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With the development of high-throughput metabolic technologies, a plethora of primary and
secondary compounds have been detected in the plant cell. However, there are still major
gaps in our understanding of the plant metabolome. This is especially true with regards to
the compartmental localization of these identified metabolites. Non-aqueous fractionation
(NAF) is a powerful technique for the determination of subcellular metabolite distributions
in eukaryotic cells, and it has become the method of choice to analyze the distribution of a
large number of metabolites concurrently. However, the NAF technique produces a contin-
uous gradient of metabolite distributions, not discrete assignments. Resolution of these
distributions requires computational analyses based on marker molecules to resolve com-
partmental localizations. In this article we focus on expanding the computational analysis
of data derived from NAF. Along with an experimental workflow, we describe the critical
steps in NAF experiments and how computational approaches can aid in assessing the
quality and robustness of the derived data. For this, we have developed and provide a new
version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellu-
lar metabolite distributions. Furthermore, using both simulated and experimental data we
show the influence on estimated subcellular distributions by modulating important parame-
ters, such as the number of fractions taken or which marker molecule is selected. Finally,
we discuss caveats and benefits of NAF analysis in the context of the compartmentalized
metabolome.

Keywords: subcellular metabolomics, analysis workflow, computational simulations, least squares algorithms,
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INTRODUCTION
Although the main biochemical pathways in plants have been
resolved by classical biochemical approaches in the last century
(Fernie, 2007; Stitt et al., 2010a), many aspects of cellular metab-
olism and its regulatory functions are still not well understood,
mostly due to technical limitations in gathering a more holistic
insight into the cell’s biochemistry. In recent years tremendous
progress has been made in the establishment of high-throughput
methods enabling the simultaneous analysis of a multitude of
chemically diverse, small molecule metabolites from highly com-
plex compound mixtures (Fiehn, 2001; Kopka et al., 2004; Brown
et al., 2005; Pan and Raftery, 2007). Metabolomics, the compre-
hensive study of an organism’s metabolite composition, has thus
become an important tool in functional genomics and systems
biology (Fernie et al., 2004; Saito and Matsuda, 2010). It has been
widely used to study metabolic responses toward altered gene
expression (Junker et al., 2006; Mugford et al., 2009; Albinsky
et al., 2010), biotic and abiotic stresses (Kaplan et al., 2004;
Bednarek et al., 2009), to characterize genetic and metabolic diver-
sity (Schauer et al., 2006; Huege et al., 2011; Kusano et al., 2011),
and has been combined with further Omic technologies in systems
biology driven research (Kaplan et al., 2007; Hannah et al., 2010;
Jozefczuk et al., 2010). While unexpected findings have yielded

refined pathways as well as insights into their regulation and
evolution (Zeeman et al., 2004; Eisenhut et al., 2008; Bednarek
et al., 2009; Fettke et al., 2009), it has become evident that cellular
metabolism needs to be considered as a highly integrative net-
work bridging the genotype and ultimate phenotype or cellular
responses (Meyer et al., 2007; Sweetlove et al., 2008; Sulpice et al.,
2009; Stitt et al., 2010b). Even though the abovementioned studies
provided major breakthroughs in the description of biological sys-
tems, we are still lacking information concerning the temporal and
especially spatial regulation of the metabolome (Stitt and Fernie,
2003).

It is widely acknowledged that the compartmentalization of
metabolism in eukaryotic cells represents a crucial factor for meta-
bolic activity and functionality (Lunn, 2007). Consequently, the
interrelation of metabolic networks within and between compart-
ments needs to be deciphered. Whereas the subcellular localization
of enzymes can be computationally predicted (Emanuelsson et al.,
2000; Schwacke et al., 2003) or experimentally determined (Carter
et al., 2004; Heazlewood et al., 2007; Taylor et al., 2011), the analy-
sis of the subcellular localization of metabolites, the products and
substrates of these enzymes, is more challenging due to redun-
dant pathways, transport, and storage (Kruger and Von Schaewen,
2003; Büttner, 2007; Rébeillé et al., 2007; Krueger et al., 2010).
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Further hurdles for reliable metabolite determinations in subcel-
lular compartments are the fast turnover (Stitt et al., 1983; Stitt and
Fernie, 2003) and the exceptionally rapid translocation of metabo-
lites between compartments (Bowsher and Tobin, 2001; Martinoia
et al., 2007; Weber and Fischer, 2007). Because of this, methods
providing accurate information on the subcellular distributions of
multiple metabolites are still limited.

Immunohistochemistry has been utilized to analyze the local-
ization of non-protein molecules, such as cell wall polysaccharides
and amino acids, permitting the analysis of metabolite composi-
tions in compartments (e.g., Golgi, ER) which are normally not
accessible by fractionation methods (Walker et al., 2001). How-
ever, dramatic losses of metabolites have been observed during
tissue fixation which makes the interpretation of the results some-
times difficult (Peters and Ashley, 1967; Heinrich and Kuschki,
1978; Zechmann et al., 2011). Nuclear magnetic resonance (NMR)
spectroscopy facilitates the determination of in vivo metabolite
compositions in cells, tissues, and whole plants (Gout et al., 1993,
2000; Libourel et al., 2006). It requires distinct signals for the dif-
ferent compartments, which can be partly achieved by the pH
dependency of the chemical shift of some molecules like inor-
ganic phosphate, or organic and amino acids (Bligny and Douce,
2001). Compared to other spectroscopy/spectrometry methods,
NMR is relatively insensitive and thus only feasible for metabo-
lites which are highly abundant in the cell (Bligny and Douce,
2001). Genetically encoded molecular biosensors, proteins fused
to two variants of the green fluorescent protein displaying con-
formational changes and fluorescence resonance energy transfer
when a specific ligand binds, represent a promising molecular tool
for temporal and spatial analyses of in vivo metabolite dynamics
(Fehr et al., 2002; Lalonde et al., 2005; Chen et al., 2010). While
this has been successfully applied for subcellular analysis of glucose
and glutathione redox potentials (Deuschle et al., 2006; Gutscher
et al., 2008), each targeted metabolite requires a unique sensor and
therefore only a small number of metabolites might be simultane-
ously detectable in the same individual transgenic. Another widely
used technique is protoplast fractionation. It is based on the fast
purification of intact organelles through silicone oil or membrane
filters followed by rapid quenching of metabolism (Wirtz et al.,
1980; Lilley et al., 1982; Stitt et al., 1989). This method facilitates
fractionation of plastids, mitochondria, and the cytosol from a sin-
gle cell type, commonly mesophyll cells. However, digestion of the
cell wall and the purification of protoplasts might substantially
affect the metabolic state and therefore the obtained metabolite
readout and the transferability of results.

Non-aqueous fractionation (NAF) is probably the most widely
used technique to study metabolite compartmentalization, espe-
cially in plant science (Gerhardt and Heldt, 1984; Riens et al., 1991;
Farre et al., 2001; Fettke et al., 2005; Krueger et al., 2009; Yamada
et al., 2009). It separates fragments of subcellular compartments
under non-aqueous conditions where biological activities, such as
metabolite leakage, conversion, and translocation, are essentially
completely arrested (Gerhardt and Heldt, 1984). Small subcellular
particles, generated during lyophilization and ultrasonication of
ground material, are separated by their composition-dependent
density using equilibrium centrifugation in a gradient consist-
ing of two differently dense, non-aqueous solvents (for details

see Krueger et al., 2011). The abundance of metabolites and
compartment-specific markers, which are also used as anchors
to computationally estimate subcellular metabolite distributions,
are analyzed throughout the collected gradient fractions. As non-
aqueous fractionated material can be combined with a wide range
of Omic technologies, it allows the determination of subcellular
localizations for a large number of molecules including metabo-
lites and lipids (Farre et al., 2001; Weise et al., 2004; Fettke et al.,
2006; Krueger et al., 2011). In its routine application, the NAF tech-
nique allows for the separation of three distinct compartments –
the cytosol, the plastids, and the vacuole (Riens et al., 1991; Farre
et al., 2008; Krueger et al., 2009). However, it was recently shown
that the resolution power of this technique has not yet been fully
explored (Krueger et al., 2011).

