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Where control is more evenly distributed, it is often possible to 
identify transcription factors that co-ordinately affect the expres-
sion of genes encoding enzymes in a pathway (Schwinn et al., 2006; 
Memelink and Gantet, 2007). In contrast, the main growth com-
ponents of the cell are synthesized through a highly connected set 
of reactions that is commonly referred to as “central metabolism.” 
Not only is control of flux generally shared amongst many, if not all, 
enzymes of central metabolism (Raines, 2003; Geigenberger et al., 
2004; Araujo et al., 2011), but because of the degree of connectivity, 
a perturbation of one part of the network has consequences for 
other parts of the network.

So in central metabolism, the functioning of individual enzymes 
and even pathways is dependent on the operational state of the 
whole metabolic network (Kruger and Ratcliffe, 2008; Sweetlove 
et al., 2008). As a result, efforts to understand the regulation of 
the central metabolic network in the last few years have focused 
on measuring the metabolic phenotype – flux – at a network level. 
Much of this work has centered on the development of approaches 
to determine network fluxes based on the steady-state redistri-
bution of isotopically labeled carbon (Libourel and Shachar-Hill, 
2008; Allen et al., 2009a; Kruger and Ratcliffe, 2009). This approach, 
known as steady-state metabolic flux analysis (MFA), has matured 
into a powerful technique whereby it is possible to reliably quantify 
both net and exchange fluxes of tens of reactions across the central 
metabolic network. MFA has been applied to several different plant 
species and tissue types and has yielded some significant insights 
into the behavior and organization of plant metabolism. For exam-
ple, MFA was used to establish that Rubisco can function without 
the Calvin cycle to recycle carbon lost as CO

2
 during lipid synthesis 

in green oilseeds in the light, substantially increasing the carbon 
conversion efficiency (Schwender et al., 2004; Allen et al., 2009b). 
MFA has also revealed a variety of different flux modes in the TCA 
cycle (Sweetlove et al., 2010) as well as demonstrating the inherent 
stability of central metabolism to environmental perturbation (Iyer 
et al., 2008; Williams et al., 2008), and the complex, non-intuitive 
relationship between fluxes, metabolite levels, and enzyme activities 
(Junker et al., 2007; Kruger and Ratcliffe, 2009).

IntroductIon
Metabolism is a prerequisite for life. Hundreds of chemical reac-
tions, mostly catalyzed by enzymes, define a metabolic network 
that supports all biological activity. In particular, the coupling of 
energy-releasing processes to energy-consuming anabolic reac-
tions drives the biosynthesis of the polymers and metabolites 
that constitute the fabric of the cell. The rates of all the enzyme-
catalyzed reactions, including the associated relocation of ions 
and metabolites across membranes, are tightly controlled through 
the regulation of enzyme activity, allowing metabolic outputs to 
be adjusted according to varying environmental conditions and 
growth patterns.

Plant metabolic networks are arguably the most complex of 
any organism, both because of the tremendous variation in their 
metabolic output and because of the range of environmental con-
ditions that they encounter. Nevertheless, because the growth and 
survival of plants is intimately connected to metabolism (Smith 
and Stitt, 2007; Stitt et al., 2010) there is a need to understand and 
predict metabolic behavior. In particular, there is a need to con-
nect genotype to specific metabolic outputs so that plant breed-
ers and metabolic engineers can generate new varieties of crops 
with increased yield or altered chemical composition (Fernie and 
Schauer, 2009).

Although there have been some notable successes in engineer-
ing plant metabolism (Butelli et al., 2008; Naqvi et al., 2009), these 
are mainly related to the production of secondary metabolites. In 
contrast, there are few examples where the synthesis of the main 
biomass polymers has been manipulated in a predictive manner. 
At the heart of this contrasting ability to engineer the metabolic 
network is the difference in connectivity of primary and second-
ary metabolism. Many secondary metabolites are synthesized by 
reactions that occur at the periphery of the metabolic network with 
relatively few interconnections to other parts of the network. As a 
result, there are fewer regulatory constraints on the flux through 
these essentially linear pathways and control may be dispropor-
tionately resident in a single enzyme, providing a single target 
for genetic manipulation (Fraser et al., 2002; Enfissi et al., 2005). 
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However, despite the undoubted power of steady-state MFA 
for defining the metabolic phenotype, it does have some limita-
tions. In particular, the requirement to supply a labeled organic 
carbon substrate to isotopic steady-state limits the approach to 
heterotrophic or mixotrophic tissues in culture. The method is also 
entirely dependent on the correctness of the user-defined metabolic 
network because it is often possible to fit the labeling data to more 
than one network structure with little statistical power to discrimi-
nate between the alternatives (Masakapalli et al., 2010). MFA is, 
moreover, a relatively low throughput technique and this limits its 
use as a comparative tool since comparison of multiple samples 
(e.g., different genotypes) requires substantial effort (Lonien and 
Schwender, 2009).

