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Using a series of multiplexed experiments we studied the quantitative changes in protein
abundance of three Australian bread wheat cultivars (Triticum aestivum L.) in response
to a drought stress. Three cultivars differing in their ability to maintain grain yield during
drought, Kukri (intolerant), Excalibur (tolerant), and RAC875 (tolerant), were grown in the
glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins
were isolated from leaves of mature plants and isobaric tags were used to follow changes
in the relative protein abundance of 159 proteins.This is the first shotgun proteomics study
in wheat, providing important insights into protein responses to drought as well as iden-
tifying the largest number of wheat proteins (1,299) in a single study. The changes in the
three cultivars at the different time points reflected their differing physiological responses
to drought, with the two drought tolerant varieties (Excalibur and RAC875) differing in their
protein responses. Excalibur lacked significant changes in proteins during the initial onset
of the water deficit in contrast to RAC875 that had a large number of significant changes.
All three cultivars had changes consistent with an increase in oxidative stress metabolism
and reactive O2 species (ROS) scavenging capacity seen through increases in superoxide
dismutases and catalases as well as ROS avoidance through the decreases in proteins
involved in photosynthesis and the Calvin cycle.
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INTRODUCTION
Abiotic stresses (e.g., drought, heat, and salinity) are the major
cause of grain yield loss, upward of 50% (Boyer, 1982), and hence
have significant impact on our capacity to meet the food demands
of an ever increasing global population (Tester and Langridge,
2010). A common feature of these abiotic stresses is a water deficit
that results in a complex cellular and physiological response in
plants. Generally photosynthesis is reduced under a water deficit
either through stomatal closure or metabolic impairment (Reddy
et al., 2004) and changes in mitochondrial respiration and the
photosynthetic electron transport lead to the generation of highly
toxic reactive O2 species (ROS) such as superoxide and perox-
ides, that cause chemical damage to DNA and proteins leading
to serious effects on cellular metabolism (Mittler, 2002). Plants
have evolved several strategies to deal with ROS, including avoid-
ance such as anatomical adaption, suppression of photosynthesis
and photosystem (PS), and antenna modulations, ROS scavenging
through the production of chemical antioxidants such as ascorbate
and glutathione, and enzymes such as peroxidases and superox-
ide dismutases (SODs; Chaves et al., 2003; Mittler, 2006). Another
adaptive mechanism to deal with drought is to maintain turgor
pressure by the production of osmolytes, such as proline, glycine
betaine, and trehalose that can also provide secondary protec-
tive effects such as protecting proteins from unfolding (Hare et al.,
1998). Additionally, drought responsive proteins such as dehydrins

and heat shock proteins are produced to protect the intracellular
metabolic machinery (Wang et al., 2003).

The advent of genomic technologies has now also defined a
complex series of interacting pathways/networks controlled by
transcription factors (e.g., DREB1, AREB, and NF-YB; Yang et al.,
2010). Many of the signaling pathways are known to be regu-
lated through post-translational modifications of proteins, pri-
marily phosphorylation, and have therefore lead to other “omics”
(proteomics and metabolomics) being applied to attempt to
understand the complex cellular responses.

Southern Australia has a Mediterranean-type climate, with suf-
ficient rainfall in winter for plant growth and intermittent rainfall
in spring during the growing season. Izanloo et al. (2008) designed
a glasshouse pot experiment with cyclic drought treatment to
mimic these field conditions. The experiments analyzed the mor-
phological and physiological responses of three wheat cultivars;
Kukri (intolerant), Excalibur and RAC875 (both tolerant), that
differ in their ability to maintain grain yield under drought condi-
tions. The two tolerant cultivars differ in their drought tolerance
mechanisms, with Excalibur showing a higher osmotic adjustment
(OA) potential, low ABA content, higher stomatal conductance,
and rapid recovery after stress compared to RAC875. In contrast,
cultivar RAC875 stores more water-soluble carbohydrates in the
stem and the leaf morphology is better adapted to minimizing
water loss due to waxier and thicker leaves. To build on the Izanloo
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et al. (2008) study we used a similar cyclic drought treatment with
the same three cultivars, adopting a proteomics profiling approach
to monitor protein changes.

There have been several proteomic studies in wheat during
drought stress (Hajheidari et al., 2007; Caruso et al., 2009; Peng
et al., 2009; Kamal et al., 2010; Bazargani et al., 2011; Yang et al.,
2011), all using 2D gel-based methods. These studies have iden-
tified a small sub-set of proteins that are drought responsive,
including 77 (Yang et al., 2011), 33 (Kamal et al., 2010), and 57
(Hajheidari et al., 2007) in grains, 82 in stem (Bazargani et al.,
2011), 21 in the first leaf (Caruso et al., 2009), and 49 and 30
in root and leaf, respectively (Peng et al., 2009). Recent advances
in proteomics have allowed for large numbers of proteins to be
identified using shotgun style approaches in plants (Oeljeklaus
et al., 2009). These have not been applied to wheat due to the
lack of genomic sequence information and the daunting task
of protein identification from peptides in a hexaploid organism.
We present to our knowledge the first shotgun proteomics study
undertaken in wheat, resulting in some important insights into
the protein response of wheat plants to drought stress as well

as identifying the largest number of wheat proteins in a single
proteomics experiment.

MATERIALS AND METHODS
PLANT MATERIAL
Cyclic drought experiments were conducted in growth room with
a refrigerated cooling system at the Australian Centre for Plant
Functional Genomics (ACPFG), the University of Adelaide, Aus-
tralia, essentially as described by Izanloo et al. (2008). Three
Australian wheat cultivars (Triticum aestivum L. cv Kukri, Excal-
ibur, and RAC875) were grown in watertight bags containing 6 kg
of dried soil collected from the field at Roseworthy Agricultural
campus, University of Adelaide and mixed with Waikerie sand
(50/50), basal nutrients were added at the start of the experiment
as described by Izanloo et al. (2008). Plants were grown at 16˚C
day/4˚C night for the first 4 weeks, 17˚C day/6˚C night for the
next 4 weeks then 23˚C day/10˚C night for the remainder of the
experiment [see Table 1 from Izanloo et al. (2008) for a detailed
description]. Relative humidity was maintained at 40–50% during
the day and at approximately 80% during the night cycle. There

Table 1 |The data fromTable S2 in Supplementary Material of the 159 proteins identified by iTRAQ as changing during drought stress are

summarized according to functional categories, increases indicated by ↑ in red, decreases indicated by ↓ in green.