As NAF results in continuous compartmental distributions due
to variable and composition-dependent particle densities, compu-
tational methods need to be employed to analyze the obtained data.
This and the interpretation of generated computational results
reflect the main challenges for experimentalists. From the compu-
tational point of view as well, this type of data analysis is mostly
underexplored.

Using both experimentally derived and simulated data, we
investigated the effects of computationally modulating parameters
important for the analysis of NAF gradients in order to address
several technically and biologically relevant questions, such as:
How many fractions are required to produce a good compartmen-
tal separation? Does the fraction number or the marker choice
influence the estimated compartmental abundances? How good
must the compartmental separation be in order to get reasonable
estimates of compartmental abundances? How accurate must an
estimate of compartmental abundances be in order to be con-
sidered valid? Taken together, the answers to these questions give
a solid theoretical basis for the planning and execution of NAF
experiments. Finally, we demonstrate and discuss alternative visu-
alizations of NAF derived data in order to efficiently integrate
additional knowledge to aid in the biological interpretation of the
obtained results.

MATERIALS AND METHODS
The following sections introduce computational terminologies,
used throughout the manuscript, denoted as italicized text along
with their definition and/or abbreviation.

EXPERIMENTAL DATA
Experimental data and associated classifications used in this
study were taken from Krueger et al. (2011). In brief, Arabidop-
sis thaliana leaf material was harvested 3 h after the onset of
light and separated using an optimized NAF protocol (Krueger
et al., 2009, 2011). A total of six fractions from three indepen-
dent gradients were analyzed using mass-spectrometry (MS) –
based metabolite profiling for primary and secondary metabo-
lites as well as lipids in total comprising 3,921 mass spectrometric
features. Three compartments, the plastids, the vacuole, and the
cytosol were unambiguously delineated, each being represented
by three compartment-specific markers. Although a clear trend
was observed, the mitochondrial compartment was not consid-
ered to be unambiguously separated from the cytosol. However,
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un-supervised clustering suggested the existence and contribution
of yet unconsidered compartments (Krueger et al., 2011).

SIMULATED GRADIENTS
All simulation studies were performed using R 2.11.1 (R Develop-
ment Core Team, 2010).

The distribution of a cellular constituent throughout a virtual
gradient was simulated by 3,000 random deviates selected from
a truncated normal distribution (Robert, 1995) in the interval
between 0 and 30 units using the package “msm” (Jackson, 2010).
Furthermore, 750 (25%) random deviates selected from a uniform
distribution in the same interval were overlaid onto the random
normal deviates to account for the fact that a cellular constituent is
usually detectable throughout the entire gradient. The entire 3,750
random deviates were binned with a window width of 0.1 units,
resulting in 300 bins. To place a simulated distribution at any bin
position within the virtual gradient the mean parameter of the
truncated normal distribution was changed from 0 to 30 in steps
of 0.1 units. The SD, as the second parameter of the truncated
normal distribution, was changed from 0.5 (as 0.0 is very unlikely
to be achieved experimentally) to 30 in steps of 0.5 units to mod-
ify the degree of enrichment reflected by the amount of a cellular
constituent observed at a certain gradient position. To simulate
a non-enriched distribution, where the abundances throughout
the gradient fractions are approximately equal, an SD of 35 and
a mean of 15 (i.e., centrally positioned within the gradient) were
used (approximately uniform distribution).

For the three-compartmental simulation model we assumed
two compartments at the terminal positions at approximately
0 and 30 units of the gradient and a third, uniformly distrib-
uted compartment. For the four- and five-compartmental models,
added compartments were positioned equidistant from each other,
with exception of the uniformly distributed compartment, and
from the terminal compartments (e.g., means of approximately
0, 10, 20, and 30 units in case of five compartments). In all sim-
ulations each compartment was represented by either 2, 3, or 5
compartment-specific marker distributions. To control the vari-
ation within compartments, the positions of markers reflecting
the same compartment were varied (marker spread, ms) around
the compartment center by shifting the means of their distrib-
ution by 0.1, 0.2 and further to 2.0 in steps of 0.2 units. Thus,
for a compartment comprising a marker spread of 1.0, the gradi-
ent distance between the two most distant markers would be 2.0
units. For all simulations the aforementioned characteristic para-
meters (SD and marker spread) were changed identically for all
compartmental distributions.

To simulate a systemic, technical, or experimental error on
the abundances throughout the collected gradient fractions, we
assume a uniform error model quantified as the normalized Man-
hattan distance (Eq. 2) between the initial (error-free) and modi-
fied (error-containing ) distributions. The error was changed from
2 to 20% in steps of 2%.

DATA ANALYSIS
The abundances of cellular constituents throughout gradient frac-
tions (fraction abundances) were expressed as percentages denot-
ing the contribution of each fraction relative to the total amount

(scaled data). Manhattan (Eq. 1) and Euclidean (Eq. 3) distances
between the fraction abundances of cellular constituents were
computed and normalized to fall within the range of 0–1 (relative
scale; Eqs 2 and 4) and then multiplied by 100 to reflect percent-
ages (percentage scale) (Krueger et al., 2011). A set of coordinates
for each cellular constituent were derived by classical multidimen-
sional scaling (CMD, Cox and Cox, 1994), such that the distances
between the fraction abundances of those constituents are approx-
imately equal to the normalized Euclidean distances. The within-
compartment cohesion (WCC) was estimated as the average of all
Manhattan distances between markers within the compartmental
clusters. The between-compartment separation (BCS) was com-
puted as the average of all Manhattan distances between markers of
different compartmental clusters. Both parameters were computed
using the package “fpc” (Hennig, 2010) on normalized Manhat-
tan distances. Silhouette information, a combined measure of the
WCC and BCS (Rousseeuw, 1987), was computed using the pack-
age “cluster” (Maechler et al., unpublished) and expressed as mean
silhouette width for a clustering (cluster solution). Pearson’s matrix
correlation [also termed normalized gamma index (Halkidi et al.,
2001) or non-parametric ANOVA using Mantel test (Sokal and
Rohlf, 1995)] were computed between the initial distance matrix
computed on fraction abundances and a binary (0, 1) matrix rep-
resenting cluster assignments. Both cluster validity indices yield
values in the interval of [−1, 1], in which larger positive values
reflect more favorable cluster solutions.

The percentage abundance of a cellular constituent in each
of the resolved compartments (compartmental abundances), were
computed on the basis of linear least squares methods with the
BestFit (v1.1) command line tool using either the best fit (BFA,
Riens et al., 1991) or non-negative least squares (NNLS, Lawson
and Hanson, 1995) algorithms. The abundances of all markers
delineating the same compartment were mean–averaged prior to
computation (compartmental center). Due to run-time perfor-
mance constraints, compartmental abundances on simulated data
were estimated using NNLS while BFA was used for experimen-
tal data. The differences in compartmental abundances estimated
using two different strategies, or on two different data sets for the
same cellular constituent (compartmental error), were expressed
as maximum error or solution error, i.e., only the maximum (iden-
tified on the absolute scale) or all observed differences among the
considered compartments were taken into account. The 5th and
95th percentile of the observed differences are given, comprising
the interval in which 90% of (non-extreme) differences lay.