These limitations have driven the search for alternative, com-
plementary approaches to characterize and explore the plant meta-
bolic network. Following the lead of the microbial field (Borodina 
and Nielsen, 2005), flux-balance modeling has emerged as an 
alternative to MFA. Like MFA, flux-balance analysis (FBA) is a 
constraints-based modeling approach in which steady-state fluxes 
in a metabolic network are predicted by applying mass-balance 
constraints to a model of the network based on the matrix of reac-
tion stoichiometries. Typically, simple and easy to measure mass-
balance information, such as growth rate, biomass composition, 
and  substrate-consumption rate, is used to place boundaries on the 
flux solution space (Reed and Palsson, 2003). However, in contrast 
to MFA, isotopic labeling information is not used. As a result, the 
network fluxes are underdetermined and a range of feasible flux 
solutions are obtained that satisfy the constraints. Within this range, 
flux solutions that are optimal with respect to a specific objective 
function (such as maximizing growth rate or minimizing substrate 
consumption) can be identified with optimization algorithms such 
as linear programming (Edwards and Palsson, 2000).

Several flux-balance models of different plant species have been 
published in the last 2 years. These include models for Arabidopsis 
(Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a; Radrich 
et al., 2010), barley seeds (Grafahrend-Belau et al., 2009), Brassica 
napus seeds (Hay and Schwender, 2011b; Pilalis et al., 2011), maize 
(Saha et al., 2011), Chlamydomonas (Boyle and Morgan, 2009; 
Cogne et al., 2011), and photoautotrophic bacteria (Knoop et al., 
2010; Montagud et al., 2010). The aim of this article is to review 
what has been learnt from these models, to discuss the advantages 
and limitations of flux-balance modeling and to look to the future. 
What insights into plant metabolic networks can we expect to obtain 
from flux-balance modeling and what are the main challenges for 
the biologically informative application of flux-balance modeling?

Genome-scale metabolIc modelInG
One of the main advantages of flux-balance modeling is that it 
is relatively easy to scale up to cover very large networks. Indeed, 
metabolic models can be constructed at a genome-scale, using all 
the reactions catalyzed by the enzymes encoded in an annotated 
genome. However this remains a non-trivial task: Arabidopsis and 
maize are the only higher plants with genome-scale metabolic 
models (Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a; 
Radrich et al., 2010; Saha et al., 2011) – all the other plant mod-
els have been constructed using metabolic databases, biochemical 
textbooks, and the primary literature, and are essentially confined 

to the well known pathways of central metabolism. Several prob-
lems arise in the construction of metabolic models from genome-
annotation databases, including network gaps caused by incomplete 
or imprecise genome annotation, mass-balance errors caused by 
reaction stoichiometry errors in the annotation database, and the 
presence of excess, non-functional reactions. However, working 
practices and computational approaches are emerging to help 
deal with such issues (Fell et al., 2010; Henry et al., 2010; Soh and 
Hatzimanikatis, 2010).

An additional challenge is that genome-annotation databases 
contain no information about reaction directionality. In smaller 
models of primary metabolism, it is possible to manually constrain 
reactions to a defined direction based on standard Gibbs free energy 
changes (and sometimes the in planta concentration of the reac-
tion substrates and products). However, in genome-scale models, 
reaction directionality is often left unconstrained, with the result 
that flux solutions may contain thermodynamically infeasible reac-
tions. A comprehensive standard Gibbs free energy of formation 
database is urgently required for metabolites to allow thermody-
namic constraints to be included in genome-scale FBA. However, 
because experimentally measured free energies are not available for 
many reactions, theoretical approaches for estimating standard free 
energies such as the group contribution method (Jankowski et al., 
2008) will need to be implemented.

Given the challenges inherent in constructing and analyzing 
such large models (the current Arabidopsis genome-scale mod-
els contain around 1500 reactions), it is relevant to ask whether 
this effort is worthwhile. Indeed, only 232 of the available 1406 
reactions in the Arabidopsis genome-scale model constructed by 
Poolman et al. (2009) are required to synthesize the main biomass 
components and account for maintenance costs of heterotrophic 
Arabidopsis. The model may be genome-scale, but the flux solution 
is of similar size and considers similar reactions to FBA models of 
primary metabolism. It is also worth pointing out that most flux-
balance models to date consider a similar span of the metabolic 
network to previous plant MFA models, although due to reaction 
lumping and network simplification the actual number of reactions 
in the MFA models is generally considerably lower.

A genome-scale metabolic network is, of course, not a biological 
reality. It is unlikely that every enzyme is expressed in a single cell 
type and under a single condition. Much of secondary metabolism, 
for example, is induced upon abiotic or biotic stress. Nevertheless, a 
genome-scale metabolic network has significant value as a founda-
tion for investigating condition-specific scenarios. Thus, cell type-
specific sub-models can be constructed based on transcriptomic 
or proteomic datasets (Lewis et al., 2010) although this has not yet 
been done to any significant degree for plant metabolism. Similarly, 
with the inclusion of appropriate constraints, it should be possible 
to model the consequences of the synthesis of a range of secondary 
metabolites. For example, in a recent genome-scale flux-balance 
model of maize, lignin metabolism was explicitly included as part 
of the biomass function (Saha et al., 2011).