Functional category WS WP1 WP2 RW

Excal Kukri RAC Excal Kukri RAC Excal Kukri RAC Excal Kukri RAC

Amino acid metabolism (2) 1 ↑ 1 ↑
2 ↓ 1 ↓

Calvin cycle (12) 1 ↑
2 ↓ 11 ↓ 8 ↓ 12 ↓ 6 ↓ 5 ↓ 1 ↓ 6 ↓ 5 ↓

Cell redox homeostasis (16) 1 ↑ 1 ↑ 4 ↑ 2 ↑ 4 ↑ 4 ↑ 6 ↑ 5 ↑ 7 ↑ 6 ↑ 4 ↑ 6 ↑
1 ↓ 4 ↓ 1 ↓ 3 ↓ 2 ↓ 1 ↓

Glycolysis or gluconeogenesis (12) 1 ↑ 1 ↑ 3 ↑ 3 ↑ 8 ↑ 2 ↑ 1 ↑
4 ↓ 3 ↓ 1 ↓

Metabolic process (14) 1 ↑ 1 ↑ 3 ↑ 1 ↑ 3 ↑ 4 ↑ 1 ↑ 2 ↑ 2 ↑ 4 ↑
1 ↓ 1 ↓ 2 ↓ 2 ↓ 1 ↓ 1 ↓ 1 ↓ 2 ↓ 1 ↓ 1 ↓

Photorespiration (12) 1 ↑ 4 ↑
1 ↓ 5 ↓ 6 ↓ 6 ↓ 1 ↓ 4 ↓ 1 ↓ 1 ↓

Photosynthetic machinery (22) 5 ↑ 4 ↑ 2 ↑ 3 ↑
1 ↓ 3 ↓ 2 ↓ 1 ↓ 8 ↓ 2 ↓ 8 ↓ 10 ↓ 10 ↓ 7 ↓ 7 ↓ 5 ↓

Protein degradation (2) 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑
1 ↓

Protein folding (10) 2 ↑ 2 ↑ 2 ↑ 1 ↑ 4 ↑ 8 ↑ 3 ↑ 1 ↑ 2 ↑
1 ↓ 4 ↓ 1 ↓ 2 ↓ 2 ↓

Response to stress (8) 2 ↑ 2 ↑ 4 ↑ 4 ↑ 3 ↑ 2 ↑ 2 ↑ 3 ↑ 3 ↑ 3 ↑ 2 ↑ 3 ↑
1 ↓ 1 ↓ 2 ↓ 1 ↓ 3 ↓ 1 ↓

Structural (1)

Translation (11) 2 ↑ 3 ↑ 2 ↑ 1 ↑ 3 ↑ 2 ↑ 1 ↑ 3 ↑
1 ↓ 2 ↓ 1 ↓ 1 ↓ 1 ↓ 2 ↓ 3 ↓ 2 ↓ 2 ↓

Transport (10) 1 ↑ 4 ↑ 2 ↑ 3 ↑ 2 ↑ 2 ↑ 4 ↑
2 ↓ 1 ↓ 4 ↓ 1 ↓ 6 ↓ 5 ↓ 4 ↓ 2 ↓ 4 ↓ 4 ↓

Unknown (27) 3 ↑ 1 ↑ 8 ↑ 2 ↑ 9 ↑ 7 ↑ 6 ↑ 9 ↑ 3 ↑ 4 ↑ 5 ↑
3 ↓ 4 ↓ 3 ↓ 4 ↓ 3 ↓ 1 ↓ 2 ↓ 8 ↓ 2 ↓ 3 ↓

Total (159) 7 ↑ 4 ↑ 31 ↑ 13↑ 30 ↑ 10 ↑ 31 ↑ 25 ↑ 35 ↑ 39 ↑ 17 ↑ 25 ↑
5 ↓ 7 ↓ 43 ↓ 11 ↓ 39 ↓ 10 ↓ 43 ↓ 23 ↓ 30 ↓ 28 ↓ 23 ↓ 22 ↓
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were two watering regimes, control plants were watered to field
capacity daily (determined by weighing bags) and drought-treated
plants were watered to field capacity daily until emergence of the
first flag leaf and a drought treatment was applied by gradually
reducing the quantity of water added each day until the least toler-
ant cultivar (Kukri) displayed wilting symptoms. Plants were then
re-watered to field capacity and left to dry (without daily watering)
until the least tolerant cultivar (Kukri) displayed wilting symptoms
when they were again re-watered (Figure 1). Plant water status was
monitored by measuring leaf relative water content (RWC) of all
cultivars over the course of the experiment. RWC was measured
on the flag leaf by the standard method (Barrs and Weatherley,
1962) as described in Izanloo et al. (2008). Mature leaves were
collected from five plants for both control and drought-treated
plants at 2 pm on days 5, 14, 24, and 25 after the beginning of
the drought treatment. The day 5 samples are designated as water
stressed (WS), day 14 is the first wilting point (WP1), day 24 is
the second wilting point (WP2), and day 25 is after re-watering
(RW). The leaves from the five plants were pooled for protein
analysis.