The total percentage discrepancy (TPD, Krueger et al., 2011)
was used as a quality measure for the estimated compartmen-
tal abundances derived from least squares solution (LSS). If not
otherwise stated only LSS with a TPD ≤ 10% were considered in
comparisons to avoid bias in estimated parameters due to large
discrepancies between two LSSs and to their respective fraction
abundances. In some cases, thresholds to consider a LSS and
thus the compartmental abundances as sufficiently explained were
estimated as described in Krueger et al. (2011).

DATA VISUALIZATION
All figures were created with R 2.11.1 using the“graphics”(R Devel-
opment Core Team, 2010) or “lattice” package (Sarkar, 2008).
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Mean-difference (MD) plots were constructed to visualize the
agreement of results derived from two different computational
estimation strategies or on two different data sets. Generally, pos-
itive differences reflect larger estimates using strategy or data set
A, while negative differences reflect larger values using strategy
or data set B. The distribution of differences were visualized as
box plots overlaid by violin plots to depict the data density. Level
plots were generated to show the effects of two variables (x, y),
represented as a two-dimensional grid, on a third variable (z)
indicated by the coloring of every grid position. Contour lines
were added to aid interpretation. As a convention throughout this
manuscript for all constructed level plots, the values for the third
variable z are smoothly colored using blue–yellow–red, where
blue reflects a favorable measure while red reflects an unfavor-
able measure. Topological maps were created as scatter plots by
depicting the first two principal coordinates (PCo’s) derived from
CMD analysis, which explain together about 98% of the total vari-
ance of the underlying distance matrices. Triangle (or ternary)
plots were constructed to visualize the compartmental abundances
for a three-compartmental estimation strategy using the “plotrix”
package (Lemon, 2006).

EQUATIONS
Manhattan distance

dM (x , y) =
n∑

i=1

∣∣xi − yi
∣∣ (1)

Normalized Manhattan distance

dm(x , y) = dM (x , y)

200
(2)

Euclidean distance

dE (x , y) =
√√√√

n∑
i=1

(
xi − yi

)2
(3)

Normalized Euclidean distance

de(x , y) = dE (x , y)√
2 · 1002

(4)

RESULTS AND DISCUSSION
NON-AQUEOUS FRACTIONATION – DATA ANALYSIS WORKFLOW
The entire NAF procedure can be divided in experimental- and
computational-driven analyses as illustrated in Figure 1. Although
the main focus in this manuscript is targeted toward the compu-
tational analysis of NAF data, we include here, for completeness, a
brief overview of the experimental analyses as well (for details see
Krueger et al., 2011).

The experimental part encompasses the separation, discretiza-
tion, and profiling of sample material (Figure 1). After sample
processing, subcellular compartments are enriched at discrete
positions within a continuous density gradient. The gradient can
then be separated into a number of fractions of ideally equal vol-
ume for the subsequent determination of cellular constituents.

The collected gradient fractions are analyzed with respect to
both compartment-specific markers (to unambiguously desig-
nate a compartment) and cellular constituents (to estimate their
compartmental abundances) either using targeted assays or high-
throughput analytical technologies (Gerhardt and Heldt, 1984;
Fettke et al., 2005; Benkeblia et al., 2007; Krueger et al., 2009,
2011).

The computational part comprises the validation, classification,
visualization, and interpretation of the obtained data (Figure 1).
As each step consists of various tasks achievable by using a mul-
titude of computational approaches, we here only provide a short
overview for comprehension.

Validation
While the fidelity of the obtained measurements first requires an
evaluation, regardless the specific methodology employed, here
validation focuses on the evaluation of the computed compart-
mental enrichments and separation. First, defined compartments
must be delineated through the use of compartment-specific
markers, which ideally represent compartments under investi-
gation in an unambiguous manner. The enrichment of these
markers is commonly depicted as bar plots (Riens et al., 1991;
Winter et al., 1993; Farre et al., 2001) and, but less frequently,
statistically supported by pairwise comparisons (e.g., Student’s t -
test) of the fraction abundances of markers (Krueger et al., 2009,
2011). However, while this shows the compartmental enrichment,
it does not easily provide a parameter for the topological sep-
aration of all considered compartments. Normalized distances
(Eqs 2 and 4) estimated on fraction abundances can be used to
measure the separation between compartments designated using
a single or multiple markers (Krueger et al., 2011). The subse-
quent use of clustering and associated cluster validation techniques
(Halkidi et al., 2001), such as gap statistic (Tibshirani et al., 2001),
or resampling approaches (Suzuki and Shimodaira, 2006), are
powerful tools to statistically validate the cohesions within and
separation between compartments, especially if multiples markers
representing the same compartment are assayed (Krueger et al.,
2011).

Classification
The main goal of this step is to estimate the compartmental abun-
dance by computing the amount of cellular constituents in each of
the previously defined compartments. While this can be achieved
using simple linear regression for an individual compartment
(Gerhardt and Heldt,1984; Benkeblia et al.,2007),other linear least
squares algorithms are more flexible for this purpose as estimates
for all considered compartments can be computed simultaneously
which also facilitates the assessment of the overall fit quality. These
include the frequently used best fit algorithm (BFA, Riens et al.,
1991), as well the non-negative least squares algorithm (NNLS,
Lawson and Hanson, 1995). Both BFA and NNLS solve a sys-
tem of linear equations defined by the marker-resolved compart-
ments to determine the compartmental abundance by minimizing
the discrepancy between the measured and fitted fraction abun-
dances. Moreover, the iteratively (BFA), or by using the active-set
method (NNLS), estimated compartmental abundances are con-
strained and thus restricted to yield always positive (and biological
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FIGURE 1 | Simplified scheme of non-aqueous fractionation procedure and associated data analysis steps. For details see manuscript text.

meaningful) estimates. However, the summed amount over all
considered compartments does not need to equal 100% when
using NNLS (Krueger et al., 2011). While estimates of compart-
mental abundances are computationally obtained, their qualities
still need to be evaluated using the remaining associated discrep-
ancy, commonly expressed as Euclidean distance or a derivate of
it (Krueger et al., 2011).

Visualization and interpretation
A visual representation of the derived compartmentalization can
be displayed through the combination of textual and graphical for-
mats to aid in data interpretation. The choice of the visualization
format depends on the questions addressed, the computational
approach chosen, and the scientist’s preferences. Typically the
estimated compartmental distributions are provided in tabular
format while the underlying fraction abundances are depicted as
heat maps or are converted into cluster trees (Farre et al., 2001;
Benkeblia et al., 2007; Krueger et al., 2009). A topological format
may also be used to facilitate the inclusion of previous results or
prior knowledge (Krueger et al., 2011). This can greatly aid in data
interpretation, as the integration of enzyme localization or path-
way properties can lead to new knowledge and facilitate hypotheses
generation.

NON-AQUEOUS FRACTIONATION – A SIMULATION MODEL
Due to limited availability of experimental data, a simulation
model was developed in order to study the influence of parameters

on the compartmental separation and the estimation of compart-
mental abundances from NAF gradient data. To approximate the
distribution of cellular constituents, such as compartment-specific
markers or metabolites, we used random sampling from a trun-
cated normal distribution, defined by the mean and SD within
an interval ranging from 0 to 30 units. This choice was primar-
ily motivated by four reasons: First, we used the abovementioned
interval as a NAF gradient can comprise up to 30 mL (cf. Krueger
et al., 2011) and therefore numerical parameters can be compared
and interpreted in the context of existing experimental gradients.
Secondly, by using the mean, simulated distributions can be easily
placed at any position in the virtual gradient. Thirdly, by increasing
the SD we can transform a cellular constituent from being highly
enriched to being approximately equally distributed throughout
the gradient. Finally, the effects produced through modifying the
mean and SD are simple to understand as they are common
parameters used to describe experimental results.

