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Future space missions and implementation of permanent bases on Moon and Mars will
greatly depend on the availability of ambient air and sustainable food supply. Therefore,
understanding the effects of altered gravity conditions on plant metabolism and growth
is vital for space missions and extra-terrestrial human existence. In this mini-review we
summarize how plant cells are thought to perceive changes in magnitude and orientation
of the gravity vector. The particular advantages of several single-celled model systems for
gravity research are explored and an overview over recent advancements and potential use
of these systems is provided.
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INTRODUCTION
Long term space missions will greatly depend on the availability
of ambient air, sustainable food supply, and treatment of human
waste, all of which can be enhanced and improved through the
cultivation of plants on-board the space craft (Musgrave, 2007;
Wheeler, 2010). Plants also provide calming effects and emotional
benefits that can be pivotal in the confined environment of a space
craft or orbital platform as they help astronauts to fight loneliness
and depression. The positive psychological effects on the crew have
the potential to reduce stress resulting from the living and work-
ing conditions during a mission (Williams, 2002; Zimmermann,
2003). Because of their multiple roles, plants will play a primordial
role in future space missions and understanding the plant meta-
bolic and morphogenetic responses to altered gravity conditions
is indispensable for the development of space craft ecosystems or
long term planetary colonization at the fractional gravity levels
found on the Moon (1/6 Earth’s g ) or Mars (3/8 Earth’s g ).

Cultivation of plants on orbital platforms affects growth of
organs and individual cells as was shown in many plant species
(Cowles et al., 1984; Kuang et al., 1996; Wolverton and Kiss, 2009;
Matsumoto et al., 2010) although in many of these experiments
the observed phenomena were a result of the combination of the
direct effect of the absence of gravity on the plant and of other
environmental factors such as increased radiation or absence of
convection. Unlike most biotic and abiotic types of stress which
plants have been exposed to during their evolution, gravity is
the only constant factor, both in direction and magnitude, to
which plants had to adapt in a permanent manner. To withstand
the mechanical load imposed by gravity on terrestrial organ-
isms, plants developed mainly two strategies. The first is based on
the generation of a hydroskeleton which creates an erectile force
based on the balance between the internal turgor pressure and the
mechanical constraint by a highly tensile resistant extracellular

matrix, the cell wall. The second is based on the fortification of the
cell wall through hardening that even in the absence of internal
turgor allows the individual cells to stay upright against the effect
of compressive forces caused by gravity (Volkmann and Baluska,
2006). Modification of cell wall composition is, therefore, a readily
observed phenomenon in plants exposed to a change in g -force
(Waldron and Brett, 1990). This type of response has been termed
gravity resistance (Hoson and Soga, 2003). Experiments that are
performed to study these architectural responses of plants to the
effect of g -force are generally based on increasing its magnitude
through placing the specimen into a centrifuge, or by decreasing it
through exposure to omnilateral or true micro-gravity conditions
(Hemmersbach et al., 1999; Hoson and Soga, 2003; Figures 1A,B).
Omnilateral micro-gravity conditions can be produced in a clino-
stat or a random positioning machine by turning the specimen in
rotary 2D motion or randomly in 3D, either at slow or rapid speed
(Skagen and Iversen, 1999; Figure 1C). This does not actually
alter the magnitude of the gravity force but it minimizes the effect
associated with a unidirectional stimulus. True micro-gravity con-
ditions can be achieved either on orbital platforms or during the
free fall phase of sounding rocket and parabolic flights.

Plants do not only respond to a change in magnitude but also
to a change in orientation of the g -vector. These responses are
termed gravimorphogenetic and are typically expressed in form
of a gravitropic behavior that is oriented in the direction of the g -
vector (positive gravitropic) or opposed to it (negative gravitropic;
Kiss, 2000; Hoson and Soga, 2003). Typical responses include the
re-orientation of the root and the shoot of a plant that has been
turned on its side. Numerous studies have investigated these grav-
itropic responses both in multicellular organisms and single-cells
(Baluska and Hasenstein, 1997; Braun and Sievers, 2000; Kiss,
2000; Perbal and Driss-Ecole, 2003; Morita, 2010). Typical exper-
iments include simple changes in the direction of the gravity
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vector by reorienting the sample (Figure 1D). However, these
experiments are frequently also conducted under micro- or hyper-
gravity conditions to enhance the response and analyze dose–effect
relationships. Intriguingly, in multicellular organisms, the grav-
itropic response typically occurs at a location that is spatially
separated from the cells that are responsible for the perception
of the directional signal and thus requires long-distance signal-
ing processes about which our understanding has significantly

FIGURE 1 | General principles used in gravity research.