the Issue of multIple flux solutIons
Although boundaries are imposed on the flux solution space, it will 
often still be possible to accommodate multiple solutions that sat-
isfy the chosen objective function. Thus, when linear  programming 
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a linear programming routine based on a secondary minimization 
and maximization of the flux through each reaction (Mahadevan 
and Schilling, 2003). In a 572-reaction network of primary metabo-
lism solved by minimization of substrate consumption, it was found 
that 75 reactions, mainly in the central core of the network, were 
variable. Flux variability was classified according to the direction 
and magnitude of the flux change, and it was found that the varia-
bility type of 57 reactions altered when different external substrates 

provides a flux solution that minimizes or maximizes a particu-
lar objective function, it is not necessarily a unique solution (Lee 
et al., 2000; Mahadevan and Schilling, 2003). The ability to uniquely 
define fluxes is dependent both on the structure of the metabolic 
network and the objective function being considered. For example, 
the objective function “minimization of total intracellular fluxes” 
will select metabolic routes that contain the fewest steps since this 
will result in a lower sum of fluxes. However, the metabolic net-
work may contain equivalent alternative routes for the production 
of a given metabolite. For example in Figure 1A, both routes lead 
to the conversion of input substrate to output metabolite via an 
equal number of steps, meaning that there is no basis by which to 
select one over the other when minimization of total intracellular 
flux is used as an objective function. Other commonly used objec-
tive functions such as maximization of biomass per unit substrate 
(and the equivalent minimization of substrate consumed per unit 
biomass produced) which optimize the molar yield of the system 
would also fail to discriminate between the two routes if they are 
stoichiometrically equivalent with respect to carbon.

In contrast, if the two routes contain a different number of 
steps (Figure 1B) then the route with the fewest steps will be uti-
lized under the minimization of flux objective function. Other 
differences between parallel pathways relate to energy production 
(Figure 1C). If the objective function is to maximize ATP yield then 
the objective function would select the ATP-producing pathway 
in Figure 1C. Another source of alternative solutions can be the 
presence of substrate cycles (Figure 1D). The minimization of flux 
objective function will eliminate such cycles, but other objective 
functions, such as maximization of biomass production, will not 
because substrate cycles do not influence the net flux from input 
to output. Accordingly the flux through the cycle is not defined 
by the objective function and it can hold any value. Subcellular 
compartmentation, especially the presence of equivalent pathways 
in different compartments (Figure 1E), can also lead to alternative 
flux solutions.

This issue of alternative optima can be dealt with in two ways: 
either, additional optimization criteria can be applied such that a 
unique flux solution is reached; or, flux variability can be viewed 
as a potentially informative aspect of network behavior that can be 
explicitly quantified and explored. A model of barley seed metabo-
lism took the former approach (Grafahrend-Belau et al., 2009). First 
a conventional linear optimization was applied (with the objective 
function to maximize growth) and then a non-linear quadratic 
optimization was applied using the objective value (growth rate) 
of the first optimization as an additional constraint to the second 
optimization (with the objective function to minimize the overall 
sum of fluxes). This two-step procedure provided a unique solu-
tion because of the nature of the quadratic optimization. Similarly, 
a two-step linear optimization procedure can be used in which a 
“maximization” objective function (e.g., maximization of biomass) 
is followed by a “minimization” objective function (e.g., minimi-
zation of photon use). This approach led to a unique flux solu-
tion in an flux-balance model of photoautotrophic metabolism in 
Synechocystis (Shastri and Morgan, 2005, 2007).

In contrast, a recent FBA analysis of oilseed rape seed metabo-
lism (Hay and Schwender, 2011a,b) made a virtue of flux variability. 
An explicit analysis of the extent of variability was performed using 

Figure 1 | Features of a metabolic network than can lead to flux 
variability in FBA. (A) Two equivalent routes (shown in green and blue) for 
converting an input substrate into an output metabolite. (B,C) illustrate 
non-equivalent routes that may be discriminated in FBA, depending on the 
objective function. (D) A substrate cycle. (e) Equivalent routes in different 
subcellular compartments (the dashed line indicating a membrane separating 
two subcellular compartments).
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3- phosphate  dehydrogenase, malate dehydrogenase, and malic 
enzyme. Production of NADPH by these routes is marginally 
more efficient in terms of either carbon use or overall flux, and 
so the models predict that the oxidative branch of the pentose 
phosphate pathway is not required. Two points are worth making 
here. First, neither of the flux-balance models include thermody-
namic constraints beyond specification of reaction directions, and 
there may be thermodynamic limitations to the establishment of a 
high NADPH:NADP ratio using these dehydrogenases. Secondly, 
the NADPH requirement specified in both models is only that 
required for synthesis of biomass components. There are several 
other known NADPH requirements in the cell including antioxi-
dant enzyme activity (Apel and Hirt, 2004) and membrane NADPH 
oxidase activity (Torres, 2010). Thus, the actual NADPH demand 
in the cell is certainly higher than that specified in the model and 
would require NADPH to be produced in different subcellular 
compartments.