A model to illustrate the influence of distribution parameters
on a virtual NAF gradient with four resolved compartments is
shown as Figure 2, while a model for five compartments can
be found as Figure A1 in Appendix. In experimental data, the
two terminal distributions would correspond to compartmental
distributions observed for plastids and the vacuole in plant stud-
ies (Krueger et al., 2011), while the non-enriched compartment
with approximately equal fraction abundances can be consid-
ered as “cytosol” (Figure 2A, Figure A1A in Appendix). Whereas
the exact characteristics of the distributions are shown as line
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FIGURE 2 | Simplified scheme of the four-compartmental simulation

model. (A) The continuous distributions are depicted by line plots for each
of the 4 compartments represented by 3 individual marker distributions. To
aid visualization the distributions are scaled to half-maximum (blue-colored
compartment) or maximum (all other) observed values. (B) The bar plots
show the mean–averaged fraction abundances including SD among

compartment-specific markers for each compartment after the continuous
distributions were discretized into 6 equally spaced fractions. The left–side
graph illustrates the effect of increasing the SD (SD = 5, ms = 0.4), while the
right-side graph shows the effect of increasing the marker spread ms
(SD = 1, ms = 1.2) compared to a standard (middle graph with SD = 1,
ms = 0.4).

plots (Figure 2A, Figure A1A in Appendix), experimentally only
the discretized distributions can be assessed, i.e., the abundance
of a cellular constituent throughout sampled gradient fractions
(Figure 2B, Figure A1B in Appendix). When the SD is increased,
the fraction abundances for the enriched compartments become
closer to the non-enriched compartment (Figure 2B, Figure A1B
in Appendix). Contrarily, increasing the marker spread by posi-
tioning markers representing the same compartment more dis-
tant from each other, the variation around the mean is increased
(Figure 2B, Figure A1B in Appendix).

To show the behavior of the BCS and the WCC in dependence
of changing SD and marker spreads, simulations were conducted
individually for virtual NAF gradients containing either 3, 4, or 5
compartments each represented by 2, 3, or 5 markers, respectively.
All combinations were tested using 2–30 fractions with 60 differ-
ent SDs and 12 marker spread values each randomly repeated 99
times (see Materials and Methods). Both the BCS and the WCC
were estimated on normalized Manhattan distances and visual-
ized (Figure 3). Figure 3A clearly shows that with increasing SDs
the BCS declines almost exponentially as the fraction abundances
of compartmental markers become more similar to each other
(Figure 2B, Figure A1B in Appendix), while the marker spread has
minimal to no effect on the BCS. Contrarily, the WCC (Figure 3B)

is influenced primarily by the marker spread, however, it is also
affected by the compartmental separation modulated using the
SD. Essentially the largest cohesion (i.e., the smallest distance) is
observed at a high marker spread when the markers representing
individual compartments are sharply focused at a specific gradient
position (right bottom corner of Figure 3B).

HOW MANY FRACTIONS ARE NECESSARY TO PRODUCE A GOOD
SEPARATION?
The answer is a trade-off between technical difficulties in gen-
erating highly reproducible gradients, the sampling of the same
amount of liquid from gradients (fractionation), how much mate-
rial is required for the down-stream analytical technologies to be
used, and the analytical workload associated with taking more
fractions. While this is truly a question of experimental con-
straints, from the computational point of view limits can be
deduced.

For this we used the simulated data generated as described
above. To quantitatively evaluate the clustering results we used
the mean–average of the average Silhouette information and the
Pearson’s matrix correlation as the NAF validity index. Figure 4
illustrates this index with respect to the BCS (modulated by the
SD of the marker) and the WCC (modulated by the marker spread)
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FIGURE 3 | (A) The between-compartment separation and (B) the
within-compartment cohesion in dependence of the SD and marker
spread. Both indices were estimated as mean–average of normalized,
percentage-scaled Manhattan distances either (A) between or (B)

within-compartmental clusters and are depicted as level plots color-coded

according to the right-sided color bars. To aid interpretation, lines have
been drawn at each 5% level. The closer the between-compartment
separation is to 100% the better the separation while the closer the
within-compartment cohesion is to 0 the tighter the compartmental
clusters.

in dependence of the number of fractions collected. The figure was
generated irrespective of the number of compartments (3–5) and
markers (2, 3, or 5) per compartment considered by taking the
mean value of the NAF validity index for different values of frac-
tions and markers. For more detailed results see Figures A2–A4
in Appendix depicting the individual results from simulations
using 3, 4, or 5 compartments each represented by 3 independent
compartmental markers.

While these figures first appear to be very complex, essentially
the closer the values are to 1 (the bluer the color) the better the
NAF validity index. Accordingly, we can conclude that the mini-
mum number of fractions (nF) necessary to be collected should
equal the number of compartments (nC) to be resolved, although
similar cluster validities are also observed at nC −1 due to the
inclusion of a non-enriched compartment (cf. Figure 2). The col-
lection of a large number of small-volume fractions can result
in the splitting of compartmental markers representing the same
compartment, especially if markers are sharply focused (SD ≈ 1)
and under increasing marker spreads. However, this can also hap-
pen when taking only a few fractions (see Figure 4, darker blue
areas at SD ≈ 1 from left to right) but is more clearly evident when
the number of fractions is increased. Finally, an increase in the
number of fractions does not increase the cluster validity overall,
i.e., there is no increase in the compartmental separation and thus
the computationally estimated resolution of the gradient remains
unchanged.

While this analysis only considers the compartmental separa-
tion, from the mathematical point of view there are constraints
to the minimum number of fractions which should be taken. The

least squares algorithms are usually applied to over-determined
system of linear equations to yield an approximated solution, as
otherwise an exact solution exists (Strang, 2009). In terms of the
experimental system this means that there should be at least one
more fraction used than the number of compartments which are to
be determined, regardless if they are enriched or not. However, as
it is desirable to apply additional constraints to the solution space
(e.g., by restricting each variable to be positive and/or that all sum
to 100%) even in cases where the number of fractions taken equals
the number of compartments considered, a least squares approach,
as opposed to an analytic solution, has to be employed as is the
case for BFA or NNLS.

Therefore and in conclusion, the minimum number of fractions
taken should ideally exceed the number of compartments. While
the upper limit seems not to be definable, collecting a large num-
ber of fractions may led to compartment splitting which could be
overcome by later combining and averaging the data from fractions
known to be split. Nonetheless, it is rather important to determine
the robustness of separation and compartmental boundaries in
order to determine the experimentally optimal number of frac-
tions and volumes to be collected. In some cases it may also be
useful to take fractions of different volumes if the system under
investigation is well defined or preliminary data with respect to
compartmental boundaries is available.

DOES THE FRACTION NUMBER INFLUENCE THE COMPARTMENTAL
ABUNDANCES?
To further address the influence of the number of fractions on the
distribution of compartmental abundances we used the previously

www.frontiersin.org September 2011 | Volume 2 | Article 55 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Klie et al. Analysis of subcellular metabolomics data

FIGURE 4 |The cluster validity in dependence of the number of

collected fractions, the SD of markers, and the marker spread. While
the SD modulates the between-compartmental separation, the marker
spread modulates the within-compartmental cohesion (cf. Figure 3). The
cluster validity index, estimated as mean–average of the Silhouette
information and the Pearson’s matrix correlation, is depicted independent

of compartments (3–5) as well as markers (2, 3, or 5) per compartment
considered. The closer the value is to 1 the better the observed cluster
validity, color-coded as depicted in the right-side bar. To aid visualization
negative cluster validity values were set to 0 and contour lines were drawn
for each 0.05 unit. More detailed graphs can be found as Figures A2–A4 in
Appendix.

generated experimental data (Krueger et al., 2011). To modify the
number of fractions we averaged either the terminal neighboring
fractions 1 + 2 (plastidic enriched) and 5 + 6 (vacuolar enriched),
resulting in 4 fractions (Figure 5A), or all neighboring fractions
(1 + 2, 3 + 4, and 5 + 6) resulting in 3 fractions (Figure A5A in
Appendix).