(A) Centrifugation increases the magnitude of the g-vector resulting in a
hyper-gravity stimulus. (B) True micro-gravity conditions can be obtained on
orbital platforms or during the free-fall phases of sounding rockets and
parabolic flights. (C) Omnilateral micro-gravity is achieved by continuously
rotating the specimen, either in 2D or 3D. This does not change the
magnitude of the g-force, but it eliminates the effect of the unidirectional
stimulus caused by the g-vector. (D) Turning a specimen changes the
orientation of the g-vector relative to the specimen.

improved in recent years (Haswell, 2003; Morita, 2010). Auxin
is an important mediator of gravity response in roots and shoots
(reviewed by Morita, 2010). Gravitropism in Arabidopsis roots is
controlled by basipetally transported auxin (Rashotte et al., 2000).
Consistent with the important role of the hormone, transcrip-
tomic studies have shown that the expression of genes related to
auxin biosynthesis is altered by a change in gravity level (Tamaoki
et al.,2011). Several auxin transporters from the PIN and PGP fam-
ilies are known to be involved in the distribution and the direction
of auxin fluxes. The involvement of auxin and auxin transporters
in gravisensing and graviresponse emphasize the importance of
investigations into the regulatory mechanisms of the action of this
hormone. For a thorough and up-to-date overview of auxin sig-
naling, we refer to recently published reviews (Zhao, 2010; Wu
et al., 2011).

The challenges of cultivating plants or plant cells at micro-
or hyper-g are manifold ranging from the complexity and spa-
tial limitations of experimental setups in space flight conditions
and centrifuges (Musgrave, 2007) to the limited time of exposure
that is possible during sounding rocket (duration of 10–12 min)
and parabolic flight experiments (duration of tens of seconds;
Luttges, 1992). The limited duration of these experimental setups
highlights the advantage of biological systems that respond within
the given time frame of the respective experimental device. While
intracellular signaling cascades are triggered within 1 s upon the
perception of an external mechanical signal (Hejnowicz et al.,
1998), metabolic cellular responses in most plants can take up
to several hours or days to be measurable thus providing a criti-
cal lower time limit for the duration of experimentation (Dutcher
et al., 1994; Mullen et al., 2000).

While using entire plants is necessary to study the effects on
plant growth, architecture, and reproduction, studies on cellular
metabolism can potentially take advantage of single-cell exper-
imental systems. These have the advantage of being easier to
observe microscopically and other experimental conditions are
easier to control. In the present review we present several single-
cell plant systems that have been used in the past years and that
present great potential for gravity research, in particular for the
investigation of the effects of gravity on plant cellular function-
ing and metabolism. To introduce the open questions in this field
of research, it is worth summarizing how plant cells are thought
to perceive the orientation and magnitude of the gravity vector.
Several conceptual models have been proposed on how plant cells
perceive gravity stimulation.

