the reconstruction layer.
The model architecture is represented in Table 3. We optimize the
bottleneck layer size, the learning rate and A L2 regularisation factor
using Autonomio Talos python tool (Talos, 2019). The optimal
model was chosen as a trade-off between validation loss and
bottleneck layer size. A latent size of eight was chosen, indicating
that eight features were extracted from DVP waves. This provided
the smallest bottleneck layer size that performed well enough
compared to the best validation loss obtained. Once the autoencoder
is trained, only the encoder part is used to extract features from
the DVPs. The eight features were clustered using the K-medoids
approach.

2.3 Investigating the optimal number of
clusters

We employed three different methods to investigate the
optimal number of clusters: the silhouette score (Rousseeuw,
1987), the prediction strength (Tibshirani and Walther, 2005),
and the cluster inertia (Syakuretal, 2018). These are now
described.

The silhouette score is calculated by taking into account the
mean intra-cluster distance a, and the distance between a sample and
the nearest cluster that the sample is not a part of b. The silhouette
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TABLE 3 CNN AutoEncoder architecture.

Layers Output shape

Encoder

Input layer (None, 100)

Convolution layer (None,100,32)

MaxPooling (None,50,32)
Convolution layer (None,50,32)
MaxPooling (None,25,32)
Convolution layer (None,25,32)

MaxPooling (None,13,32)
Flatten (None,416)
Dense (None,8)
Decoder

Dense (None,8)
Dense (None,416)
Reshape (None,13,32)
Convolution layer (None,26,32)
Cropping (None,25,32)
UpSampling (None,50,32)
Convolution layer (None,50,32)

UpSampling (None,100,32)

Convolution layer (None,100,32)

Flatten (None,3,200)

Dense (None,100)

score s for a sample is:

s=(b-a)/max(a,b). (1)

The score is then averaged over all samples. This score measures
how well a dataset sample i matches the chosen clustering scheme.
A score of 1 means the samples are correctly clustered, a score of 0
means the samples could belong to other clusters, and a score of -1
means that the cluster contains the wrong samples.

The prediction strength of the clustering C(X,,, k) is a defined as:

ps(k) = min
1<j<k ”kj

Y D[C(Xyk), X ) ()

i#i'€Ay;

_

(e -1)
where n;; is the number of observations in the jth cluster,
D[C(X,,.k),X,,] is the co-membership matrix of size (X,, (train set),
X, (test set)) and C(X,,,k) is the clustering algorithm fitted to the
training set. In other words, for each test cluster, the proportion of
observation pairs in that cluster that are also assigned to the same
cluster by the training set centroids is computed. The prediction
strength is the minimum of this quantity over the k test clusters. The
maximum number of clusters for which the prediction strength is
above a certain threshold is then chosen. Although the experiments
ran by the authors suggest 0.8-0.9 as a good value for the threshold,
the latter may be interpreted on a case-by-case basis.
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t-SNE clustering representation of all the proposed approaches. From the top to the bottom: template, baseline and optimal approach. From the left to
the right: handcrafted, CNN AE and automated features.
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The cluster inertia was computed as follows:

N
Z (x; - Ck)z’
i=1
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where N is the number of samples within the data set

and C is the center of a cluster. It computes the sum of

3)

center.

07

squared distance of each sample in a cluster to its cluster
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handcrafted, CNN AE and automated features.

We have to highlight that, although we tested three different
methods to investigate the optimal number of clusters, the final
choice of the optimal number of clusters is still affected by personal
interpretation.

2.4 Investigating the clinical relevance of
obtained clusters

The clinical relevance of the clustering was investigated as
follows.

The Kruskal Wallis test (McKight and Najab, 2010) was used to
assess whether there was a significant difference between the values
of each clinical parameter between the clusters found using each
clustering approach (template, baseline, and optimal). In the case of

Frontiers in Physiology 08

significant differences, the null hypothesis that the mean ranks of the
groups are the same was rejected, and the Welch test (Alekseyenko,
2016) was used to identify the clusters for which the differences were
significant.