First, we evaluated the compartmental cluster solutions which
revealed silhouette information of 0.63 ± 0.03, 0.68 ± 0.02, and
0.76 ± 0.01 and Pearson’s matrix correlations of 0.74 ± 0.01,
0.75 ± 0.01, and 0.77 ± 0.02 for 6, 4, and 3 fractions, respectively
(all as mean ± SD). Although an increase in both cluster validity
indices were observed, indicating a better cohesion of and sepa-
ration between compartments, the compartmental abundances of
the individual markers were unchanged by reducing the fractions
with, on average, 92.4 ± 8.9, 93.4 ± 7.5, and 93.3 ± 8.4% for 6, 4,
and 3 fractions, respectively (all as mean ± SD) of the expected
100%. Comparing the differences of compartmental abundances
for all metabolites based on 6 versus 4 or 3 fractions revealed
rather narrow difference distributions (Figure 5B, Figure A5B in
Appendix) independent of the observed mean values (Figure 5C,
Figure A5C in Appendix) for both the maximum and the solution

error. Using 4 fractions, 90% of all differences are within −8.7
to 10% and −6.7 to 7% for the maximum and solution error,
respectively (Figures 5B,C). Similarly, using 3 fractions, 90% of
all differences are in range from −8 to 13% and −8 to 9% for
both the maximum and the solution error (Figures A5B,C in
Appendix). While only minor effects were observed with respect to
the compartmental abundances, reducing the fractions increased
the number of sufficiently explained BFA estimates from 81.5%
(TPD ≤ 10%), to 94.4% (TPD ≤ 9.4%) and 93.1% (TPD ≤ 7.4%)
for 4 and 3 fractions, respectively. However, while this result is an
enhancement, the reduced distribution space produced by shrink-
ing the number of fractions effectively removes potential biolog-
ically meaningful intermediate distributions which are not delin-
eated by the compartment-specific markers. Therefore, potential,
yet-unresolved compartments can be overlooked. For instance,
using 6 fractions, citrate synthase, a marker considered specific
for the mitochondrial compartment (Stitt et al., 1982), has an
insufficiently explained compartmental distribution (cf. Krueger
et al., 2011). However, using 4 or 3 fractions, it is sufficiently
explained with a 40% plastidic and 60% cytosolic distribution.
Note that while the main isoform of citrate synthase is located in
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FIGURE 5 | Influence of the number of collected fraction on estimated

compartmental abundances based on experimental data. (A) Bar plots
depicting the mean–averages and SDs of the three compartment-specific
markers for each of the three resolved compartments on the basis of 6 and
4 collected fractions. Neighboring terminal fractions, i.e., 1 + 2 and 5 + 6,
were averaged to obtain results for 4 fractions. (B) Combined box- and
violin plots (red lines) as well as (C) mean-difference plots showing the
difference of the maximum and solution error based on compartmental
abundances estimated using BFA for gradients comprising 6 and 4
fractions. For both, positive values indicate larger compartmental
abundances for 6 fractions while negative values depict larger abundances
for 4 fractions. The 5th and 95th percentiles are drawn as black dashed
lines. The figures show the average of three independent gradients.

mitochondria, other isoforms are known to be present within the
peroxisomes. These have been implicated in fatty acid respiration
during seedling development and senescence (Pracharoenwattana
et al., 2005; Kunz et al., 2009).

In conclusion, reducing the number of fractions only mar-
ginally influences the compartmental separation and the estima-
tion of compartmental abundances. However, it does reduce the
potential of detecting unknown, potentially fully resolved com-
partments. Therefore, increasing the number of fractions might
enhance the detection of yet unassigned subcellular distribu-
tion and potential designation of a yet-unresolved or uncon-
sidered compartment, especially if un-supervised “marker-free”
approaches are employed (cf. Krueger et al., 2011).

DOES THE MARKER CHOICE INFLUENCE THE ESTIMATED
COMPARTMENTAL ABUNDANCES?
Compartment-specific markers are central to NAF analyses as they
anchor and establish the compartmental boundaries, and are ulti-
mately used to estimate the compartmental abundances of the
measured cellular constituents. Therefore the selection of certain
cellular components as markers may influence the down-stream
analysis and validity of the resulting data. Theoretically, the use
of an unspecific marker (a marker that is shared between com-
partments or simply not localized to that compartment) would
lead to erroneous conclusions. For example, although mannosi-
dase enzyme activity has been widely used as a vacuolar marker
in previously NAF studies (Gerhardt and Heldt, 1984; Riens et al.,
1991; Winter et al., 1993; Farre et al., 2001; Benkeblia et al., 2007),
recent experimental data from Arabidopsis showed activity in the
Golgi (Strasser et al., 2006). This result questions the validity of
using this marker specifically in Arabidopsis.

The use of multiple markers designating the same compart-
ment can balance for a potential non-specificity of markers or
their measurement errors. To test the importance of this factor we
used the experimental NAF data where each of the resolved com-
partments (cytosol, plastid, and vacuole) is represented by three
compartment-specific markers. First, we estimated how strong the
compartmental abundance would be influenced by using jack-
knife approaches where we deleted a single marker, or used a
marker twice. Although there are influences with respect to the
cluster validity and BCS, for both the majority of observed values
lay in a range of ±4% (Figures A6A,B in Appendix). Further-
more, all combinations of removing a marker or considering a
marker twice do not largely influence the estimated compartmen-
tal abundances, compared to using all markers (Figures A6C,D
in Appendix). Essentially, using one marker twice (Figure A6D
in Appendix) led to very similar compartmental abundance, as
90% of all estimates were in range of −2.7 to 3% for the maxi-
mum error and −2.3 to 2.3% for the solution error. A similar, but
slightly larger bias was observed with the omission of a marker
with −5 to 5.7% for the maximum error and −4 to 4.3% for the
solution error. Interestingly, the deletion or addition of a cytosolic
marker influenced the estimates more strongly as compared to vac-
uolar or plastid-specific markers (Figures A6C,D in Appendix).
This is in agreement with previous analyses, as it has been noted
that the cytosolic compartment will cluster separately into three
sub-clusters (Krueger et al., 2011). To further illustrate the effects
of marker combinations and thus marker choice on compart-
mental abundances, we computed the compartmental abundances
for each non-redundant marker combination. In contrast to the
jackknife approaches, the distributions of differences are more het-
erogeneous. Here, 90% of the values over all marker combinations
are in a range of −16 to 21.7% for the maximum error and −13.7%
to 15.3% for the solution error (Figure 6). This illustrates that
there is a clear influence on compartmental abundance estimation
depending on the marker selected to represent a compartment.
Therefore, by using multiple markers which ideally comprise the
entire compartmental distribution space, the bias toward indi-
vidual combinations can be reduced either by averaging prior to
the estimation of compartmental abundances, or by averaging the
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FIGURE 6 | Influence of compartment-specific marker combinations

on estimated compartmental abundances based on experimental

data. Combined box- and violin plots (red lines) showing the difference of
the maximum and solution error based on compartmental abundances
estimated using BFA as mean–average difference over the three
independent gradients. While positive values indicate larger
compartmental abundances when all nine markers were used, negative
values depict larger abundances for a certain 3-marker combination. The

5th and 95th percentiles among all combinations are drawn as black
dashed lines. Marker 1–3, 4–6, and 7–9 represent the plastids, the
cytosol, and the vacuole, respectively. Plastids: 1 –
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 2 – starch, 3 –
Digalactosyldiacylglycerols (DGDGs); Cytosol: 4 – Uridine diphosphate –
glucose-pyrophosphorylase (UGPase), 5 – glyceroceramids (GlcCer), 6 –
triacylglycerides (TAGs); Vacuole: 7 – nitrate, 8 – glucosinolates, and 9 –
flavonoids.

compartmental abundances estimated using all non-redundant
combinations (cf. Krueger et al., 2011).