CONCEPTS OF CELLULAR GRAVISENSING IN PLANTS
STATOLITH-BASED GRAVISENSING
In the statolith-based model, the gravity signal is triggered by the
movements of small bodies inside the cytoplasm that are of higher
density than the surrounding cytosol – the statoliths. The cells
equipped with such statoliths are called statocytes. Statoliths typ-
ically consist of starch-containing amyloplasts or crystals such as
those made of barium sulfate found in Chara rhizoids (Sievers
et al., 1996; Kuznetsov et al., 2001; Perbal and Driss-Ecole, 2003). A
change in the orientation of the gravity vector relative to the orien-
tation of the organism causes the statoliths to sediment toward the
new downward facing side of the cell and their movement results
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in the deformation of other sub-cellular structures (Figure 2A).
It was thought for a long time that the moving particles exert a
tensile stress on actin arrays which in turn influence the activity
of membrane located mechano-sensitive ion channels (Baluska
and Hasenstein, 1997; Sack, 1997; Hejnowicz et al., 1998; Morita
and Tasaka, 2004). However, drug-induced disruption of the actin
arrays enhances the gravity response in the roots of Arabidop-
sis and rice (Staves, 1997; Hou et al., 2004, 2003) as well as in
Arabidopsis inflorescence stems and hypocotyls (Yamamoto and
Kiss, 2002). Moreover, Arabidopsis mutants with reduced levels
of starch-content are nevertheless able to perceive gravity signals
(reviewed by Morita, 2010). Rather than the sedimenting motion it
may therefore be the direct contact of amyloplasts with the endo-
plasmic reticulum (ER) located in the periphery of the cell that
triggers the signal (Zheng and Staehelin, 2001; Perbal and Driss-
Ecole, 2003; Morita, 2010). High resolution electron tomography
has revealed that the force of gravity on the mass of statoliths is suf-
ficient to locally deform the membranes of the cortical ER (Leitz
et al., 2009). Clear evidence for the action of statoliths was provided
by the fact that magnetophoretic displacement of statoliths in roots
and shoots of higher plants as well as Chara rhizoids was able to
induce gravitropic curvature (Kuznetsov and Hasenstein, 1996,
1997, 2001; Weise et al., 2000). These studies highlight the use-
fulness of micromanipulator strategies for gravitational research
(Geitmann, 2006a,b, 2007). While a local membrane bending by
statoliths was proposed to act in gravisensing of root columella
cells (Leitz et al., 2009), it has been shown that in moss protone-
mata, statoliths do not need to exert pressure. The simple contact
with a receptor located at the susceptible membrane (in this case
the plasma membrane) suffices to elicit the response (Limbach
et al., 2005). Whatever the precise biochemical signaling pathway
will turn out to be, according to the statolith-based gravisensing
model the cellular response depends on the intracellular motion
or displacement of some sort of particle or organelle that has a
higher density than the surrounding cytoplasm and that therefore
sediments to the lowest region of the cell upon the re-orientation
of the latter relative to the gravity vector.

THE GRAVITATIONAL PRESSURE MODEL
Most plant cells are not equipped with statoliths and a second type
of gravity perception mechanism needs to be in place to explain
the fact that these cells nevertheless respond to changes in g -force.
Evidence for the presence of an alternative mechanism stems from
studies on mosses, fungi, and algae which show gravity-dependent
growth and differentiation without the presence of statoliths
(Staves, 1997). In higher plants as well, a statolith-independent
pathway seems to operate. Carefully adjusted rotation of roots that
maintains the statolith-equipped root cap vertical during grav-
itropic bending does not cause the root to abolish the bending
process. This supports the view that there is a second, statocyte-
independent location in the root where the gravistimulus is per-
ceived (Wolverton et al., 2002). While at times considered a con-
troversy, it became clear that several mechanisms of gravisensing
seem to operate, possibly even in the same cell (Barlow, 1995; Sack,
1997; Hasenstein, 1999; Kiss, 2000). The presence of an alternative
mechanism can explain why Arabidopsis mutants unable to syn-
thesize starch display an operating gravitropic response in roots

FIGURE 2 | Concepts of cellular gravisensing in plants. (A) In
statolith-based gravisensing the sedimentation or change of position of
intracellular organelles with higher density triggers a signal most likely
based on a change in trans-membrane ion fluxes. (B) According to the
gravitational pressure model the weight of the protoplast causes the forces
acting on the membrane–cell wall connections at the upper and lower sides
of the cells to be different. (C) The tensegrity model predicts that cellular
distortion due to a change in g-force affects the pre-stress in the
cytoskeletal array of the cell which in turn changes biochemical activities.
(D) A variation of the tensegrity model is based on a change in cytoskeletal
pre-stress being caused by the weight of heavy organelles that are tethered
to the cytoskeletal filaments such as the nucleus.

and shoots albeit diminished (Caspar et al., 1985; Hatakeda et al.,
2003; Soga et al., 2005; Buizer, 2007). The gravitational pressure
model provides a possible but not necessary the only explana-
tion for this phenomenon. It suggests that the entire mass of the
protoplast acts as a gravity sensor that behaves similar to a water-
filled balloon that flattens when placed on a surface due to its own
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weight. In this model the role of starch-filled amyloplasts would be
that of increasing the overall density of the protoplast (Wayne and
Staves, 1996). It is postulated that membrane proteins located at
the top and bottom of cell may be activated through the action of
differential tensile forces as they interact with the lower and upper
cell walls, respectively (Wayne et al., 1992; Wayne and Staves, 1996;
Figure 2B). Hitherto, the gravitational pressure model has been
based on experimentation on the internodal cells of Characean
algae and its relevance for graviperception in higher plants has yet
to be demonstrated.