Since significant differences were found between the clinical
parameters of different clusters when using all the clustering
approaches, we also conducted a more in-depth analysis of
differences. Here, we propose a technique to identify which
methods better discriminate the clinical data distribution among
the clusters. Inspired by core shape modelling (Boudaoud et al.,
2010), we assessed the intrinsic shape variations of the clinical
data probability density functions (PDFs) across different clusters.
This method assesses the dissimilarity between cluster PDFs by
computing the distance between the relative reversed cumulative
distribution function. The CSM objective is to remove the shape
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modification related to the x-axis shift and focus only on the shape.
Differently from the original approach, we did not want to remove
the x-axis shift. Thus, we computed the distances between the
reversed cumulative distribution function taking into consideration
the possible x-axis shift. Probability density functions (PDFs) of
the clinical data related to the clusters were computed for each of
the proposed methods. From the reversed cumulative distribution
function it is now possible to compute the euclidean distance. This
measure gives an index to quantify the similarity between two PDFs.
The larger it is, the better the method is able to cluster waves in a
clinical relevant manner. The averaged distance d that we propose is
computed as follows:

k

1
d:k(k—l) 2

i=1

k
w; Z widist (i, ) 4)
i#]

NDVP
where w, = —=

is a weight that penalises clusters composed of
fewer DVPs cglvlpaputed as the ration between the number of DVP
contained in the cluster 7 and the total amount of DVP in the dataset
and dist(i,j) = |CDF; - CDP].“ 1| is the distance between two reserved

cumulative distribution functions.

3 Results and discussion

In this section we present and discuss the obtained DVP clusters.
First, we compare results obtained using the baseline approach and
the template approach to understand whether the clusters of DVP
waves are similar to Dawber’s classes. Second, we present the results
obtained using each of the three methods for identifying the optimal
number of clusters. Finally, we assess the clinical relevance of the
obtained clusters.

Clusters were visualised using a nonlinear dimensionality
reduction method: the t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten and Hinton, 2008). This
method provides a faithful lower-dimensional representation
where the distribution of the original data is conserved also in
the lower dimension representation. It achieves this by modeling
the dataset with a dimension-agnostic probability distribution,
finding a lower-dimensional approximation with a closely matching
distribution (Li et al., 2017). In order to visualise the clinical data
among the different clusters we present, for each proposed method,
a radar plot representing the clinical data normalized averages
among the clusters. Figure 5, Figure 6 and Figure 7 respectively
represent the t-SNE cluster representation, the medoids and the
PPG waves attributed to each cluster; and the radar plot of the
clinical parameters.

3.1 Comparing with Dawber’s classes

This section presents the results of clustering the dataset into
four clusters using each of the three clustering methods: handcrafted
features, CNN AE automated features, and the DDTW similarity
matrix. We chose four clusters to allow comparison with the DVP
shapes proposed by Dawber et al. In a first (baseline) approach each
method was used to automatically identify the four clusters. In a
second (template) approach, the medoids of the four clusters were
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imposed as DVP waves selected by an expert to correspond to the
four classes identified by Dawber et al. We iteratively computed the
assignments of the pulses to the clusters.

The results are shown in Figure 6, where the top row shows the
template approach, and the middle row shows the baseline approach.
Dawber’s classes (top row) were designed based on differences in
dicrotic notch characteristics. The medoid DVP waves automatically
identified in the DDTW baseline approach are most similar to
Dawber’s classes: cluster 1 (corresonding to the youngest subjects
as observed in Figure 7) exhibits a marked dicrotic notch (similar
to Dawber’s class 1), which gradually disappears in older subjects
(clusters 0, 2, and 3 respectively, corresponding to Dawber’s classes
2,3,and 4) (see Figure 6). The clusters automatically identified when
using the CNN autoencoder method are less similar to Dawber’s
classes, and those identified when using handcrafted features are
even less similar still.