PROTEIN ANALYSIS
Samples were ground in liquid nitrogen and TCA precipi-
tated according to Damerval et al. (1986). Protein pellets were
re-suspended in 8 M urea, an aliquot of each was diluted to 1 M
urea and protein concentrations were estimated using the Bradford

FIGURE 1 | Schematic diagram of watering regime for wheat cyclic

drought experiment. Abbreviations: WS, water stressed at day 5; WP1,
first wilting point of intolerant cultivar at day 14; WP2, second wilting point
of intolerant cultivar at day 24; and RW, re-watered at day 25.

assay (Bio-Rad, Hercules, CA, USA) with BSA as a standard. 100 μg
of protein from each sample was used for digestion and labeled in
four batches (Figure 2) with the iTRAQ 8plex reagents (AB Sciex,
Foster City, CA, USA) following the manufacturers protocol. A
reference sample, containing an aliquot of each of the 24 samples
was included in each batch to enable cross batch comparison. After
pooling labeled samples into batches, removing isopropanol under
vacuum, and adjusting pH to <3 with neat formic acid, peptides
were passed over a C18 SepPak® Plus cartridge (Waters, Milford,
MA, USA). Cartridges were initially washed with 10 mL of 0.1%
formic acid in 60% acetonitrile, equilibrated with 10 mL of 0.1%
formic acid, peptides were bound, then washed with 10 mL 0.1%
formic acid and eluted with 2 mL of 0.1% formic acid in 60%
acetonitrile. Peptides were then concentrated under vacuum to a
volume of approximately 100 μl. The concentrated tryptic pep-
tides were separated on a PolySULFOETHYL Aspartamide SCX
column (4.6 mm × 200 mm, 5 μm, 300 Å, PolyLC Inc., Columbia,
MD, USA) attached to an Agilent 1100 series HPLC system (Agilent
Technologies, Palo Alto, CA USA) with the following separation
gradient: buffer A (25% (v/v) acetonitrile in 5 mM phosphate
buffer, pH 3) for 10 min, then up to 100% buffer B (300 mM
potassium chloride, 25% (v/v) acetonitrile in 5 mM phosphate
buffer, pH 5) over 30 min at a flow rate of 0.7 mL/min with 0.5 min
fractions being collected in a 96-well plate.

Fractions collected from 16 to 45 min from SCX-HPLC were
reduced under vacuum and re-suspended in 0.1% formic acid
(60 μL), filtered through a minisart membrane (0.2 μm; Sartorius
Stedim Biotech, Aubagne, France) and one-tenth of each fraction
was loaded onto a reversed-phase pre-column (300 μm × 5 mm
Zorbax 300SB-C18; Agilent Technologies, Palo Alto, CA, USA)
attached to a Shimadzu Prominence nano LC system (Shimadzu
Corporation, Kyoto, Japan). The pre-column was washed with
0.1% formic acid in 5% acetonitrile for 15 min before plac-
ing in-line with a 75-μm i.d. × 150-mm Zorbax 300SB-C18
(Agilent Technologies, Palo Alto, CA, USA) reversed-phase col-
umn. Peptides were eluted using a gradient of 5–65% (v/v)
acetonitrile in 0.1% formic acid over 60 min, at a flow rate
of 0.25 μL min−1. Peptides were analyzed via electrospray ion-
ization (ESI) on a QSTAR Elite hybrid quadrupole time-of-
flight mass spectrometer (AB Sciex, Foster City, CA, USA). Each
SCX-HPLC fraction was chromatographed and analyzed five
times.

The MS was operated in the positive ion mode, ion source volt-
age of 2,200 V, using 10 μm uncoated SilicaTips™(New Objective,

FIGURE 2 | Schematic diagram of iTRAQ labeling for wheat cyclic drought experiment. Abbreviations: E, Excalibur; K, Kukri; R, RAC875; C, well-watered
controls; D, cyclic drought-treated samples.
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Woburn, MA, USA). Analyst® QS 2.0 software (AB Sciex, Foster
City, CA, USA) was used to collect data in a data-dependent acqui-
sition mode for the three most intense ions fulfilling the following
criteria: m/z between 450 and 2,000; ion intensity 40 counts; and
charge state between +2 and +5. After MS/MS analysis, these
ions were dynamically excluded for 18 s, using a mass tolerance of
50 mDa. MS scans were accumulated for 0.5 s, and MS/MS scans
were collected in automatic accumulation mode for a maximum
of 2 s. Mass and charge state-dependent rolling collision energy
was used and the MS instrument was calibrated daily with [Glu]-
fibrinopeptide B (Sigma-Aldrich, St. Louis, MO, USA).

PROTEIN IDENTIFICATION
Peak lists from the MS/MS spectra were made using Protein-
Pilot software version 2.0.1 (AB Sciex, Foster City, CA, USA).
The peak lists were searched against a six-frame translation of the
July 2008 release of the Wheat Gene Index (V11.0, DFCI) using
MASCOT 2.06 (Perkins et al., 1999) and the Paragon™Algorithm
contained within ProteinPilot software version 2.0.1 (AB Sciex,
Foster City, CA, USA). The MASCOT parameters were: enzyme:
trypsin, fixed modifications: iTRAQ8plex (N-term); iTRAQ8plex
(K); Methylthiol (C), variable modifications: iTRAQ8plex (Y), MS
peptide tolerance: 0.25 Da, MS/MS tolerance: 0.15 Da, number of
missed cleavages: up to 1. The Paragon™Algorithm parameters
were: sample type: iTRAQ 8plex (peptide labeled); Cys Alkylation:
MMTS; Digestion: Trypsin; Instrument type: QSTAR ESI; Search
effort: Thorough ID. The outputs from both search algorithms
were combined and only peptides with a P < 0.05 in both search
algorithms were reported, this corresponded to a minimum mas-
cot ion score of 42. Peptides were then used to research the database
using KNIME (Berthold et al., 2008) to find all proteins contain-
ing any of the peptides, with the constraint that they must be fully
tryptic. The list was then reduced to a minimum list of proteins by
selecting only those that contained two or more peptides and only
keeping one of the proteins where more than one protein matched
the same set of peptides; I and L were treated as the same amino
acid. The false discovery rate based on a randomized version of the
six-frame translation of the July 2008 release of the Wheat Gene
Index (V11.0, DFCI) database searched with batch 1 data is <1%.

Protein function was determined by performing a BLAST
search of the SwissProt database (August 2010) using the EBI WU-
Blast 2.0 web service1 with an e-value cutoff of 1e-5. Sequences
which satisfy this constraint were then subject to QuickGO analy-
sis2 to identify available function for the reported BLAST hits.
The 159 proteins with iTRAQ quantitation were checked manu-
ally using the NCBI Blast server3, ExPASy Proteomics Server4 and
available literature.