TENSEGRITY MODEL
An alternative, but not mutually exclusive view, on how deforming
forces acting on the cell as a whole could be perceived, is through
the effect of cellular distortion on the mechanics or flexibility of
the cytoskeletal arrays as explained by the tensegrity model of cell
functioning. Although this model was developed for animal cells
(Ingber, 1999), it could doubtless be transferred to plant cells.
In this model, the exposure to micro-gravity decreases the inter-
nal pre-stress in the cytoskeletal array consisting of elements that
resist compressive (microtubules) and tensile stresses (actin fil-
aments). This conceptual model of cell functioning is based on
the architectural principles by Buckminster Fuller (Ingber, 1993).
The distortion induced change in preexisting force balance is sup-
posed to affect local thermodynamic or kinetic parameters and
thus biochemical activities (Figure 2C). How mechanical signals
perceived at the cell surface could influence intracellular processes
has been reviewed in detail (Ingber, 2006; Orr et al., 2006). How-
ever, the change in pre-stress of the cytoskeletal arrays does not
necessarily need to be caused by the distortion of the outer shape
of the cell but could also result from the gravity force acting on
organelles attached to this network (Yang et al., 2008; Figure 2D).
Finite element modeling has shown that the difference in den-
sity between the nucleus and the cytoplasm would be sufficient to
cause a change in tensile stress that is significant enough to deform
the cytoskeletal array upon application or removal of gravity (Yang
et al., 2008).

While according to the tensegrity model the activities of
numerous cytoplasmic enzymes are affected directly, the crucial
mechanotransduction step in the statolith and pressure models is
the deformation of a membrane (plasma membrane, tonoplast,
mitochondria, ER) which in turn influences trans-membrane
Ca2+ fluxes and consequently the cytosolic concentration of the
ion (Fasano et al., 2002; Toyota et al., 2008). Although in stato-
cytes and gravitactic unicellular organisms, calcium was shown
to be involved in graviperception as well as in signaling processes
leading to a graviresponse, in non-statocyte cells in higher plants,
knowledge on calcium signaling involvement in graviresponse is
scant (Sinclair and Trewavas, 1997; Kordyum, 2003), and warrants
further investigation.

SINGLE-CELL SYSTEMS USEFUL FOR UNDERSTANDING
STATOLITH-INDEPENDENT GRAVIPERCEPTION
Immediate and short-term responses can be difficult to assess
in multicellular systems, and therefore the use of single-cells in
culture has been a successful alternative approach that comple-
ments our understanding of graviperception and responses in

plants. Handling of single-cells is generally easier (although typ-
ically sterile conditions have to be ensured) and depending on
the parameter of interest, the response can often be observed
shortly after application of the environmental trigger. Moreover,
microscopy is facilitated since no neighboring cells obstruct the
view, thus allowing for high spatial and temporal resolution imag-
ing. Finally, reproducible growth conditions are more readily
achieved in cell cultures since parameters such as temperature,
nutrient concentrations, and pH can be tightly controlled.

Among the most intensively studied single-cell systems investi-
gated in micro-gravity research are the protonemata and rhizoids
of mosses and Chara, a freshwater alga. Although these cells
are part of a multicellular organism, they are tip-growing indi-
vidual cells which makes them readily accessible to microscopic
observation. Furthermore, gravity perception and response occur
in the same cell. Both protonemata and rhizoids are equipped
with statoliths and important information has been gained from
numerous studies on these organisms which have been exhaus-
tively reviewed (Schwuchow et al., 1990, 1995; Sievers et al., 1996;
Braun, 1997; Sack, 1997; Demkiv et al., 1999; Braun and Sievers,
2000; Braun and Wasteneys, 2000; Braun and Limbach, 2006). In
the following, we will confine our overview to studies performed
on single plant cell systems that are not equipped with statoliths
and that offer the possibility to assess how gravity or the absence
thereof affect basic plant cell functioning and metabolism.