HOW GOOD MUST THE SEPARATION BE TO GET REASONABLE
ESTIMATES OF COMPARTMENTAL ABUNDANCES?
In order to show the influence of the BCS and the metabolite error
on compartmental abundance estimation, simulations were con-
ducted individually for virtual NAF gradients containing either
3, 4, or 5 compartments each represented by two markers with
6, 9, or 12 considered fractions, respectively, and for all 60 SDs.
The BCSs were estimated with normalized Manhattan distances
(percentage scale) and binned in steps of 5% from 5 to 75. Differ-
ences in compartmental abundances were compared for each of
the 300 gradient positions separately between the error-free and
the error-containing distribution if the TPD did not exceed 15%.
For all models and combinations of metabolite error and BCS bins,
200–1800 random estimates of compartmental abundances were
considered.

Figure 7 illustrates the compartmental error with respect to the
BCS and the cellular constituent error irrespective of the number
of compartments (3–5) and fractions (6, 9, or 12) considered by

taking the mean of the cellular constituent error for different values
of the number of compartments and fractions. For more detailed
results see Figures A7 and A8 in Appendix depicting the indi-
vidual results of the compartmental errors for the compartments
and fractions considered. As expected, the error in compartmental
abundance estimation shows a clear dependence on both variables
– the BCS and cellular constituent error (diagonal contours). Gen-
erally, the error of compartmental abundances increases rapidly
with small increases of the cellular constituent error and small
decreases of the BCS (Figures 7A,B). When considering the mean
(Figure 7A) of all errors of compartmental abundances obtained
for each binned value of BCS and cellular constituent error, both
variables seem to contribute almost equally. However when con-
sidering the magnitude in the error of compartmental abundance,
here derived by taking the 99th percentile (Figure 7B) of all com-
puted values, a stronger influence of the cellular constituent error
can be seen, illustrated as the much larger area of high errors of
compartmental abundances, indicated by the dark red shading.
This shows that the risk of obtaining high errors of compartmen-
tal abundances is more likely when the individual error of a cellular
constituent is high, rather than with a low BCS. For experimentally
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FIGURE 7 | Calculation error of compartmental abundances in

dependence of the between-compartment separation and the

metabolite error based on simulated data. The estimated error, the
discrepancies to the estimates of the error-free distributions, are
depicted as (A) mean–average and (B) 99th percentile for each
combination of between-compartment separation and metabolite error

independent of the number of compartments (3–5) and fractions (6, 9,
and 12) considered. The closer the value is to 0% the smaller the
maximum error of the compartmental abundances, color-coded as
depicted in the right-side bar. Contour lines have been drawn for each
5% error. More detailed graphs can be found as Figures A7 and A8 in
Appendix.

obtained data, this would mean that the individual measurement
accuracy of fraction abundances and the associated measurement
error influence the compartmental abundance estimation stronger
than the overall compartmental separation.

To validate this, we performed a similar analysis on the exper-
imental data (Figure 8). Similarly, the error in compartmental
abundances increased almost exponentially with the increasing
metabolite error, irrespective of either the maximum or the solu-
tion error. At the 10% metabolite error level the majority of differ-
ences in estimated compartmental abundances revealed a ∼10%
compartmental error. When the metabolite error was increased
further, the compartmental error rose rapidly to the point
where the majority of absolute values reside in the range of up
to 30%.

In conclusion, both simulated and experimental data revealed
a larger effect of the measurement error of a cellular constituent
on estimated compartmental abundances compared to the over-
all separation of compartments. To balance for these effects,
the number of technical (ideally biological) replicates could be
increased to obtain more robust compartmental estimates, thus
increasing the confidence of the estimated subcellular metabolite
distributions.

HOW ACCURATE MUST A LEAST SQUARES SOLUTION BE TO BE
CONSIDERED STATISTICALLY VALID?
The quality or the “goodness of fit” of any statistical model
describes how well a set of observed data points fit to the estimated

values the model returns. In our case this corresponds to how well
the measured fraction abundances match the fitted ones deter-
mined by BFA or NNLS. Classically, the fit quality is quantified
as the distance between the measured and estimated model data.
Here, the residual sum of squares (RSS) or the Euclidean distance
(the square-rooted RSS) is used where a small, closer to zero value
indicates a “good fit.” However, since both measures are unscaled
(unadjusted), it impedes interpretation of the fit quality. While
TPD employs a normalized Manhattan distance to map distances
on a percentage scale (Krueger et al., 2011), here we additionally
suggest the use of a normalization of the Euclidean distance (Eq.
4), which is very closely related to the distance parameter a least
squares approach tries to minimize.

Conceptually, one wants to use the discrepancy to decide
whether a cellular constituent can be partitioned with confidence
into the delineated subcellular compartments. The reason for
investigating the fit quality by any of the mentioned measures
is because a cellular constituent can display, compared to the frac-
tion abundances of the marker, intermediate fraction abundances
or a unique pattern that does not coincide with any considered
marker/compartmental pattern. Both BFA and NNLS try to derive
a predictive model assigning this cellular constituent into one
of the defined subcellular compartments by using the observed
marker distributions. Both algorithms will therefore result in a
relatively high discrepancy and thus an incorrect classification of
the cellular constituent with respect to its abundances in the con-
sidered compartments. However, in order to detect such cases,
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FIGURE 8 | Calculation error of compartmental abundances in

dependence of the metabolite error based on experimental data.

Compartmental abundances are estimated using BFA and visualized as
absolute mean–average difference over the three independent gradients.
The 95th percentile among all metabolite error levels is drawn as black
dashed lines. The light-blue solid line shows a fitted smooth curve to
illustrate the increase of the estimated compartmental error with increasing
metabolite error.

one needs to qualify or statistically quantify such a relatively high
discrepancy.

While this could be achieved by arbitrarily defining a threshold
to consider discrepancies as being acceptable, the threshold could
also be adaptively inferred by employing a topological measure.
For this purpose we use the degree of cohesion, defined by the
spatial distance of the markers to their respective compartmen-
tal centers, either between independent gradients (Krueger et al.,
2011) or within a gradient (applicable when multiple markers are
assayed). We assume that the topological space a cellular con-
stituent occupies cannot be larger than the one observed for the
resolved compartments. Therefore, if the observed discrepancy for
a cellular constituent exceeds the topological space of the compart-
ments, the marker does not encompass its compartmentalization
either due to potential transport processes or due to an uncon-
sidered compartment. By assuming normality of the cohesion,
one can express the divergence of an observed fit-discrepancy to
this topological measure by standard (z-) scores, indicating how
many SD a particular fit-discrepancy differs from the mean of
the distances as defined by the compartmental cohesion. While
negative values reflect discrepancies below the mean compart-
mental cohesion, positive values show discrepancies above the
mean. Also, by employing a standard normal distribution function
(e.g., pnorm in R), one can devise a right-tailed test to obtain p-
values to further assess the statistical significance of the measured
distributions.

BESTFIT – FURTHER DEVELOPMENTS AND CURRENT
IMPLEMENTATION
As previously mentioned (Krueger et al., 2011), for fast computa-
tion on large data sets both least squares algorithms were imple-
mented (BFA) or compiled (NNLS; Fortran 77 routine from R’s
“nnls”package; Katharine and Van Stokkum, 2010) into the BestFit
C-language command line tool (v1.1; Steinhauser et al., unpub-
lished). In order to further enhance the calculation and evaluation
of subcellular metabolite distributions from NAF data we have
restructured and added further statistical analyses routines. In the
current version (v1.2), BestFit supports the automatic calculation
of compartmental cluster statistics, such as BCS, WCC, silhouette
information, z-score estimation, and Pearson’s matrix correlation,
based on both normalized Euclidean as well as Manhattan dis-
tances. Using the −A option (if multiple markers designating the
same compartment are assayed) the user can control if the com-
partmental center or all marker combinations should be used to
compute compartmental abundances for cellular constituents. Per
default (−M option), markers are included in this analysis, i.e.,
treated as cellular constituents. To evaluate the fit quality the user
can specify the cutoff (−T option; default to “max”) adaptively
estimated either using the distance to the compartmental center
(default) or the WCC using the −W option.