RELATIVE QUANTIFICATION
It is not possible with the current publicly available sequence infor-
mation to be certain of the uniqueness of a peptide, therefore
the requirement that a peptide be unique to be used for protein

1www.ebi.ac.uk/Tools/webservices/services/wublast
2www.ebi.ac.uk/QuickGO
3www.ncbi.nlm.nih.gov
4http://kr.expasy.org/enzyme

quantification was relaxed. Peptides that are shared between pro-
teins were only included in the quantitative information for the
protein that had the most number of assigned peptides, insuring
that a peptide was then only used once for quantification. Although
proteins have been assigned quantitative information, those data
could also have resulted from a change in a group of proteins with
similar sequences.

The reporter ion peak areas generated in ProteinPilot were
exported to KNIME and used for quantification, following simi-
lar calculations used in the Libra module in the trans-proteomic
pipeline (Pedrioli et al., 2004) and previously applied in Rao et al.
(2010), with some changes. Briefly, any peptide with a reporter
ion peak area of less than 20 was removed from quantification.
When a peptide was detected more than once, the peak area for
each reporter ion was summed, each peptide was then normalized
by the sum of its channel intensities (113, 114, 115, 116, 117, 118,
119, and 121). Peptides were ignored when the normalized pep-
tide value was more than 2 SDs from the calculated mean of the
protein the peptide matched to. The mean was then calculated for
proteins with three or more peptides that fulfilled the above cri-
teria. The time points were normalized to the reference and again
by the average protein ratio for each time point. A change was
considered significant if it was greater than 1.3-fold with less than
15% SE.

RESULTS
MONITORING THE DROUGHT STRESS REGIME
Under well-watered conditions all three wheat cultivars main-
tained leaf RWC of greater than 94% and showed little variation
either between cultivars or during the growth cycle of the exper-
iment. In contrast, the RWC of the three cultivars varied during
the cyclic drought experiment (Figure 3). The tolerant variety,
RAC875, maintained the highest RWC and had the least signifi-
cant water loss. At the WP1 RAC875 had a considerably higher
RWC (68%) compared to both Excalibur and Kukri that are simi-
lar with 50 and 54%, respectively. However, at the WP2, Excalibur
retains considerably more water than Kukri and is now more sim-
ilar to RAC875. Unlike the two tolerant cultivars the RWC of
Kukri at WP2 is not significantly different from WP1. After re-
watering (RW) the RWC of all cultivars have returned to control
(well-watered) levels.

PROTEOMICS
Proteomic profiling was used to monitor changes in response
to cyclic drought conditions in three wheat cultivars; RAC875
(drought tolerant), Excalibur (drought tolerant), and Kukri
(drought intolerant), with differing tolerance based on grain yield
(Izanloo et al., 2008). Using a 2D-LC-MS/MS approach 5,125 pep-
tides were identified, matching 22,812 accessions in the Wheat
Gene Index (V11.0, DFCI), this list was reduced to a minimum set
of 1,299 proteins (Table S1 in Supplementary Material) with two
or more fully tryptic peptide matches to be described. The lack of
a genome sequence for wheat and the ploidy (hexaploid) of these
cultivars created a significant challenge for protein identification
from a shotgun proteomic approach, with only 10% of the spec-
tra matched to a peptide. Previous studies performed in rice using
the same conditions and instrument, matched approximately 30%
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FIGURE 3 | Relative water content (RWC) of flag leaf. Data

represents the mean of 5 biological replicates, plus/minus the

SD. WS, water stressed at 5 days; WP1, wilting point 1 for intolerant
cultivar at day 14; WP2, wilting point 2 for intolerant cultivar at day 24;

and RW, re-watered at day 25. Control plants were not measured at
day 25 but are assumed to mirror results of controls from other
sampling time points where values remained constant and greater
than 90%.

of the spectra (Rao et al., 2010). The minimum set of 1,299 pro-
teins that were described by the set of peptides identified is likely
an underestimation of the total number of proteins due to the
inability to separate all homologs and homeologs using peptide
sequences and the fact that a minimum of two peptide matches
was specified to ensure a positive identification. These proteins
were assigned to different functional categories (Figure 4A) and
included, in descending order: metabolic process (12%); cell redox
homeostasis, translation, and transport (7% each); photosynthetic
machinery (6%); response to stress and protein folding (4% each);
Calvin cycle, glycolysis or gluconeogenesis, and protein degra-
dation (3% each); amino acid biosynthesis, transcription, and
photorespiration (2% each); structural (<1%); with the largest
category of unknowns (38%).

The iTRAQ tagging system was used for relative quantifica-
tion, with 159 proteins having relative quantification informa-
tion across all time points (Table S2 in Supplementary Mate-
rial). The 159 proteins could be classified into 14 functional
categories (Figure 4B): photosynthetic machinery (14%); cell
redox homeostasis (10%); metabolic process (9%); photores-
piration (8%); glycolysis or gluconeogenesis (8%); translation
and Calvin cycle (7% each); transport and protein folding (6%
each); response to stress (5%); protein degradation, amino acid
biosynthesis and structural (1% each), and unknowns (17%).
Unsurprisingly, the quantitative experimental approach ensured
an under-representation of the low abundance (e. g., transcription
factors) and membrane proteins. Although the extraction method
is biased toward hydrophilic proteins some hydrophobic proteins
were detected in the iTRAQ results; thus the biased nature of the
extraction method could have added some variation to the iTRAQ
data. The iTRAQ results in Table S2 in Supplementary Material
are summarized in Table 1; Figure 5. The initial response of the
three wheat cultivars to drought is distinctly different (Figure 5).

FIGURE 4 | Pie charts of (A) all identified proteins (1,299) and (B)

proteins with iTRAQ data (159) divided into functional categories.
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FIGURE 5 | Summary of iTRAQ identified protein changes fromTable S2

in Supplementary Material. The number of protein changes at (A) WS, (B)

WP1, (C) WP2, and (D) RW. Red indicates an increase and green indicates a
decrease. The scale indicates the number of proteins changing.

