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An organism is an expression of its underly-
ing molecular composition that reacts and 
responds to a variety of stimuli. Central to 
this response are proteins, which undertake 
a multitude of functional and structural 
roles throughout an organism. The ability to 
readily identify and analyze protein popula-
tions (proteomics) represents a recent tech-
nological advance in the field of biological 
sciences. Although the term proteomics was 
coined in the mid 1990’s (Wilkins, 2009), 
the technique was significantly hampered 
by a lack of cohesive genomics data and 
advanced instrumentation. The field of 
proteomics has expanded rapidly in recent 
years due to the completion of genomes, 
access and improvements to mass spec-
trometers and the development of new 
techniques all of which have increased its 
role in biological research (Han et al., 2008).

In general the area of plant proteom-
ics suffers from the similar challenges that 
face other research fields. While the area 
was energized with the release of the model 
dicot genome sequence of Arabidopsis 
(Arabidopsis Genome Initiative, 2000) and 
several years later with the monocot genome 
of rice (Goff et al., 2002), the development 
of plant specific procedures for proteomic 
analyses have been necessary. These have 
essentially been associated with improve-
ments in sample extraction procedures do 
deal with recalcitrant tissues and the effects 
of plant secondary metabolites on both 
extraction and analysis (Heazlewood and 
Millar, 2006). A number of successful strate-
gies have been developed to overcome these 
issues including mass spectrometry com-
patible extraction procedures designed for 
plant tissues (Isaacson et al., 2006; Sheoran 
et al., 2009). In general, the plant proteomics 
community face many of the same limita-
tions that the proteomics community as a 
whole faces and will benefit significantly 
with improvements in the field.

A significant challenge in proteom-
ics when studying plants or any complex 
biological system is an inability to meas-
ure the entire proteome (Ahn et al., 2007). 
While there have been major advances in 

 instrumentation and sample delivery, the 
number of proteins that can be reproducibly 
identified from a single sample analysis is 
limited to hundreds. Since protein samples 
derived from whole tissue are likely to con-
tain many thousands of proteins, there are 
considerable technological advances that 
will need to be achieved before complete 
proteomic profiling can occur in plants. 
Although limiting, a number of approaches 
have been used to partially overcome these 
restrictions. This includes sample fractiona-
tion and the enrichment of protein subpop-
ulations or compartments prior to sample 
analysis by mass spectrometry (Eubel et al., 
2008; Huang et al., 2009; Hynek et al., 2009; 
Ferro et al., 2010). When these studies are 
combined, such approaches begin to create 
a protein location map of the plant cell and 
have gone some way to provide overviews 
of the subcellular proteome (Heazlewood 
et al., 2007). Advances in instrumentation, 
sample delivery, and reproducible fraction-
ation will all be essential for limitations in 
detection and dynamic range to be com-
pletely overcome.

A fundamental challenge for proteomics 
is the ability to deliver large-scale protein 
quantification and to permit comparative 
proteomics studies (Schulze and Usadel, 
2010). This would enable the examination 
of global protein changes during proc-
esses such as plant development or stress 
responses and provide a powerful biologi-
cal application to the technology. Currently, 
limitations in comparative proteomics are 
constrained by both an inability to measure 
the entire protein complement and by tech-
nical limitations in quantitation procedures. 
Initial comparative studies were conducted 
using 2D-PAGE arrays to compare samples 
of interest and have now developed to incor-
porate fluorescent dyes for multiplexing and 
improved sensitivity (Marouga et al., 2005). 
Although the approach still suffers from the 
inherent limitations of 2D-PAGE (Taylor 
et al., 2011). Techniques involving quantita-
tion by mass spectrometry have been widely 
embraced as sample analysis has moved 
away from gel arraying techniques. Early 

methods involved sample multiplexing with 
isobaric peptide labels (Zieske, 2006) but 
have been somewhat superseded by a pleth-
ora of label-free techniques (Schulze and 
Usadel, 2010). Unfortunately there is often 
an increased need for experimental design 
and replication to ensure statistical signifi-
cance when it comes to data analysis and the 
technique still suffers from sample sensitiv-
ity in complex mixtures and dynamic range 
issues. The utilization of unlabeled targeted 
approaches (selected reaction monitoring, 
SRM) greatly improves sample sensitivity 
by mass spectrometry as well as reducing 
variation (Lange et al., 2008). While these 
advantages make the SRM analysis tech-
nique very powerful it is still limited by the 
number of peptides and subsequently pro-
teins that can be monitored during sample 
analysis (Picotti et al., 2009). Finally, stable 
isotope labeling with amino acids (SILAC) 
has been widely employed in non-plant 
systems to enable reliable protein quantifi-
cation (Mann, 2006). Since this technique 
relies on the exogenous addition of labeled 
amino acids the technique has been diffi-
cult to implement in autotrophic plants due 
to low incorporation rates (Gruhler et al., 
2005). While comparative proteomics has 
been successfully and extensively employed 
to characterize plants, significant break-
throughs are still required for this technol-
ogy to enable the complete quantification 
of an organism’s proteome.

Generally plant proteomic studies have 
focused on the analysis of multiple organs 
and cell types. For most plant organs this 
has been a relatively uncomplicated task 
and has resulted in an extensive collection 
of studies analyzing and comparing sam-
ples derived from different plant organs 
(Sheoran et al., 2007; Baerenfaller et al., 
2008; Castellana et al., 2008). Consequently, 
few studies if any have attempted in-depth 
characterizations of single cell lines. Such 
an intricate approach will be vital to more 
completely understand the nuanced role 
of proteins in plant processes from dis-
tinct cell types and even single cells. While 
genomic and transcriptomics approaches 
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remains many specific problems that will 
ultimately require tailored solutions for 
plant research. Significant challenges still 
lie ahead of this field and it is envisioned 
that future advances in techniques and 
instrumentation will ultimately deliver the 
ability to analyze, characterize and quantify 
the entire protein constituent of a cell.
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