Perhaps the most rigorous way to validate an FBA flux solution is 
to compare it to fluxes estimated independently by 13C-MFA, and this 
has been done for both B. napus and Arabidopsis flux-balance mod-
els (Williams et al., 2010; Hay and Schwender, 2011b). Two points 
need to be borne in mind in making such comparisons. First, the 
metabolic networks that are used during 13C-MFA are projections 
of the real network that provide an explanation of the redistribu-
tion of 13C that occurs during the steady-state labeling experiment 
(Roscher et al., 2000). Steps between branch-points are represented 
as single steps, since the net flux carried by each intermediate step 
must be the same, and the model is usually constructed to eliminate 
indeterminable fluxes, i.e., fluxes that cannot be defined from the 
labeling data and which would therefore show infinite flux variability 
if included in the model. In contrast, a flux is assigned to every step 
in the complete network in FBA, even though many of them are the 
same, and indeterminable fluxes are not grouped to eliminate flux 
variability. Thus, many reactions in the FBA solution do not have a 
direct counterpart in the MFA model. It is also simpler to restrict the 
comparison to reactions that do not show flux variability in the FBA 
solutions, although statistical comparisons are possible that include a 
weighting factor to account for flux variability (Schuetz et al., 2007). 
Secondly, both FBA and MFA constrain the fluxes that lead directly 
to synthesis of biomass in the same manner, so these reactions will 
necessarily hold the same values in the FBA and MFA solutions. When 
these factors are taken into account, only a relatively small number 
of fluxes can be directly compared between the two approaches (24 
reactions in the Arabidopsis genome-scale model and 19 reactions 
in the B. napus seed primary metabolism model). Nevertheless, for 
these few reactions (which are mainly from the core backbone of 
the network) a reasonable correlation with the predicted fluxes and 
those estimated by 13C-MFA was found, suggesting that FBA is able to 
predict realistic values for plant metabolic network fluxes. Moreover, 
FBA was able to successfully predict changes in flux under two envi-
ronmental stress conditions in Arabidopsis (Williams et al., 2010).

subcellular compartmentatIon In flux-balance 
models
Most of the published flux-balance models of plant metabo-
lism make some attempt to take subcellular compartmentation 
into account, which is clearly desirable if the model is to reflect 

were used in the model. Flux variability is essentially a modeling 
issue that arises because the available constraints do not produce a 
unique solution with the chosen objective function. Nevertheless, 
changes in variability type can supplement the information that 
can be deduced from the changes that occur in the fluxes that are 
uniquely defined. It was also found that 51 reactions varied with 
infinite bounds and these were largely due to metabolite cycles in 
which there was no net consumption of carbon or energy. The flux 
through these reactions can hold any value if the constraints applied 
only relate to carbon or energy use. Most of the variable fluxes 
are substitutable, meaning that a solution to the flux optimization 
problem can be found using alternative reactions. This is a clear 
demonstration of metabolic redundancy. This work illustrates the 
utility of flux variability analysis in providing an additional layer of 
information about the behavior of the network and the nature of 
the flux solution, and this is particularly valuable when dealing with 
large networks in which it is not possible to manually inspect the 
entire flux solution. A similar analysis of flux variability was used 
to ascertain flux differences between bundle sheath and mesophyll 
cells in a model of C4 photosynthesis, although in this case, only 
four reactions were not uniquely defined by the optimality criterion 
and imposed constraints (de Oliveira Dal’Molin et al., 2010b). To 
date, only these two studies and a model of Synechocystis (Knoop 
et al., 2010) have explicitly analyzed flux variability in plant flux-
balance models, but one would expect it to be a standard compo-
nent of FBA in future work.

ValIdatIon of flux-balance models
When a flux-balance solution is generated it is important to estab-
lish how closely it reflects the actual behavior of the metabolic net-
work. One way of doing this is to look for the operation of metabolic 
pathways that are known to be physiologically important. Thus, 
when photosynthetic metabolism was modeled in an Arabidopsis 
genome-scale model (de Oliveira Dal’Molin et al., 2010a), the clas-
sical photorespiratory cycle was observed to support a flux when a 
3:1 ratio of the carboxylation:oxygenation reaction of Rubisco was 
imposed and the photon-use efficiency was optimized. Moreover, 
the model predicted that 30–50% of the carbon fixed by photo-
synthesis would be lost through the photorespiratory cycle, a range 
consistent with experimental measurements.

However, while the recapitulation of known metabolic behavior 
is reassuring, FBA is unlikely to give a completely faithful represen-
tation of the actual flux distribution, and consideration of areas 
in which the flux-balance model diverges from known metabolic 
behavior is potentially more informative. For example, the oxida-
tive reactions of the oxidative pentose phosphate pathway typi-
cally carry no flux in flux-balance solutions of heterotrophic plant 
metabolism (Williams et al., 2010; Hay and Schwender, 2011a). This 
is in contrast to the known importance of the oxidative pentose 
phosphate pathway in heterotrophic tissues (Averill et al., 1998) 
and to the fact that the oxidative reactions carry considerable 
flux in MFA-based flux maps (Kruger and von Schaewen, 2003; 
Schwender et al., 2003; Sriram et al., 2004; Alonso et al., 2007, 
2010; Masakapalli et al., 2010). The discrepancy arises because in 
the flux-balance models the provision of NADPH, a likely role 
for the oxidative pentose phosphate pathway, can be met by plas-
tidial NADP-dependent dehydrogenases, such as glyceraldehyde 
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the number of alternate solutions to the optimization problem. 
There have been too few attempts to include the necessary level of 
subcellular compartmentation in plant models to reach a conclu-
sion on this point, and the extent to which flux-balance models can 
usefully analyze highly compartmented networks requires further 
investigation.

