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The cell is the basic unit of life, and so it can 
be argued that cell biologists hold a spe-
cial place amongst biological researchers in 
pursuing insight into the most fundamental 
aspect of what it means to be alive. Starting 
with the advent of light microscopy and the 
work of people such as Robert Hooke and 
Antonie van Leeuwenhoek in the 1600s, 
a whole new suite of questions as to the 
workings of the flora and fauna of the Earth 
flowed from observing biology at magni-
fications able to reveal its basic building 
blocks. Although Hooke (1665) originally 
coined the term “cell” from the microscopic 
structure of cork, we now appreciate that 
all biology, be it a bacterium or an oak tree, 
shares the cellular basis of its function. 
This understanding has set the stage for 
cell biologists to explore some of the most 
essential questions in biology, such as what 
are the core features of cells that lie at the 
heart of life and how do these contrast with 
the unique aspects of the individual cellu-
lar functions that define each organism? 
Further, how do the interactions of cells 
with each other and with the environment 
lead to the diversity of life that is a hallmark 
of our planet. These are grand challenges 
not only for plant cell biology but for all bio-
logical sciences. Fortunately, we are being 
presented with an ever-expanding suite of 
tools and resources to approach some of 
these basic questions about cellular biology.

Cells are simultaneously character-
ized by order and by change; herein lies a 
central challenge for plant cell biology: to 
capture and explain both the structure and 
the dynamics of the processes that lead to 
cellular function. The advent of the era of 
green fluorescent protein (GFP) technology 
(Sanders and Jackson, 2009; Zimmer, 2009) 
has greatly simplified many aspects of live 
cell imaging and made cell biological analy-
sis accessible to a wide range of researchers. 
Gone are the days when GFP was simply a 
tag for following expression patterns and 
localization of a protein of interest. The 
color of GFPs now available spans much of 

the visible spectrum (Shaner et al., 2005), 
allowing for simultaneous labeling of mul-
tiple targets in the same cell (Stepanenko 
et al., 2008; Chudakov et al., 2010). Rigorous 
techniques for assessing protein localization 
and interaction such as colocalization indi-
ces, fluorescence resonance energy transfer, 
and bimolecular fluorescence complemen-
tation (Zhang et al., 2002; Giepmans et al., 
2006; Ohad et al., 2007; Kerppola, 2009) 
are making it possible to bring analysis 
of, for example, the interactome into the 
context where it makes most sense to study 
it, the plant cell itself. GFPs have also been 
designed to be photoactivated or optically 
switched in color (Stepanenko et al., 2008; 
Chudakov et al., 2010) allowing for the fol-
lowing of very complex dynamics within 
the cell. Other GFP-based sensors have 
been engineered to be sensitive to specific 
activities in their environment ranging 
from the levels of ions (such as Ca2+ and 
pH; Palmer and Tsien, 2006; Bizzarri et al., 
2009; Swanson et al., 2011) and metabo-
lites (e.g., glucose and glutamate; Deuschle 
et al., 2005a,b) to the activity of specific 
protein kinases (Zhang and Allen, 2007), 
enabling visualization of the biochemistry, 
metabolism, and signaling within the living 
cell (Frommer et al., 2009). We are in the 
enviable position of being presented with 
an increasingly powerful toolkit with which 
to monitor and manipulate the activities of 
the living cell. These tools can provide the 
quantitative glimpse into cellular function 
upon which we can start to build testable 
models of plant cell structure and function.

In parallel to the expansion of GFP tech-
nology, there has also been a rapid increase 
in the accessibility to sophisticated cell 
biological equipment, such as the confocal 
microscope. Access to such facilities has rev-
olutionized how many researchers approach 
characterization of their particular protein 
or process, moving many of the questions 
being asked into the cellular realm. The tech-
nology available to the cell biologist is also 
rapidly advancing and technical approaches 

that surpass the diffraction limit of resolu-
tion (approximately 200 nm), such as stim-
ulated emission depletion microscopy, 4Pi 
microscopy, and structured illumination 
(Toomre and Bewersdorf, 2010) now push 
the boundaries of what we can resolve with 
the light microscope toward imaging of sin-
gle molecules and nanometer resolutions. 
These approaches are opening up new ways 
to approach problems of molecular kinetics 
in the cell. The challenge here is to combine 
this unprecedented view of the dynamics 
of cells with the host of other approaches 
at our fingertips ranging from biochemis-
try and “traditional” structural biology to 
approaches that provide a systems-level 
view of responses such as genomics, pro-
teomics, and metabolomics. Integrating 
such measurements should help us take one 
step towards explaining the responses of the 
organism through cellular-level processes. 
This is indeed a grand challenge that will 
require a high-resolution model of cellular 
functions anchored in the spatial, tempo-
ral, and developmental realms. The limit to 
this comprehensive map of cellular effects is 
unlikely to be the computational resources 
to construct the framework of such a model 
but undoubtedly lies at present in our ability 
to generate the data sets of cellular processes 
to populate it.