We observed when using NNLS that the sum of compartmen-
tal abundances for a solution equals the sum of fitted fraction
abundances, even though the compartmental abundances do not
need to sum to 100%. Interestingly, both the sums of fitted frac-
tions and the compartmental abundances are perfectly correlated
with a coefficient of determination of R2 = 1 (data not shown).
Rescaling of the NNLS fitted fraction abundances followed by
re-calculation using NNLS bound the sum of estimated com-
partmental abundances to 100% (termed NNLSs). To compare
the difference in compartmental abundances estimated using BFA
and NNLS or NNLSs we computed the LSS using a three- or four-
compartmental model (the mitochondrial compartment was for
this purpose considered as being unambiguously resolved) on the
experimental data (Figure 9 and Figure A9 in Appendix). When 3
compartments are considered,90% of all differences (TPD ≤ 10%)
are within −1 to 0.9% and −0.8 to 0.8% for NNLSs while reveling
for NNLS a larger spread, namely from −4.7 to 2.6% and −1.4
to 2%, for the maximum and solution error, respectively, com-
pared to BFA (Figure 9). Similarly, using 4 compartments, 90%
of all differences fall in the range from −0.8 to 1.6% and −0.7 to
0.7% for both the maximum and the solution error (Figure A9 in
Appendix). As BFA uses a 1% interval to iteratively compute com-
partmental abundances, a large fraction of the observed differences
fall within this range of ± 1% or can be the result of error prop-
agation. Compared to BFA, which is limited to 5 compartments
due to run-time constrains, NNLS is applicable to more than 5
compartments and is guaranteed to find the optimal solution that
satisfies the conditions (non-negative solution). Also,using NNLSs
the compartmental estimates can be scaled. This can be advanta-
geous for some visualization formats (see below). Although there
might be more sophisticated algorithms for constrained-based LSS
to obtain non-negative values that sum up to 100%, we find it use-
ful to implement NNLSs, an iterative NNLS, where the user can
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FIGURE 9 | Diagnostic plots showing the differences in estimated

compartmental abundances using (A,B) a three-compartmental

estimation strategy based on experimental data. (A) The distributions of
observed differences in compartmental abundances are shown as box- and
violin plots (red lines). (B) The mean-difference plots depict the differences in
dependence of the averages of compartmental abundances. For all graphs

the difference in compartmental abundances between BFA and NNLS or
iterative (seed-based) NNLS (NNLSs) are visualized based on the
mean–average of compartmental abundances for the three independent
gradients. The 5th and 95th percentiles are drawn as black dashed lines. Only
values are shown if they are considered as sufficiently explained, i.e.,
TPD ≤ 10% based on the BFA solutions.

decide to choose this using −I option (default is set to 1 iteration,
i.e., NNLS).

BestFit (v1.2) is available from CSB.DB website (Steinhauser
et al., 2004) at http://csbdb.mpimp-golm.mpg.de/bestfit.html.

VISUALIZATION-AIDED INTERPRETATION OF DATA
While metabolic data has traditionally been visualized as cluster
trees and their associated heat maps, we have attempted to focus
on alternative types of visualization which can be easily overlaid or
integrated with additional knowledge in order to achieve a more
holistic overview of the data produced from NAF.

The use of PCo space, based on normalized Euclidean distances,
is an excellent method to show the localization of the markers and
associated metabolite classes or markers and compartment assign-
ments through a visually appealing and easily interpretable figure
(Figure 10). Here, the spatial spread of the markers clearly illus-
trates the heterogeneity of the considered classes across the entire
space for metabolites from primary metabolism (Figure 10A), or
the enrichment of the metabolite classes from secondary metab-
olism associated with specific compartments, such as the galac-
tolipids in the chloroplast, the flavonoids or glucosinolates in the
vacuole, or the triacylglycerides in the cytosol (Figure 10B). Using
PCo space, the specificity for the metabolites assigned into a certain
compartment or even between the compartments (for details on
assignments see Krueger et al., 2011) can also be easily visualized
(Figures 10C,D). Theoretically there is no limit to the number
of compartments which may thus be shown. As this method

greatly reduces the complexity of the data, the aid in biological
interpretations is greatly increased.

However, the data simplification for visualization using PCo
space does not show the absolute compartmental enrichment or
to what extent metabolites or classes of metabolites are shared
between the analyzed compartments. Therefore the use of tri-
angle plots is another useful way to present NAF derived data
(Figure 11). They present the percent distribution of a certain
metabolite, or group of metabolites shared between the differ-
ent compartments, in an easily interpretable figure. In essence,
this is the graphical equivalent of a tabulation of the data, as the
estimated fraction amounts can be directly determined from the
figure.

For example, it is more obvious in a triangle plot that amines
are closer associated to the chloroplast and cytosol than to the
vacuole, that carbohydrates are more closely associated with the
cytosol and vacuole, and that organic acids are more associated to
the cytosol (Figure 11A). Just by eye, additional important infor-
mation can be extracted. For example, only very few metabolites
are located in the clp|cyt|vac space within the triangle plot, indi-
cating that only few metabolites are equally shared between all
three compartments (Figures 11A–D) and only a minor amount of
metabolites show a distinct enrichment within the vacuole and the
chloroplast, without being present in the cytosol. This is even more
pronounced when depicted for all metabolites (Figure 11D). This
is most likely due to the cytosol being the transit route between
the other two compartments. One caveat for use of the triangle
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FIGURE 10 |Topological maps of (A,C) primary metabolites as well as

(B,D) secondary metabolites and lipids based on experimental data in

proximity to resolved compartments. All graphs depict classification results
visualized in principal coordinates (PCo) space on the basis of averaged

normalized Euclidean distances among metabolites for the three independent
gradients. (A,B) Chemical superclass assignments were overlaid on
structurally identified metabolites and (C,D) k-medoids cluster assignments
(cf. Krueger et al., 2011) were overlaid on all metabolites.

plot as a visualization tool is that the sum of the compartmental
abundances must total 100%. Furthermore, it is only feasible for a
three-compartmental separation.

CAVEATS AND BENEFITS OF NON-AQUEOUS FRACTIONATION
Although several different approaches exist to study metabolite
composition on the subcellular level,none can be referred to as“the
method of choice”as every method has specific advantages and dis-
advantages. The best method to use depends on the experimental
question.

First, the caveats: NAF is a generally labor intensive process
and requires technical precision to produce consistent gradients.
Secondly, analysis of the data from NAF gradients is critically
dependent on the use of compartment-specific markers. The
more markers used to define the compartmental space, and the
more specific the markers are for a compartment, regardless of
their biochemical nature, the better the resulting designation of

the compartments. Until suitable markers are determined for
the mitochondria or other unconsidered compartments, such
as the peroxisome, or organelle sub-compartments, these struc-
tures must be considered unresolved. Finally, while the absolute
purity of the isolated compartments in NAF gradients is not
as tight as seen with protoplast fractionation or the perfusion
technique, using statistical tests (as we have shown in this manu-
script), high confidence data can clearly be produced from NAF
gradients.

As for the benefits, the main one is that metabolism is effec-
tively stopped immediately after harvesting. This prevents metabo-
lite conversion or translocation, unlike protoplast fractionation
(Robinson and Walker, 1979; Wirtz et al., 1980; Lilley et al., 1982;
Stitt et al., 1989) and intracellular perfusion techniques (Takeshige
and Tazawa, 1989).