flux-balance modelInG of specIfIc cell  
types or tIssues
Almost all of the flux-balance models of plant metabolism, com-
partmented or not, consider only a single cell type, either by mod-
eling single-celled organisms such as Chlamydomonas (Boyle and 
Morgan, 2009; Cogne et al., 2011) or Synechocystis (Knoop et al., 
2010; Montagud et al., 2010), modeling cell suspension cultures 
(Poolman et al., 2009; Williams et al., 2010) or simply ignoring 
the presence of multiple cell types in models of specific organs 
or tissues (Grafahrend-Belau et al., 2009; de Oliveira Dal’Molin 
et al., 2010a; Hay and Schwender, 2011a,b; Pilalis et al., 2011; Saha 
et al., 2011). To an extent this is justifiable because the measured 
biomass composition used to constrain these models are whole 
tissue biomass compositions. However, it follows that the result-
ing metabolic network flux solution represents an average of the 
different cell types in that tissue or organ. Given that different cell 
types have very different metabolic capacities (Brady et al., 2007; Lee 
et al., 2011), it is likely that there will be major differences in both 
the structure of their metabolic networks and in the fluxes through 
them. Ultimately, if a flux model is going to be useful in explaining 
the metabolic phenotype in detail, it will be necessary to provide 
information about flux at a cell-type level (Sweetlove et al., 2010).

The challenge goes beyond simply constructing specific mod-
els for specific cell types, but also in joining up these models to 
form multi-layered representations of complete tissues. This has 
been achieved in a sophisticated model of metabolic interactions 
between different cell types in the human brain (Lewis et al., 2010). 
This study used transcriptomic and proteomic data to define cell 
type specific metabolic networks for three different neuronal cell 
types, astrocytes, and blood/endothelium. Subcellular compart-
mentation was introduced into each cell-type model and trans-
porters were included to allow transport of specific metabolites 
between the cell types. The model was able to generate possible 
explanations for the differential effects of Alzheimer’s disease on 
different cell types and regions of the brain.

This flux-balance model of brain metabolism is state-of-the-art 
and in principle there is no reason why such detailed large-scale 
models should not be constructed for plant metabolism. To date, 
only one study has attempted to account for the interaction of more 
than one cell type. Based on their previous genome-scale model of 
Arabidopsis metabolism, de Oliveira Dal’Molin et al. (2010b) con-
structed a flux-balance model describing the interaction between 
bundle sheath and mesophyll cells in C4 photosynthesis. The meta-
bolic network was restricted in each cell type to reflect the known 
distribution of carbon fixation in C4 photosynthesis, with primary 
fixation of carbon through PEP carboxylase in mesophyll cells, 
transport of aspartate or malate to the bundle sheath cells, and 
subsequent decarboxylation by NADP-malic enzyme, NAD-malic 
enzyme or phosphoenolpyruvate carboxykinase. Flux solutions 
were generated using optimization of photon use as an objective 

 biological reality (Lunn, 2007). However, inclusion of subcellular 
 compartmentation is problematic and at present, there is insuffi-
cient information to assess whether inclusion of compartmentation 
improves the models. One of the biggest problems is how to place 
reactions in the correct compartment. While the compartmentation 
of the core pathways of central metabolism is well established, this 
only accounts for a small percentage of a genome-scale network. 
Similarly, while databases such as SUBA (Heazlewood et al., 2007) 
are excellent inventories of subcellular compartmentation sup-
ported by experimental evidence mainly drawn from organellar 
proteome studies, they only represent a relatively small proportion 
of the metabolic network. Ideally subcellular location of reactions 
would be assigned automatically in a genome-scale model, perhaps 
on the basis of predicted protein sequences, but current algorithms 
are too unreliable (Heazlewood et al., 2004) and there is currently 
no alternative to manual curation.

Thus, the assignment of subcellular compartmentation is usually 
done manually. As a result, particularly in genome-scale models, 
the extent of compartmentation is patchy and may contain errors. 
For example, in the AraGEM genome-scale model of Arabidopsis 
metabolism (de Oliveira Dal’Molin et al., 2010a), the vast major-
ity of reactions are assigned to the cytosol (1265 reactions in the 
cytosol, with 60, 159, and 98 reactions assigned to mitochondria, 
plastid, and peroxisome, respectively). This is almost certainly not 
a true reflection of the situation in the cell, and indeed many reac-
tions assigned to cytosol in the model are known to occur in other 
compartments. For example, most reactions of amino acid biosyn-
thesis and secondary metabolism were assigned a cytosolic location 
even though it is well established that both occur extensively in the 
plastid. By way of comparison, only 20% of the reactions in a model 
of Chlamydomonas primary metabolism were cytosolic and nearly 
half were plastidic (Boyle and Morgan, 2009). This was despite 
the use of the cytosol as a “default” location where the subcellular 
localization of an enzyme was unclear.