CELL WALL ASSEMBLY IN PROTOPLASTS
The molecular architecture of the cell wall and, by consequence,
its mechanical behavior are known to be affected in many but
not all plants grown under micro- and hyper-gravity conditions
(Cowles et al., 1984; Waldron and Brett, 1990; Nedukha et al.,
1994; Hoson et al., 1996; Nedukha, 1996; Soga et al., 1999a,b, 2001;
Levine et al., 2001). Therefore, the investigation of altered g -force
on the kinetics of the cell wall assembly process is of consider-
able interest. Single-cell studies to this end have been conducted
on protoplasts generated from different plant systems. After the
enzymatic removal of the cell wall, protoplasts generally start to
regenerate a new cell wall. This is followed by cell division and
formation of small cell aggregates few days later. These aggre-
gates develop into callus tissue and, under suitable conditions,
into mature plants. It is in particular the ability to regenerate
mature plants from protoplast cultures that makes this experimen-
tal system interesting for applications in space exploration. Under
micro-gravity conditions, cell wall formation in protoplasts iso-
lated from Brassica napus, Daucus carota, and Solanum tuberosum
is significantly delayed compared with the control samples at 1-g
(Nedukha et al., 1994; Rasmussen et al., 1994, 1992). In particular,
the content of structural components such as cellulose and hemi-
cellulose is reduced whereas pectin is unaltered (Nedukha, 1998;
Skagen and Iversen, 2000). These micro-gravity induced delays
in protoplast regeneration also slow callus formation but do not
prevent the process. However, under micro-g conditions develop-
ment of intact plants is hampered, since calluses develop either
roots or shoots, but not both (Iversen et al., 1999).

In these studies, peroxidase activity was measured in the regen-
erating protoplasts and revealed a decrease in enzyme activity
compared to the ground control (Rasmussen et al., 1992). Since
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peroxidase activity is involved in cell wall metabolism and cross-
linking of microfibrils, this reduced activity was proposed to
provide a possible explanation for the observed slow-down in cell
wall regeneration. However, later experiments showed that factors
other than weightlessness (such as cosmic radiation) may have
contributed to or even caused this change in peroxidase activity
(Skagen and Iversen, 2000).

Interestingly, another cellular feature may be the reason for
retarded cell wall deposition, in particular reduced cellulose depo-
sition: the cortical microtubule cytoskeleton. The amount of cor-
tical microtubules at 24 h after protoplast isolation is greater in
protoplasts cultured at 1-g than under micro-gravity (Skagen and
Iversen, 2000). Moreover, while cortical microtubules assessed at
24 h after cell wall removal in recovering rapeseed protoplasts are
organized in parallel arrays, they are randomly oriented in the 0-g
sample and hence unaltered from those of the protoplast imme-
diately after cell wall removal. Since cortical microtubules play an
important role in cellulose microfibril deposition (Emons et al.,
2007), the failure to reorganize may certainly influence the capacity
of the cell to fully regenerate its wall, and subsequently, to divide.

CALCIUM FLUXES IN POLAR FERN SPORES
One of the single-cell systems capable of a gravitropic response
is the gametophyte of the fern Ceratopteris richardii. During the
first 24 h of germination, the gravity vector determines the axis
of development of the spore by setting an asymmetrical growth
polarity creating two asymmetrical cells that will grow parallel to
gravity in opposite directions (Edwards and Roux, 1998; Chatter-
jee and Roux, 2000). When developed in micro-gravity conditions,
the spores are able to germinate but lose the spatial polarity (Roux
et al., 2003). The same pattern was observed when calcium chan-
nel blockers or inhibitors such as nifedipine and eosin yellow were
added to the culture medium after germination initiation (Chat-
terjee et al., 2000). Efflux of calcium at different cellular regions
was recorded using ion selective electrodes on spores grown at
1-g and spores grown during parabolic flights (the g level fluc-
tuated between micro-g and 1.8-g ). The results revealed that the
specific activation of mechano-sensitive calcium channels at the
bottom of the cell is required for graviperception (Chatterjee and
Roux, 2000; Salmi et al., 2011). These data confirm the notion
that calcium fluxes are involved in graviperception in multicellu-
lar plants (Sinclair and Trewavas, 1997; Fasano et al., 2002; Soga
et al., 2002; Hoson et al., 2010). Use of the fern spore system
allowed for facilitated microscopical access and measurement of
ion fluxes compared to the multicellular root cell systems. How-
ever, the mechanism by which the channels are activated and the
pathways that are involved in the transduction of the gravity-
dependent response are yet to be determined. Progress on the
understanding of the molecular mechanism will certainly profit
from advances made on other mechanoperceptive cellular systems
(Orr et al., 2006; Poirier and Iglesias, 2007).