Non-aqueous fractionation also produces an enrichment
of the compartmental constituents, allowing for the potential
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FIGURE 11 |Triangle plots of (A,C) primary metabolites as well as (B,D)

secondary metabolites and lipids based on estimated compartmental

abundances for the three resolved compartments – plastids, the cytosol,

and the vacuole. (A,B) Chemical superclass assignments were overlaid on
structurally identified metabolites and (C,D) k-medoids cluster assignments
(cf. Krueger et al., 2011) were overlaid on all metabolites.

detection of low-abundant compounds, such as hormones. As
well, the relatively large amount of material used permits mul-
tiple down-stream analysis techniques to be applied, based on
the number and volume of fractions taken. While we have rou-
tinely used GC/and LC/MS – based metabolomic approaches,
this can easily be expanded toward the measurements of enzyme
activities (Gibon et al., 2004; Steinhauser et al., 2010), proteomic-
based technologies (Giavalisco et al., 2006), or to NMR (Weise
et al., 2004). In the current age of systems biology the combi-
nation of comprehensive Omics technologies with classical NAF

and modern computational biology approaches can dramati-
cally increases the knowledge about the spatial and also temporal
changes of metabolism on the subcellular level.

As NAF has been generally applied to whole organs or tissues,
there has also been a concern of the contribution of the differ-
ent cell types to the detected metabolite pools. As the Arabidopsis
leaf is composed mainly of mesophyll cells, it can be assumed that
these cells are the major contributor to the observed metabolite
pool sizes. However, as shown previously, with a comprehen-
sive enough or even specific analysis metabolites known to be
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spatially separated in different cell types can be localized to their
experimentally proven compartments (Krueger et al., 2011).

Interestingly, because NAF separates not only intact organelles
but also fragments of organelles, it might be also possible that iden-
tification of sub-organelle compartments may be achievable, such
as the thylakoids from the stroma in chloroplasts, or dissecting the
sub-compartments present in the plant vacuole (Paris et al., 1996),
however this would require specific markers to delineate these
compartments. For example, using NAF Riewe et al. (2008) could
demonstrate that the apoplast of potato tuber is similarly, but not
identically distributed as the vacuole in potato tubers. For Ara-
bidopsis leaves, unassigned subcellular compartments could thus

far only be identified by metabolite distributions that could not
be explained by the three compartment-specific markers, strongly
indicating the presence of additional subcellular compartments
(Krueger et al., 2011).
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APPENDIX

FIGURE A1 | Simplified scheme of the five-compartmental simulation

model. (A) The continuous distributions are depicted by line plots for each
of the 5 compartments represented by 3 individual marker distributions. To
aid visualization the distributions are scaled to half-maximum (blue-colored
compartment) or maximum (all other) observed values. (B) The bar plots
show the mean–averaged fraction abundances including SD among

compartment-specific markers for each compartment after the continuous
distributions were discretized into 6 equally spaced fractions. The left–side
graph illustrates the effect of increasing the SD (SD = 5, ms = 0.4), while the
right-side graph shows the effect of increasing the marker spread ms
(SD = 1, ms = 1.2) compared to a standard (middle graph with SD = 1,
ms = 0.4).
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FIGURE A2 |The cluster validity in dependence of the number

of collected fractions, the SD of markers, and the marker

spread for the three-compartmental model. While the SD
modulates the between-compartmental separation, the marker
spread modulates the within-compartmental cohesion (cf. Figure
3). The cluster validity index estimated as mean–average of the

Silhouette information and the Pearson’s matrix correlation is
depicted for 3 compartments each represented by 3 markers. The
closer the value is to 1 the better the observed cluster validity,
color-coded as depicted in the right-side bar. To aid visualization
negative cluster validity values were set to 0 and contour lines
were drawn for each 0.05 unit.
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FIGURE A3 |The cluster validity in dependence of the number of collected fractions, the SD of markers, and the marker spread for the

four-compartmental model. The cluster validity index is depicted for 4 compartments each represented by 3 markers. For further details see Figure A2.
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FIGURE A4 |The cluster validity in dependence of the number of collected fractions, the SD of markers, and the marker spread for the

five-compartmental model. The cluster validity index is depicted for 5 compartments each represented by 3 markers. For further details see Figure A2.
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FIGURE A5 | Influence of the number of collected fraction on estimated

compartmental abundances based on experimental data. (A) Bar plots
depicting the mean–averages and SDs of the three compartment-specific
markers for each of the three resolved compartments on the basis of 6 and
3 collected fractions. Neighboring fractions, i.e., 1 + 2, 3 + 4, and 5 + 6,
were averaged to obtain results for 3 fractions. (B) Combined box- and
violin plots (red lines) as well as (C) mean-difference plots showing the
difference of the maximum and solution error based on compartmental
abundances estimated using BFA for gradients comprising 6 and 3
fractions. For both, positive values indicate larger compartmental
abundances for 6 fractions while negative values depict larger abundances
for 3 fractions. The 5th and 95th percentiles are drawn as black dashed
lines. The figures show the average of three independent gradients.
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FIGURE A6 | Influence of compartment-specific marker

combinations on (A) cluster validity, (B) between-compartment

separation, and (C,D) estimated compartmental abundances based

on experimental data. (A) The cluster validity index, estimated as
mean–average of the Silhouette information and the Pearson’s matrix
correlation, and (B) the between-compartment separation are depicted
as percentage difference from the cluster solution using all nine
compartmental markers. The values are provided for all three
independent gradients (1–3) and as mean–average (∅) by deleting one
marker (−; jackknife−) or taking one marker twice (+; jackknife+). (C,D)

Combined box- and violin plots (red lines) showing the difference of the
maximum and solution error based on compartmental abundances
estimated using BFA when (C) deleting one marker or (D) considering
one marker twice. All estimates are based on the difference observed
after mean–average of the three independent gradients. Red squares in
(C) depict the difference in the marker that was deleted. The 5th and
95th percentiles are drawn as black dashed lines. For both, positive
values indicate larger compartmental abundances when all nine markers
were used while negative values depict larger abundances when a
marker was deleted or considered twice.
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FIGURE A7 | Mean–averaged calculation error of compartmental

abundances in dependence of the between-compartment

separation and the metabolite error based on simulated data. The
estimated maximum error is depicted as mean–average for each
combination of between-compartment separation and metabolite error

in dependence of the number of compartments (3–5) and number of
fraction (6, 9, and 12) considered. The closer the value is to 0% the
smaller the error of the compartmental abundances (estimated using
NNLS), color-coded as depicted in the right-side bar. Contour lines are
drawn for each 10% error.
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FIGURE A8 | Percentile (99%) calculation error of compartmental

abundances in dependence of the between-compartment separation

and the metabolite error based on simulated data. The error is depicted as

99th percentile for each combination of between-compartment separation
and metabolite error in dependence of the number of compartments (3–5) and
number of fraction (6, 9, and 12) considered. For further details see Figure A7.
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FIGURE A9 | Diagnostic plots showing the differences in estimated

compartmental abundances using (A,B) a three- and (C,D) a

four-compartmental estimation strategy based on experimental data.

(A,C) The distributions of observed differences in compartmental abundances
are shown as box- and violin plots (red lines). (B,D) The mean-difference plots
depict the differences in dependence of the averages of compartmental

abundances. For all graphs the difference in compartmental abundances
between BFA and NNLS or iterative (seed-based) (NNLSs) are visualized
based on the mean–average of compartmental abundances for the three
independent gradients. The 5th and 95th percentiles are drawn as black
dashed lines. All values are shown, regardless if they are considered as
sufficiently explained or not.
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