RAC875 (DROUGHT TOLERANT)
RAC875 responded early to a moderate water stress (RWC 87%)
with 74 significant protein changes compared to Excalibur and
Kukri with 12 and 11 significant changes, respectively, at WS. The
early response in RAC875 resulted in down regulation of the Calvin
cycle proteins under water stress as 11 out of the 12 proteins in
that functional category significantly decreased compared to the
well-watered controls, with the largest protein (Rubisco large sub-
unit) decrease at this time point (2.3-fold) also occurring within
this category. Decreases were also seen in glycolysis or gluconeoge-
nesis, amino acid metabolism, and photorespiration. There were
no changes in the structural group and the other functional cat-
egories had mixed responses. The largest increase in RAC875 in
response to the cyclic drought treatment occurred at this early time
with a 3.3-fold increase in catalase from the cell redox homeosta-
sis category. At WP1 there were only 20 significant changes in the
RAC875 treated samples compared to the well-watered controls.
Although there were a lot fewer changes and the amplitude of the
changes were not as large, the changes are almost the opposite of
WS. There were significant increases in protein levels in the Calvin
cycle, glycolysis or gluconeogenesis, photorespiration, metabolic
processes, and cell redox homeostasis, decreases in photosynthetic
machinery, transport, translation, and the unknown proteins and
a mixed response in the response to stress protein category.

At WP2, RAC875 once again had a large number (65) of sig-
nificant changes and the largest protein decrease (5.4-fold) in this
cultivar in the photosystem I subunit VII protein from the pho-
tosynthetic machinery category. The protein responses include
significant decreases in the Calvin cycle, photorespiration, and the
photosynthetic machinery, and increases in amino acid metabo-
lism, glycolysis or gluconeogenesis, protein degradation, protein
folding, and translation. Both increases and decreases were seen
in cell redox homeostasis, metabolic processes, response to stress,
transport, and unknowns, although the majority of the changes in
cell redox homeostasis, response to stress, and the unknown pro-
teins were increases. After re-watering, there were fewer changes
with 47 significant changes, however, the trends are the same, apart
from no longer seeing any changes in amino acid metabolism.

EXCALIBUR (DROUGHT TOLERANT)
Excalibur is much slower to respond to water stress at the protein
level than RAC875. At WS, Excalibur had very few (12) signif-
icant changes in treated samples compared to the well-watered
controls. The significant increases were in cell redox homeostasis,

response to stress, transport, and the unknown proteins. The sig-
nificant decreases in response to drought were one in each of the
metabolic processes, photorespiration, photosynthetic machin-
ery, protein folding, and translation. The largest protein change
occurred in the dehydrin COR410 with a 2.1-fold increase in the
response to stress category. At WP1, Excalibur has 24 significant
changes in response to drought and larger protein fold changes.
The largest changes were a 4.3-fold decrease in the photosystem
I subunit VII and a 3.3-fold increase in the dehydrin COR410.
At this time point there are mixed responses to drought in cell
redox homeostasis, metabolic processes, response to stress pro-
teins, and the unknowns. Significant increases are seen in glycolysis
or gluconeogenesis, protein degradation, and protein folding and
decreases were seen in transport, translation, and photosynthetic
machinery.

At WP2 Excalibur had a larger number of proteins respond-
ing (74) to drought than at WP1. At this time point (WP2) there
is a large coordinated decrease in the Calvin cycle proteins with
all of the observed proteins decreasing, five of which, decreased
by more than two-fold. Decreases also occurred in photorespira-
tion and mixed responses were seen for the other categories apart
from protein degradation and amino acid metabolism where an
increase occurred in both and two response to stress proteins.
The majority of responses in the photosynthetic machinery and
transport were decreases and the majority of the increases were
in cell redox homeostasis, glycolysis or gluconeogenesis, metabolic
processes, and the unknown proteins. Within the cell redox home-
ostasis category the Cu/Zn superoxide dismutase and the catalase
were both more than 2.5-fold higher than the controls. As with
the other tolerant cultivar RAC875, Excalibur’s largest decrease
(5.4-fold) occurred in the photosystem I subunit VII protein in
the photosynthetic machinery category.

At RW, Excalibur had 67 significant changes, slightly less than
it had at the WP2 (74). Unlike the other tolerant cultivar RAC875,
the changes at RW in Excalibur are different to WP2. There is
no longer a large decrease in the Calvin cycle proteins; there is
only one decrease. There is a large increase in glycolysis or glu-
coneogenesis with 8 out of 11 proteins significantly increasing.
There are increases in photorespiration, protein degradation, and
cell redox homeostasis. A mixed response is seen in metabolic
processes, photosynthetic machinery, response to stress, trans-
lation, transport, and the unknown proteins, the majority of
proteins in photosynthetic machinery, and the unknown proteins
decrease.
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KUKRI (INTOLERANT)
Kukri had a more intermediate number of proteins responding
in comparison to the two tolerant cultivars. At WS it had 11 sig-
nificant changes, peaking at 69 significant changes in response to
drought at WP1 and then decreasing to 48 and 40 at WP2 and
RW, respectively. At WS there are decreases in the Calvin cycle,
metabolic processes, and photosynthetic machinery. Significant
increases were in the response to stress proteins and the unknown
proteins. There was a mixed response in cell redox homeostasis
with one increase and one decrease. The largest changes occurred
in the catalase (2.1-fold increase) and the dehydrin COR410 (2.5-
fold increase). At WP1 there is a large decrease in the Calvin
cycle with 8 out of the 12 proteins decreased, the largest decrease
being a 2.3-fold in the Rubisco large subunit. A decrease was also
seen in glycolysis or gluconeogenesis, photorespiration, and amino
acid metabolism and increases in the response to stress proteins,
where the largest increase in the entire dataset occurred, with
a 4.3-fold increase in the dehydrin COR410. Mixed responses
were seen in all other categories apart from amino acid metab-
olism, protein degradation, and the structural proteins where
there were no changes. The majority of proteins in the metabolic
process, translation, and the unknown proteins increased and the
majority of proteins in photosynthetic machinery and transport
decreased.

At WP2, Kukri has 48 significant changes compared to the con-
trols representing a substantial decrease from WP1 (69). At WP2
there is a decrease in the Calvin cycle proteins (6), although not
as many as at WP1 (8), decreases also occurred in the photosyn-
thetic machinery proteins and one decrease in photorespiration.
There was an increase in proteins in cell redox homeostasis, meta-
bolic processes, protein folding, response to stress proteins, and
translation. There were mixed responses to drought treatment
in transport and unknown proteins, although the majority are
increases in the unknowns and decreases in the transport cate-
gory. At RW the number of significant changes in Kukri is similar
to WP2 with 40 significant changes and the trends are very similar.