A further challenge to our understanding 
of plant cell biology lies in the interactions 
between the plant and the environment. 
Plants monitor and respond to a wide array 
of endogenous and environmental signals. 
These are perceived by cellular receptors and 
translated into response first at the cellular 
level and then propagated throughout the 
plant as necessary. Recent work has made 
tremendous advances in the identification 
of a host of receptors for environmental and 
endogenous signals ranging from CO2

 sens-
ing via carbonic anhydrase (Hu et al., 2010) 
to auxin perception by the TIR1 F-box pro-
tein (Calderon-Villalobos et al., 2010). Yet 
we are far from understanding how the 
plant senses many of the signals critical 
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the cell or mapping their function into the 
transcriptional, proteomic or metabolomic 
profile of the plant, modern cell researchers 
are truly providing the twenty-first century 
contributions to these “ingenious” insights 
into the fundamentals of life.
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and developmental plasticity of the whole 
plant. These cellular processes provide land-
marks upon which we can begin to layer 
the complex networks that provide the flex-
ible response systems that characterize how 
plants respond to the environment.

One further very significant challenge 
that we can predict to become an ever more 
important practical question in the field of 
cell biology is how we will share the large 
cell biological datasets that underpin our 
work. These are often anchored in imag-
ing data. The data are inevitably generated 
by a huge range of specialized equipment, 
and although images themselves are often 
in standard formats, the associated meta-
data is often not. Indeed, what metadata 
should be associated with each record is 
not agreed upon. Yet these data sets have 
the potential to be rich resources for future 
analysis, much as microarrays proved to be 
a key community resource once standards 
for annotation and archival were agreed 
upon (Brazma et al., 2001). There is ongoing 
development of the tools and approaches to 
aid in storage and sharing of imaging data-
sets, such as the open microscopy environ-
ment1 and the Bio-Image Semantic Query 
User Environment (BISQUE)2 but it will 
require the plant cell biology community 
as a whole to rise to the challenge of deter-
mining what we consider appropriate for 
annotation and archival.

Lastly as cell biologists, we produce 
some of the most engrossing and fascinat-
ing images of the workings of life, provid-
ing us with an opportunity to raise broad 
interest in the fundamentals of the plant 
sciences. For inspiration, we need look 
no further than Robert Hooke who pub-
lished Micrographia in 1665. In this book 
he documented observations made with 
various magnifying glasses and captured 
the public’s imagination, making it a best-
seller of the day. Indeed, the picture he pre-
sented of the intricacies of biology led his 
contemporary Samuel Pepys, a man who 
himself chronicled events such as the great 
fire and great plague of London, to call it 
“the most ingenious book that I ever read 
in my life.” There are hundreds of mod-
ern day Hookes in plant cell biology labs 
throughout the world. Whether it be visu-
alizing the dynamics of single molecules in 

to its survival. Even for stimulus–response 
systems where we have well-defined recep-
tors, the downstream regulatory networks 
are often poorly understood. For example, 
three stresses that are predicted to become 
increasingly important to plants as cli-
mate change drives weather to more sea-
sonal extremes are temperature, drought, 
and flooding stress (Ahuja et al., 2010). 
Although there is a tremendous amount of 
data detailing plant responses to these fac-
tors (Kotak et al., 2007; Ahuja et al., 2010; 
Bailey-Serres and Voesenek, 2010; Mittler 
and Blumwald, 2010), our knowledge about 
how these stresses trigger cellular processes, 
the molecular players that process this 
information, and then how this network 
is integrated into the whole plant response 
remains largely a mystery. Understanding 
these processes presents a grand challenge 
recognized by many fields of plant science 
(for example, see the grand challenges arti-
cle in our sister journal Frontiers in Plant 
Physiology; Frommer, 2010) and can clearly 
only be met by integrating between these 
various fields of research.

Indeed, cell biology provides the 
underpinnings of many other traditional 
disciplines of plant science such as plant 
physiology and development. There have 
been many important advances in our 
knowledge of cellular processes such as 
pollination biology and vegetative and 
reproductive development that blur these 
traditional distinctions of discipline within 
the field of plant sciences. Many researchers 
with interests in physiology and develop-
ment are approaching their questions at the 
cellular level. For example, we now have a 
remarkably detailed model of the cellular 
events involved in regulating pollen tube 
growth ranging from ion transport and the 
cytoskeleton to regulatory networks of lip-
ids, ROS, and G-proteins (Cheung and Wu, 
2008) and are taking the first steps towards 
asking how such cellular processes play out 
in critical aspects of whole plant function 
such as fertilization and seed set (Palanivelu 
and Johnson, 2010; Chae and Lord, 2011). 
Similarly, meristem development is now 
described at levels from transcriptional 
networks (Kaufmann et al., 2010) to cel-
lular patterns of hormone trafficking (Ha 
et al., 2010; Vernoux et al., 2010). Yet we 
are far from understanding these proc-
esses, especially in the context of integrat-
ing cellular activities to the physiological 
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