The number of DVP waves
balanced when imposing Dawber’s classes as medoids than when
automatically identifying medoids (see Table4). For instance,

in each cluster was less

when using handcrafted features, the proportion of DVP waves
allocated to each cluster ranged from 3% to 43% when prescribing
Dawber’s template classes, compared to 20%-33% when allowing
cluster medoids to be identified automatically. There were similar
imbalances when using CNN autoencoder features, and DDTW.

The clusters identified using DDTW not only exhibited
differences in dicrotic notch characteristics (similarly to Dawber’s
classes) but also exhibit changes in the characteristics of the systolic
portion of the DVP wave (see Figure 6): the systolic peak becomes
wider with age (i.e., from cluster 1 to 0, 2, and 3), and the secondary
systolic wave disappears with age. This secondary systolic wave could
be a reflected wave caused by the elasticity of the artery (Luo et al,,
2014) or the reflection of the forward wave at the renal artery branch
(Nagasawa et al., 2022).

3.2 Determining the optimal number of
clusters

In order to determine the optimal number of clusters, we
computed the silhouette score, the inertia and the prediction
strength of the proposed approaches (see Section 2.3). Whilst
these methods do require some subjective interpretation, using
multiple methods allowed us to reduce the level of subjectivity.
The computational cost of applying the prediction strength to the
DDTW matrix was found to be high resulting in an extremely
long runtime (>10days) requiring, in our opinion, a non-
justifiable amount of resources (Patterson et al., 2021). Therefore,
the silhouette score and inertia were used to select optimal numbers
of clusters. Where available, the result was then compared with the
prediction strength.

Figure 4 shows the results for the three approaches when varying
the number of clusters from 1 to 15. Silhouette score and inertia
have been used jointly to select the optimal number of clusters.
We searched in the results a number of cluster k, for which the
obtained silhouette score was close to 1 and the inertia presented
an elbow. The selected number of clusters was then compared
with the obtained prediction strength analysis. Based on these
results, we chose not to use a threshold of 0.8 for the prediction
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TABLE 4 Number of DVPs in each cluster and for each proposed method.

10.3389/fphys.2023.1176753

Features Handcrafted [@\\' DDTW Handcrafted CNN DDTW Handcrafted [@\\
Approach Template Baseline Optimal

Cluster 0 746 656 1,506 803 701 1,161 495 714 172
% 20 18 41 22 19 32 14 20 5
Cluster 1 1,230 1,602 247 920 854 1,087 584 351 601
% 34 44 7 25 23 30 16 10 16
Cluster 2 1,580 1,151 1,354 734 998 878 743 642 780
% 43 32 37 20 27 24 20 18 21
Cluster 3 87 234 536 1,186 1,090 520 606 342 345
% 2 6 15 33 30 14 17 9 9
Cluster 4 539 452 725
% 15 12 20
Cluster 5 676 579 635
% 19 16 17
Cluster 6 563 388
% 15 11
Total waves 3,643 3,643 3,643 3,643 3,643 3,646 3,643 3,643 3,646

strength because it would have been too restrictive. The optimal
number of clusters was determined as 6, 7, and 7 clusters for the
handcrafted feature, the CNN AE, and the DDTW approaches
respectively.

3.3 Determining the optimal clustering
method

The t-SNE visualisations (Figure 5) help determine which
clustering approach best separates DVP waves into clusters. The
DDTW approach appears to better separate the clusters when
using the template, baseline, or optimal approaches. However,
we can observe from the medoids plot (Figure 6) some clusters
appear to be very similar in all of the three proposed approaches.
We used the intra-cluster inertia to further investigate the
performance of different clustering approaches (see Figure 4).
The intra-cluster inertia was lowest for the DDTW approach
(approximately 0.2), and substantially higher for the other
approaches (approximately 0.4 for the CNN autoencoder approach,
and 0.5 for the handcrafted features approach). Based on this, we
suggest that the DDTW clustering approach performed best in this
study.