DISCUSSION
By the completion of the drought regime RAC 875 (tolerant) had
the most number of protein changes (206) with Excalibur (toler-
ant) intermediate (177) and Kukri (intolerant; 168) the least. These
are surprisingly similar total numbers (18% variation between the
largest and smallest) given the morphological and physiological
differences between these cultivars (Izanloo et al., 2008). Unsur-
prisingly, the proteins and their direction (up-/down-regulated)
and the amplitude of change differed significantly between vari-
eties. Excalibur is the slowest cultivar to respond in terms of the
number of significant protein changes, increasing from 12 to 24 to
74 over the first three time points (see Table 1; Figure 5). At WS,
RAC875 had the largest number of significant protein changes,
followed by Kukri at WP1 and finally Excalibur at WP2. One pos-
sible explanation is that the cultivar Excalibur, known to have a
higher initial OA potential than the other cultivars (Izanloo et al.,
2008), allows this cultivar to maintain cellular function for longer
under drought conditions before needing to respond (Morgan,
1980). Although at this stage it cannot be fully ruled out that the
maturity differences between Excalibur and the other two cultivars

also influenced differences for OA (Izanloo et al., 2008). However,
this would not explain the large number of significant protein
changes initially observed in RAC875 that is known to have a
higher OA potential than Kukri (Izanloo et al., 2008). It does,
however, suggest that the cultivar RAC875 has the highest capacity
of the three cultivars for a cellular protein response to drought.
In general we observed an increase in proteins involved in ROS
scavenging and a down regulation of proteins involved in photo-
synthesis and the Calvin cycle, consistent with avoidance of ROS
generation in all three cultivars. Known drought responsive pro-
teins, including dehydrins, were also significantly up-regulated.
The changes observed are discussed under the major functional
categories reflecting metabolism.

PHOTOSYNTHESIS
During photosynthesis, light energy absorbed by the photosyn-
thetic pigments in the chloroplasts is converted to chemical energy
through the photosynthesis machinery with this chemical energy
used for CO2 fixation in the Calvin cycle. Under a water deficit,
the CO2 concentration in leaves decreases due to stomatal closure
(Chaves, 1991; Kaiser and Kappen, 1997) leading to a correspond-
ing decrease in the activities of enzymes involved in Calvin cycle
(Chaves et al., 2002; Maroco et al., 2002). There were 12 pro-
teins involved in the Calvin cycle responding to a water stress
(Figures 4B and 5; Table 1; Table S2 in Supplementary Material).
These protein changes are consistent with those observed in the
previous physiological studies (Chaves et al., 2002; Maroco et al.,
2002), with decreases in this category of proteins in RAC875 (11
out of the 12 proteins) at WS, in Kukri at WP1 (9) and Excalibur
(12) at WP2. Despite the coordinated down regulation of proteins
involved in the Calvin cycle at WS in RAC875, at WP1 there is only
one significant change in the drought-treated plants compared to
the controls and this is an increase in the Rubisco large subunit,
perhaps indicating that at this time point there is no reduction in
the Calvin cycle compared to the controls. This could be either
due the oxygenation of the Rubisco, feeding through photores-
piration, where there was also one increase and then back to the
Calvin cycle or as with many of the other observed changes, sug-
gests an over-compensation of this cultivar to drought stress. At
WP2, five of these proteins in RAC875 are significantly decreased
again. After re-watering (RW), Excalibur had only one significant
decrease in protein levels, RAC875 had five, and Kukri six, perhaps
indicating faster recovery in Excalibur; it also has quicker stomatal
conductance recovery after re-watering (Izanloo et al., 2008).

As plants are exposed to a water deficit the absorbed light
energy through the photosynthetic pigments exceeds its rate of
consumption through the Calvin cycle (as seen in this data set
through decreases in proteins involved in the Calvin cycle), leading
to photo-damage to the photosynthetic machinery, particularly
the photosystem II (PSII) reaction center core proteins D1 and D2
(Aro et al., 1993). After the unknown proteins (discussed in section
Unknown Proteins below) the photosynthetic machinery with 22
proteins was the largest functional category to show changes. There
were 78 significant protein changes in response to cyclic drought
stress in three cultivars and four time points with a large pro-
portion (62) of these protein changes being significant decreases.
There are more decreases in proteins within the photosynthesis
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machinery category in Kukri (28) compared to the two toler-
ant cultivars, Excalibur (17) and RAC875 (19); furthermore, the
largest decrease (∼5.4-fold) in a protein was observed in this cat-
egory in both tolerant cultivars in the PS I subunit VII protein.
Plants have evolved several mechanisms to avoid damage to the
photosynthetic machinery such as antenna modulations; decreas-
ing the size of antennae to reduce the amount of absorbed light
(Eberhard et al., 2008) is one mechanism. Proteins in the anten-
nae of the photosystems are the light-harvesting complex proteins
(LHC) and in our dataset there are four LHC proteins, three of
which are significantly decreased in Kukri at the first three time
points (WS, WP1, WP2) and only two at RW, whereas in RAC875
one is decreased at WS and three at WP2 and in Excalibur all
four decreased at WP2. Other proteins changing within the pho-
tosynthesis machinery category are the extrinsic subunits of the
PSII complex, known as oxygen-evolving complex (OEC) pro-
teins, that are involved in the stabilization of the PSII complex
(Ifuku et al., 2008) and its impairment is proposed to be the rate
limiting step in the photo-damage process to the PSII (Takahashi
and Murata, 2008). Four OEC proteins were observed to change
in this dataset (PsbP, PsbQ, PsbO, and PPL a PsbP homolog), all
of which increased significantly at the WS in RAC875, at WP1 the
PsbQ and PPL increased significantly in Kukri and also WP2 in
Excalibur. Significant decreases occurred in RAC875 at WP1 in
PsbO and at RW in Kukri and the other OEC proteins, apart from
PPL, decrease significantly in Excalibur and RAC875. HCF136, a
protein that is essential for the repair and assembly of the PSII
complex (Plucken et al., 2002), decreased at WS in RAC875 and in
Kukri at WP1 whereas at RW in Excalibur it increased significantly
consistent with the other observations that repair of the PSII com-
plex occurred more rapidly in Excalibur after re-watering than in
the other two cultivars.