Another issue with introducing compartmentation into meta-
bolic models is the lack of information about metabolite trans-
port. This means that intracellular transporters are often added to 
metabolic models based on their necessity to allow the synthesis of 
biomass within the compartmented model (de Oliveira Dal’Molin 
et al., 2010a). It is also generally the case that no attempt is made to 
account explicitly for the energetic cost of transport, so by default 
this is included in the energy cost attributed to cell maintenance.

The functional significance of subcellular compartmentation is 
not necessarily obvious, and steady-state MFA has drawn attention 
to the importance of transmembrane metabolite exchange rates 
in determining the extent to which the intermediates in physi-
cally compartmented pathways are able to function indistinguish-
ably from an uncompartmented pathway (Schwender et al., 2003; 
Ratcliffe and Shachar-Hill, 2006; Masakapalli et al., 2010). Thus in 
principle it would be useful if the problems identified above could 
be resolved to allow FBA to explore the functionality of subcel-
lular compartmentation. However, it might be well to consider 
whether flux-balance models are sufficiently constrained to define 
compartmented fluxes. The addition of compartmentation, and 
especially the addition of parallel pathways in more than one com-
partment, effectively increases the solution space and it seems likely 
that increased compartmentation in a model will simply increase 
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However, there is a wide variation in reported values for  maintenance 
respiration for plant tissues, and maintenance costs are likely to 
increase during environmental stress, which may be one explana-
tion for the observed reduction in carbon conversion efficiency 
under stress (Williams et al., 2010). The importance of an accurate 
measure of maintenance costs is revealed by the observation that 
the maximum yield of ATP generated by the metabolic network of 
heterotrophic Arabidopsis cells is over seven times that required for 
the synthesis of the main biomass components (Masakapalli et al., 
2010), the implication being that maintenance costs account for the 
majority of ATP consumed by the cell.

Poolman et al. (2009) used an alternative approach for the esti-
mation of maintenance costs. Initially, fluxes in the network were 
estimated, with the synthesis of biomass components as constraints 
and minimization of total flux as an objective function, without 
taking maintenance into account. Subsequently, a generic ATPase 
reaction was added to the model to represent the maintenance 
ATP requirement. The flux value of this ATPase was iteratively 
varied and the linear programming optimization repeated. As the 
ATPase was increased, glucose consumption, glycolysis, and oxida-
tive phosphorylation increased to meet the increased ATP demand. 
This allowed the maintenance ATP cost to be set to the ATPase reac-
tion flux that led to a glucose consumption rate equal to the value 
measured experimentally in the cell suspension cultures (Williams 
et al., 2010). Effectively, the maintenance cost was estimated from 
the carbon balance of the system by assuming that consumed car-
bon that was not accounted for by biomass synthesis must have 
been for maintenance. A similar approach was used in a recent FBA 
model of oilseed rape, with the slight modification that carbon 
conversion efficiency was used as the parameter to set the value 
for the generic ATPase flux (Hay and Schwender, 2011b). The use 
of a generic ATPase flux in this way provides a convenient method 
for accounting for ATP costs that are additional to those required 
for biosynthesis of biomass components. However, it should be 
pointed out that the accuracy of the predicted maintenance ATP 
cost will be dependent on how close the flux-balance solutions are 
to the actual metabolic flux state.

explorInG metabolIc effIcIency wIth  
flux-balance models
Flux-balance modeling is well equipped for the analysis of meta-
bolic efficiency because FBA is based on the discovery of flux solu-
tions that are optimal with respect to a specific objective function. 
Several of the published FBA studies of plant metabolism explore 
issues that relate to metabolic efficiency. For example photorespira-
tion was non-zero in a model of photoautotrophic metabolism in 
Synechocystis optimized for maximal biomass production (Knoop 
et al., 2010). This is surprising because Rubisco oxygenase was not 
forced to operate and one would expect that reactions leading to 
loss of carbon as CO

2
 would have zero flux when maximization of 

biomass production is the objective function This is because when 
the carbon input rate is fixed, maximization of biomass equates 
to a maximization of carbon conversion efficiency. The fact that 
photorespiration carried flux under these circumstances means 
that the requirement for production of intermediates by this route 
outweighed the loss of carbon. Part of the explanation appears to 
be a lack of alternative routes to serine in the Synechocystis model. 

function. While this objective function could not reproduce every 
aspect of C4 metabolism, for example the preferential accumula-
tion of starch in bundle sheath cells, the model could be used to 
examine the energetic implications of the three C4 sub-types. For 
example, the ATP/NADPH ratio required in NAD-malic enzyme 
species is higher in mesophyll cells than in bundle sheath cells, 
but the opposite is true for NADP-malic enzyme species. The flux 
distribution in the models of the different sub-types confirmed 
the hypothesis that the additional ATP demand in the different 
cell types is met by cyclic photophosphorylation.