3.4 Investigating the clinical relevance of
clusters

Clustering a dataset composed of real DVPs with no prior
information about the possible optimal number of clusters, can be
challenging. The main difficulty is represented by the impossibility of
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validating a certain approach. In this work, we used the clinical data
related to the DVPs to validate and score the proposed approaches.
To visualize the clinical data related to the clustered DVPs, we
employed the radar plot in Figure 7. These plots represent the
average value of each clinical parameter for each cluster. From
visual inspection it is clear that almost all the clustering approaches
result in clusters which are associated with differences in clinical
parameters. To quantify this, we first performed statistical tests to
assess whether there were significant differences between the clinical
data for each cluster. Significant differences were found between
clusters obtained using all the approaches. To investigate which
method is able to better differentiate the clinical data related to the
clusters we implemented a modified version of the CSM approach
(Boudaoud et al., 2010). For each clinical data contained in the
dataset and for each method, we assessed the capability of the latter
to cluster waves in a clinical relevant manner. Table 5 reports the
obtained results. Depending on the considered data, the method that
obtained the largest distance changes. When clustering with with
the optimal approach, the distances are smaller. This finding is logic,
since the starting support space is unaltered. The CNN and DDTW
approaches (template and baseline) seem to always score large
distances among all the clinical data. Age and transit time appear to
have the largest difference, perhaps being the primary determinants
for DVPs shape. Clusters appear to correspond to different clinical
characteristics, and could provide insights into a subject’s vascular
age as they are most strongly influenced by age and pulse transit
time. This finding is in accordance with several studies (Alty et al.,
2007; Brillante et al., 2008; Yousef et al., 2012). Physiologically, the
aging process leads to increasing arterial stiffness (Bortolotto et al.,
2000) which is reflected on the DVP shape as a less marked backward
wave and dicrotic notch (Dawber et al., 1973). Arterial stiffness is
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TABLE 5 PDF distances for each clinical data for each proposed method. The larger is the scored distance the better the method is able to cluster DVPs in a
clinical relevant manner. The methods are scored, for each clinical data, from the best to the poorest.

Variable  Distance Method Variable  Distance Method Variable  Distance Method

Age 0.19 CNN AE baseline 0.05 BMI CNN AE template 0.05 BPM CNN AE baseline

Age 0.18 DDTW baseline 0.05 BMI CNN AE baseline 0.04 BPM DDTW baseline

Age 0.17 CNN AE template 0.05 BMI DDTW baseline 0.04 BPM CNN AE template

Age 0.17 Handcrafted template 0.04 BMI Handcrafted template 0.03 BPM Handcrafted template

Age 0.17 Handcrafted baseline 0.04 BMI Handcrafted baseline 0.03 BPM Handcrafted baseline

Age 0.08 DDTW template 0.03 BMI DDTW template 0.03 BPM DDTW template

Age 0.07 Handcrafted optimal 0.02 BMI Handcrafted optimal 0.02 BPM Handcrafted optimal

Age 0.05 CNN AE optimal 0.01 BMI CNN AE optimal 0.01 BPM CNN AE optimal

Age 0.05 DDTW optimal 0.01 BMI DDTW optimal 0.01 BPM DDTW optimal
Height 0.06 Handcrafted baseline 0.08 PAD CNN AE template 0.09 PAS CNN AE baseline
Height 0.06 CNN AE baseline 0.08 PAD CNN AE baseline 0.09 PAS CNN AE template
Height 0.06 CNN AE template 0.07 PAD Handcrafted template 0.08 PAS DDTW baseline
Height 0.06 Handcrafted template 0.07 PAD DDTW baseline 0.08 PAS Handcrafted template
Height 0.05 DDTW baseline 0.06 PAD Handcrafted baseline 0.07 PAS Handcrafted baseline
Height 0.02 Handcrafted optimal 0.03 PAD DDTW template 0.03 PAS DDTW template
Height 0.02 DDTW template 0.03 PAD Handcrafted optimal 0.03 PAS Handcrafted optimal
Height 0.02 CNN AE optimal 0.02 PAD CNN AE optimal 0.02 PAS CNN AE optimal
Height 0.01 DDTW optimal 0.02 PAD DDTW optimal 0.02 PAS DDTW optimal