CELL REDOX HOMEOSTASIS
There were 16 proteins with quantitative information involved
in cell redox homeostasis (Figures 4B and 5; Table 1; Table S2
in Supplementary Material). Cell redox homeostasis is important
under water deficit as the use of the absorbed light decreases and
the energy dissipation is insufficient resulting in the formation of
ROS’ (Foyer et al., 1994). The largest change in protein levels in
this category was catalase (CAT) with an increase in response to
drought in all cultivars at all time points. CAT is essential during
stress and is thought to be responsible for the removal of excess
ROS (Willekens et al., 1997). Luna et al. (2005) showed increas-
ing CAT activity following a water deficit in wheat. We also found
three SODs, chloroplastic and cytosolic Cu/Zn-SOD, and a mito-
chondrial Mn-SOD, changing in response to drought stress in all
three cultivars. The catalytic activities of these same four enzymes
(CAT and SODs) were shown by Simova-Stoilova et al. (2009)
to remain high in wheat cultivars of differing drought tolerance
(tolerant – Yantar and Zlatitsa; sensitive – Miziya and Dobrud-
janka) upon exposure to drought but with Mn-SOD and CAT
increasing toward grain filling, especially in the drought-sensitive
varieties (Miziya and Dobrudjanka). As enzyme activities were not
measured in our study it is difficult to make direct comparisons
between the two studies other than to note that these are critical
drought response enzymes.

RAC875 (drought tolerant) had significant increases in
response to drought in three enzymes involved in detoxification
and anti-oxidant synthesis. Aldehyde dehydrogenase (ALDH) is
proposed to have a role in detoxification of toxic aldehydes from
lipid peroxidation due to the formation of ROS during drought
stress. ALDH increased significantly in both drought tolerant cul-
tivars (RAC875, at WP1 through to RW and Excalibur only at
RW) but not in the intolerant cultivar. Guo et al. (2009) showed
an increase in ALDH transcript in two drought tolerant barley
cultivars compared to a drought insensitive cultivar and trans-
genic Arabidopsis plants over-expressing ALDH had improved
tolerance to oxidative stress (Sunkar et al., 2003). Glyoxalase I,
involved in the detoxification of methylglyoxyl, has been shown to
increase under abiotic stress in plants (Yadav et al., 2005). Hajhei-
dari et al. (2007) showed a decrease in glyoxalase I protein in two
drought-sensitive wheat cultivars (Afghani and Arwand) and no
change in a drought tolerant cultivar (Khazar). Our data shows
a decrease in glyoxalase I levels at WP1 in the drought-sensitive
cultivar (Kukri) and also an initial decrease in RAC875 at WS
but it significantly increased in this drought tolerant cultivar at
WP1. Geranylgeranyl reductase also increased significantly in both
drought tolerant cultivars and in the same pattern as the ALDH.
Geranylgeranyl reductase reduces free geranylgeranyl diphosphate
to phytyl diphosphate that provides the side chain to chlorophylls,
tocopherols, and plastoquinones. In transgenic tobacco plants
transformed with the antisense geranylgeranyl reductase there was
an increased sensitivity to photo-oxidative stress (Tanaka et al.,
1999).

GLYCOLYSIS AND GLUCONEOGENESIS PROTEINS
Twelve proteins from the glycolysis and gluconeogenesis func-
tional category were shown to be changing in response to cyclic
drought stress (Figures 4B and 5; Table 1; Table S2 in Supplemen-
tary Material). Only in one cultivar, Excalibur, and at one time
point (RW) was there a clear coordinated response of proteins in
this category. Eight of the 12 proteins were significantly increased
in response to drought compared to the control, reflecting an
increased energy requirement for the quicker recovery of Excal-
ibur after re-watering consistent with the stomatal conductance
and photosynthesis responses (Izanloo et al., 2008). There were
significant changes at other time points and cultivars, although
not in a coordinated fashion.

PROTEIN FOLDING PROTEINS
There were 10 proteins in the protein folding category and eight of
these increased significantly in RAC875 at WP2, compared to four
in Kukri and only one in Excalibur (Figures 4B and 5; Table 1;
Table S2 in Supplementary Material). These proteins included
peptidyl-prolyl cis-trans isomerases and chaperonins. Peptidyl-
prolyl cis-trans isomerase activity was also found to increase in
drought tolerant sorghum cultivars compared to drought-sensitive
cultivars (Sharma and Singh, 2003). Cyclophilin 38 ensures correct
assembly and stability of PSII in Arabidopsis (Sirpio et al., 2008)
and a protein with homology to the Arabidopsis cyclophilin 38
changed significantly in RAC875 with a decrease at the WS and an
increase at WP2.
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TRANSPORT PROTEINS
There were 10 proteins that changed in response to cyclic drought
stress (Figures 4B and 5; Table 1; Table S2 in Supplementary
Material) in the transport category and over half of these were
subunits of ATPases/synthases, although not all belonging to the
same complex. All six subunits decreased in Excalibur at WP2, five
in Kukri and four in RAC875, three of these increased in Excalibur
RW and no increases were seen in the other two cultivars, consis-
tent with Excalibur’s ability to recover quicker after drought. Three
voltage-dependant anion channel proteins (VDAC) were detected
and these increased significantly initially in RAC875 at WS, Kukri
at WP1 and all three cultivars at WP2. VDAC’s are major transport
proteins located on the outer membrane of mitochondria and are
thought to regulate metabolite transport between the mitochon-
dria and the cytoplasm and have been shown to be up-regulated
in a variety of abiotic and biotic stresses (Kusano et al., 2009).

STRESS RESPONSE PROTEINS
Eight known stress responsive proteins were found to change
including the drought-induced protein SDi-6 and dehydrin
COR410 (Figures 4B and 5; Table 1; Table S2 in Supplementary
Material). Dehydrin COR410 is proposed to stabilize the plasma
membrane during freezing and dehydration stress (Danyluk et al.,
1998). This protein showed the most significant quantitative
change in response to drought stress in our experiment and it was
significantly increased in all cultivars at all time points in response
to drought with the most significant change observed in Kukri at
WS (4.3-fold). The wheat dehydrin COR410 protein when trans-
genically introduced into strawberry resulted in improved chilling
tolerance at 5˚C after previous acclimation treatment (Houde et al.,
2004). A protein similar to a drought-induced protein SDi-6 from
sunflower, increased in response to drought in RAC875 (at WS,
WP2, and RW) and in Kukri it increased significantly at all time
points and in Excalibur at all time points except it significantly
decreased at RW. The transcript level of the gene encoding the
SDi-6 protein increased in sunflower (Helianthus annuus) leaves
in response to drought in both drought tolerant and intolerant
cultivars (Ouvrard et al., 1996).