Another interesting observation from this study was that the 
relative fluxes between bundle sheath and mesophyll cells corre-
lated well with the relative abundance of the enzymes estimated 
from proteomic studies (de Oliveira Dal’Molin et al., 2010b). It 
is clear that enzyme abundance does not relate directly to flux, 
partly because of post-translational regulation of enzyme activity 
and partly because of the impact of the thermodynamic poise of a 
reaction on the ability of an enzyme to support a net flux. However, 
what this correlation shows is that changes in flux are reflected in 
proteome-wide adjustments in enzyme amount. The implication 
is that relative enzyme abundance might be a useful proxy for the 
change in flux between two conditions or cell types. That said, there 
are many reasons why such a correlation might break down. For 
example, it has been shown in yeast that while some V

max
 values 

correlate positively with flux changes, others show an inverse cor-
relation and some show no correlation at all (Rossell et al., 2006). 
And during stress, many enzymes are inhibited by oxidative damage 
(Taylor et al., 2004; Lehmann et al., 2009), but this is not necessarily 
reflected at the protein level. An alternative way of exploiting the 
correlation between changes in flux and enzyme amount would be 
to use the enzyme abundance data as a constraint when predicting 
changes in flux, although the effort required to establish proteomic 
measurements of sufficient enzymes to cover a significant propor-
tion of the metabolic network would be substantial.

accountInG for cell maIntenance enerGy costs
In modeling the central metabolic network, the published flux-bal-
ance models have exclusively considered the conversion of carbon 
and nitrogen inputs into biomass. Biosynthesis of the precursors 
that constitute the main biomass polymers (cell wall, protein, lipid, 
starch) requires both ATP and NAD(P)H and thus, the energy costs 
of biomass synthesis are explicitly taken into account. However, 
there are several other cellular drains on ATP and NAD(P)H apart 
from the synthesis of biomass. These other energy costs are often 
bracketed together under the term “maintenance,” implying that 
these are growth-independent costs that are required just to keep 
the cell ticking over. This distinction is not strictly accurate because 
the maintenance costs in metabolic models often include some 
growth-associated costs.

Other energy costs are associated with the need to replace poly-
mers as they turn over, with the costs of maintaining plasma mem-
brane and tonoplast electrochemical potential gradients through 
ATP- and PP

i
-dependent proton pumps, and with the consumption 

of reductant during antioxidant metabolism (Amthor, 2000). The 
usual approach to dealing with these maintenance costs in flux-bal-
ance modeling is to include a fixed value for maintenance costs based 
on experimental measures (e.g., Grafahrend-Belau et al., 2009). 
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The conclusion that plant metabolic networks may already be 
operating close to maximal carbon conversion efficiency is impor-
tant, because improvement of carbon conversion efficiency is often 
cited as a key breeding target for improved crop yield (Hauben 
et al., 2009; Parry et al., 2010). However, the conclusion, as it stands, 
requires substantial qualification. The main issue is that the car-
bon conversion efficiency in the Arabidopsis and B. napus models 
is forced to match the measured value and this to a large extent 
dictates the good match between the modeled and measured fluxes 
in the central metabolic network. Moreover, only a small fraction 
of the flux distribution can be legitimately validated for the reasons 
discussed earlier, and systematic assessments of different objective 
functions (Schuetz et al., 2007) have not yet been reported for plant 
models. It is entirely possible that the differences in the flux solu-
tions obtained with different objective functions may fall within the 
statistical error of the flux determinations, and thus provide no real 
discriminatory power to investigate metabolic network efficiency. 
Nevertheless the conclusion is in line with previous estimates of 
the theoretical efficiencies of plant energy metabolism based on less 
sophisticated pathway analysis (Penning de Vries, 1974; Penning 
de Vries et al., 1974).

future challenGes for flux-balance modelInG of 
plant metabolIsm
The flux-balance models of plant metabolism that have been pub-
lished in the last 2 years have been steadily gaining in sophistication. 
The inclusion of subcellular compartmentation, the analysis of 
multiple cell types, and the analysis of flux variability are significant 
developments that increase the utility and predictive capacity of the 
models. Technical challenges remain, for example in the analysis of 
subcellular compartmentation, but it is clear that FBA is a useful 
addition to the toolbox for analyzing plant metabolic networks. 
Moreover the ease of implementation in comparison to stable 
isotope-based MFA, and the availability of metabolic compendia 
(Zhang et al., 2010) based on genomic information, suggest that 
flux-balance models will continue to be developed for a variety of 
plant species and tissue types. Given the growing popularity of the 
approach, and the potential for genome-scale models to be used 
in tandem with computational analysis of genomes (Bekaert et al., 
2011) it is pertinent to try and identify the areas in which FBA could 
be most usefully deployed as the technique develops.