TT 0.17 DDTW baseline 0.09 PWV DDTW baseline 0.05 Weight DDTW baseline

TT 0.17 CNN AE baseline 0.09 PWV CNN AE baseline 0.05 Weight CNN AE template

TT 0.16 Handcrafted template 0.09 PWV Handcrafted baseline 0.05 Weight CNN AE baseline

TT 0.16 CNN AE template 0.09 PWV CNN AE template 0.04 Weight Handcrafted template

TT 0.15 Handcrafted baseline 0.08 PWV Handcrafted template 0.03 Weight DDTW template

TT 0.07 DDTW template 0.04 PWV DDTW template 0.03 Weight Handcrafted baseline

TT 0.06 Handcrafted optimal 0.03 PWV Handcrafted optimal 0.02 Weight Handcrafted optimal

TT 0.05 DDTW optimal 0.03 PWV DDTW optimal 0.02 Weight CNN AE optimal

TT 0.05 CNN AE optimal 0.03 PWV CNN AE optimal 0.02 Weight DDTW optimal

directly correlated to the transit time. The more rigid the arteries, the
smaller is the transit time due to a physiological loss of compliance of
the arteries with the age (Nitzan et al., 2001). The obtained clusters
seem to be able to differentiate among DVP related to subjects with
different levels of arterial stiffening. The obtained clusters exhibit
differences in dicrotic notch characteristics and also in the shape
of the systolic portion of the DVP (see Figure 7). The systolic peak
becomes wider with age and the diastolic wave disappears with age
(Figure 6). However, further studies are needed to better understand
the relation between the obtained clusters and their physiological
meaning.

4 Conclusion

In this work we investigated several unsupervised approaches
to cluster DVPs. We wanted to address whether or not a dataset
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composed of real DVPs can be described by 4 classes based on
the dicrotic notch position, as previously reported by Dawber
etal.

Our results indicate that DVP wave shapes do differ due to
their dicrotic notch characteristics. However, there are additional
differences such as width of the systolic peak and the strength of
a secondary systolic wave. Investigating the optimal number of
clusters with the help of methods such as inertia, silhouette score
and prediction strength, we found 7 clusters of DVP wave shapes.
Whilst these methods do require some subjective interpretation,
using multiple methods allowed us to reduce the level of
subjectivity.

The DDTW clustering approach performed best in this study,
providing better separation between clusters than using either
handcrafted features, or a CNN autoencoder approach. The DDTW
approach takes into account the shape of the DVP wave by applying
DTW to the first derivative of the DVP wave, and may therefore
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confer benefit over the previously proposed approach of applying
DTW to the original DVP wave.

The different clusters of DVP waves correspond to different
clinical characteristics. The clustering revealed that DVP wave shape
was primarily associated with pulse transit time and age, which is in
accordance with other studies Yousef et al. (2012); Alty et al. (2007);
Brillante et al. (2008). Therefore, these clusters may provide insight
into a subject’s vascular age. However, further studies are needed
to better investigate the relationship between PWV and age and its
effect on the DVP morphology. However, further studies are needed
to better understand the relation between the obtained clusters and
their physiological meaning.

Further improvements will focus on improving the measure
of similarity d to assess differences in the probability density
function by taking into consideration the distance between the
averaged clinical values, the standard deviation and the variability
among clusters. Other methods such as Gaussian and exponential
modelling will be taken into consideration to extract relevant
features from the DVP. In order to test the presented approach on a
public dataset for comparison, it would be very helpful if public PPG
datasets were created which contain PPG signals alongside reference
cardiovascular measurements such as systolic blood pressure, pulse
wave velocity and generic data such as age, weight and BMI.
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