OTHER PROTEINS
There were two proteins involved in protein degradation, a
type II metacaspase and a leucine aminopeptidase, that showed
increases in response to drought especially at the later time points
(Figures 4B and 5; Table 1; Table S2 in Supplementary Material).
Proteases are thought to play an important role in metabolism
under a water deficit (Wisniewski and Zagdanska, 2001) as they
are involved in the release of amino acids for metabolism, pro-
tein activation, and degradation of damaged proteins. Type II
metacaspases are arginine/lysine-specific cysteine-dependant pro-
teases (Vercammen et al., 2004), possibly involved in programmed
cell death. Surprisingly there is a significant increase of this pro-
tease in RAC875 at WS, Excalibur at WP1 and both of these
drought tolerant cultivars at WP2. At RW the two tolerant culti-
vars are back to control levels and Kukri is significantly increased.
The early increases in a protease thought to be involved in pro-
grammed cell death in the two drought tolerant cultivars prior to
the drought intolerant cultivar could be a protective mechanism
of rapidly sacrificing some cells to ensure plant survival (Williams

and Dickman, 2008). The other protease was a leucine aminopep-
tidase that decreased in RAC875 at WS and increased in both
tolerant cultivars, RAC875, and Excalibur at RW. Aminopepti-
dases catalyze the hydrolysis of amino acids from the N-terminus
of proteins and have been proposed by Miazek and Zagdanska
(2008) to play an essential role in plant stress response through
the activation of regulatory proteins and the turnover of dam-
aged proteins. Simova-Stoilova et al. (2010) showed an increase in
aminopeptidase activity in wheat leaves in response to a drought
stress but no cultivar (cv. Pobeda, Katya, and Sadova) differences
were observed.

Two proteins involved in amino acid metabolism, both cys-
teine synthases (a cytoplasmic and a plastidic form) changed in
response to drought. There was only one significant change in the
plastidic form at WS in RAC875. The cytoplasmic cysteine syn-
thase decreased significantly in RAC875 at WS and Kukri at WP1
and then it increased significantly in the two tolerant cultivars at
WP2 but not in Kukri, the intolerant cultivar. This wheat protein,
when transformed into tobacco, made plants resistant to toxic lev-
els of hydrogen sulfide gas (Youssefian et al., 1993). In Arabidopsis
the knockout of the cytoplasmic cysteine synthase compromised
the antioxidant capacity of the cytosol (Lopez-Martin et al., 2008)
suggesting a function in maintaining the redox state of the cell, a
key mechanism for drought stress tolerance.

UNKNOWN PROTEINS
This was the largest category with 27 proteins changing in abun-
dance in response to cyclic drought stress (Figures 4B and 5;
Table 1; Table S2 in Supplementary Material). Although there
are many changes within the unknowns it is difficult to draw
any conclusions. There are two proteins that stand out, the
TC292219 as it only changed in the two tolerant cultivars and
has homology to remorin, a protein that has been implicated in
biotic stress and is thought to play a role in signal transduction
processes (Lefebvre et al., 2010). The other protein, TC280943,
has some similarity to 4-alpha-hydroxytetrahydrobiopterin dehy-
dratase increased in RAC875 (drought tolerant) at WP2. This
enzyme is thought to be involved in the recycling of oxidized
tetrahydropterins, the cofactors of aromatic amino hydroxy-
lases (AAH; Thony et al., 2000). In plants it seems that it may
have an additional metabolic role in recycling another type of
pterin, molybdenum cofactor (Naponelli et al., 2008). Naponelli
et al. (2008) showed that the activity of the xanthine dehy-
drogenase, a molybdoenzyme, was significantly reduced in Ara-
bidopsis 4-alpha-hydroxytetrahydrobiopterin dehydratase knock-
outs. Xanthine dehydrogenase is thought to be important in the
drought response, as xanthine dehydrogenase-suppressed Ara-
bidopsis plants exposed to drought have reduced growth and
enhanced cell death (Watanabe et al., 2010).

CONCLUSION
Three wheat cultivars differing in their ability to maintain grain
yield under drought conditions were studied. All three cultivars
had changes consistent with an increase in ROS scavenging capac-
ity seen through increases in SODs and CAT as well as ROS
avoidance through the decreases in proteins involved in pho-
tosynthesis and the Calvin cycle. From a previous physiological
study performed on these cultivars it was concluded that two were

www.frontiersin.org September 2011 | Volume 2 | Article 44 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Proteomics/archive


Ford et al. Wheat leaf proteomics during drought

more drought tolerant and that their mechanisms of drought
tolerance are different (Izanloo et al., 2008). Excalibur (tolerant
variety) has a high OA allowing normal cellular function dur-
ing dehydration and this was reflected in this proteomics study
through the lack of significant changes at the protein level dur-
ing the initial onset of water deficit. RAC875 (tolerant variety)
has more water-soluble carbohydrates in the stem and the leaves
are thicker and more waxed. While the anatomical adaption in
RAC875 is unlikely to be observed in protein changes a larger
number of significant protein changes at the beginning of the
water stress were observed, indicating it has the highest capac-
ity for cellular protein response as well as more increases in
proteins involved in cell detoxification than the other cultivars.
The findings from this proteomic study support the physiological
and yield data (Izanloo et al., 2008) previously reported between
the three wheat cultivars (Kukri, Excalibur, RAC875) in response
to cyclic drought stress. This highlights the importance of pro-
teomics as a complementary tool for identifying candidate genes
in abiotic stress tolerance in cereals. This study has provided
potential candidates for genetic manipulation of wheat cultivars
to enhance drought tolerance. Any such studies require valida-
tion of the protein changes by transcriptomic and biochemical

(enzyme assays) studies before the transgenic experiments are
initiated.
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