Ultimately, the goal toward which metabolic modeling must 
advance is a reconstruction of metabolism at the whole-plant level. 
While in principle FBA is well suited to dealing with interacting 
cell types, considering whole plants raises the problem of temporal 
differences in metabolism during the development of the tissues 
(Walton and de Jong, 1990). A particular issue is that the pattern 
of growth of most plant tissues is not uniform with time: cells are 
initiated by division at the meristem and subsequently grow by 
expansion. This represents two very different modes of growth that 
will not be fully captured by constraints derived from biomass com-
position of mature cells. This is because such constraints assume 
that each component of biomass accumulates in a linear fashion 
and in the same proportion over the history of the cell. This is 
unlikely to be true since the nature of biomass accumulation during 
cell expansion is different to that during division (Thornley and 
Johnson, 1990). Moreover mature organs can make a significant 

However, it is noteworthy that a flux-balance model of hetero-
trophic Arabidopsis metabolism also contains a non-zero flux for 
the Rubisco oxygenase reaction and subsequent reactions of pho-
torespiration as far as glycine. (Poolman et al., 2009). In this model, 
this was the main route for synthesis of glycine. Transcript and pro-
teomic data both suggest the presence of photorespiratory enzymes 
in non-photosynthetic tissues in Arabidopsis (Zimmermann et al., 
2004; Baerenfaller et al., 2008). The precise role of the photorespi-
ratory reactions in non-photosynthetic tissues, and their require-
ment for optimal growth of photosynthetic tissues, requires further 
investigation, highlighting the power of FBA in the identification 
of non-intuitive flux behavior in metabolic networks.

Flux-balance modeling can also be used to explore the efficiency of 
different modes of carbon assimilation within realistic growth con-
straints. Because the carbon conversion efficiency of photosynthesis 
is directly related to crop yield, there is a great deal of interest in the 
possibility of alternative photo-assimilatory pathways that might 
operate at higher efficiency (Bar-Even et al., 2010). The efficiency of 
six carbon assimilation pathways (Calvin–Benson–Bassham cycle, 
reductive TCA cycle, 3-hydroxypropionate/malyl-CoA cycle, reduc-
tive acetyl-CoA pathway, 3-hydroxypropionate/4-hydroxybutyrate 
cycle, and the dicarboxylate/4-hydroxybutyrate cycle) was com-
pared by establishing flux-balance solutions for six different bac-
teria (Boyle and Morgan, 2011). Based on comparisons of either 
photon requirement or the energy demand for conversion of 
photoassimilate into biomass, it was found that photoautotrophic 
pathways are more efficient than chemoautotrophic carbon assimi-
lation pathways (unless there is a free source of hydrogen) and that 
the reductive TCA cycle is the most efficient way of generating 
biomass from solar energy. However, the reductive TCA cycle is 
only marginally more efficient than the Calvin–Benson–Bassham 
cycle (25.3 and 24.9% efficiency, respectively, where efficiency is 
calculated as the heat of combustion of biomass divided by the 
total amount of energy used to create biomass).

The calculation of theoretical optimal yields of metabolic net-
works is relatively straightforward from flux-balance models, but 
more biologically informed assessments of metabolic efficiencies 
can be made by comparison of computed optimal flux distribu-
tions against those that actually occur. Two studies have found 
that flux-balance models can replicate experimentally determined 
flux distributions in heterotrophic Arabidopsis cells (Williams et al., 
2010) and B. napus seeds (Hay and Schwender, 2011b). In both of 
these studies objective functions were used that equate to carbon 
conversion efficiency: minimization of total intracellular flux or 
minimization of substrate consumption, per unit biomass pro-
duced. The fact that these objective functions produce flux solutions 
that match the measured in vivo flux distributions suggests that the 
metabolic network in these tissues is functioning close to optimal 
carbon conversion efficiency. A similar conclusion can be reached 
from a flux-balance model of barley seed in which maximization 
of growth rate for a fixed substrate-consumption rate was able to 
predict the growth rate of barley seeds (Grafahrend-Belau et al., 
2009). Maximization of growth (biomass) for a fixed amount of 
substrate is effectively a maximization of molar yield (Schuster 
et al., 2008). In other words, this objective function is closely related 
to objective functions that minimize substrate consumption or 
overall intracellular flux for a fixed biomass output.
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summary
In summary, flux-balance modeling of plant metabolic networks 
provides an important complement to 13C-based MFA and an 
alternative to smaller scale mechanistic models based on enzyme 
kinetics. While flux-balance modeling has its limitations, stemming 
from the underdetermined nature of the problem and the lack of 
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contribution to whole-plant metabolism while not growing at all. 
Thus, the growth-based objective functions that currently tend to 
dominate flux-balance modeling would not be appropriate. On the 
other hand, differentiation and secondary growth can occur after 
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careful consideration of objective functions and constraints that can 
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scale will surely be necessary (Pramanik and Keasling, 1997). 
Computational approaches, such as dynamic FBA (Mahadevan 
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models to be concatenated along a developmental time axis.
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such sophisticated metabolic models, it is worth establishing at the 
outset the type of biological insights that might be expected from 
the approach. As we have already discussed, flux-balance modeling 
can highlight non-intuitive metabolic routes that may be worthy 
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can also be a useful means of predicting changes in flux under 
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yield limits and energetic efficiencies of the metabolic networks 
under consideration.
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