MICROTUBULE CYTOSKELETON IN BY-2 CELLS
The microtubule cytoskeleton has multiple functions in plant cells
including the guidance of the intracellular motion of organelles,
the targeting of enzymes involved in cell wall assembly, chro-
mosome separation, and cell plate formation during mitosis.

When and where microtubules are assembled from tubulin and
disassembled, therefore, is pivotal for cellular functioning. In
weightlessness, isolated tubulin does not self-organize into par-
allel microtubule bands as it does in the same in vitro conditions
on the ground (Papaseit et al., 2000). Similarly, in different types
of cultured mammalian cells, the organization of the microtubule
cytoskeleton is affected under real or omnilateral micro-gravity
conditions (Lewis et al., 1998; Rösner et al., 2006). The finding that
microtubules in regenerating protoplasts cultured under micro-
gravity conditions were less organized than in the ground control
provided a motivation for investigating the microtubule cytoskele-
ton in cultures of other single plant cell types. Similar to the
protoplasts, microtubules in cultured cells dedifferentiated from
tobacco hypocotyls at 1-g were more abundant than their counter-
part grown in micro-gravity (Sato et al., 1999). The microtubules
of a third single-celled system, tobacco BY-2 cells, were found to be
less susceptible to a change in g -force, on the other hand. The BY-2
cell line was established from a callus induced on a seedling of Nico-
tiana tabacum cultivar Bright Yellow-2. Tobacco BY-2 cells grow
rapidly in suspension culture and can multiply their numbers up to
100-fold within 1 week in adequate culture medium. Remarkably,
exposure of BY-2 cells to micro-gravity conditions did not have
any effect on cell division or cell growth. The organization of cor-
tical microtubules was identical to that in cells cultured on Earth,
and the orientation of newly deposited cellulose microfibrils was
unaltered (Sieberer et al., 2009). Therefore, the tissue context does
not seem to be a prerequisite for these cells to ensure cytoskeletal
ordering under weightlessness. Rather it seems that the absence
of a cell wall hampers microtubule organization during the initial
phase of protoplast regeneration. This is consistent with the obser-
vation that microtubules in plant cells tend to align parallel to the
principal direction of stress and thus respond to mechanical cues
(Hush and Overall, 1991; Geitmann et al., 1997; Hamant et al.,
2008). In line with this, the expression of tubulin genes is upregu-
lated by hyper-gravity in Arabidopsis hypocotyls (Matsumoto et al.,
2007) and cortical microtubules are reoriented from transverse
to longitudinal (Soga et al., 2006). In tubulin mutants of Ara-
bidopsis displaying twisted growth, hyper-gravity caused a more
pronounced twisting phenotype and microtubule re-orientation
was more prominent (Matsumoto et al., 2010). This led to the
hypothesis that by influencing cellulose deposition, microtubules
play an important role in the maintenance of a normal growth
phenotype against the gravitational force (Hoson et al., 2010).

ENDOMEMBRANE TRAFFICKING IN THE POLLEN TUBE
Experiments placed on parabolic flight and sounding rockets only
make sense if the organism or cell displays a response to micro-
gravity that appears within the short duration of weightlessness
achieved during the flight. Assessment of both cellular growth
and metabolism using these devices can therefore be exploited
with cell systems in which both parameters are highly active and
change rapidly upon exposure to a trigger. The fastest growing
plant cell is the pollen tube, a cellular protrusion formed by the
pollen grain upon contact with the receptive stigma. The pollen
tube is responsible for fertilization in higher plants and hence cru-
cial for seed and fruit formation. Pollen tubes, like protonemata,
rhizoids, root hairs, fungal hyphae, and neurons, are tip-growing
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cells. The growth rates of pollen tubes can be up to hundreds of
micrometers per minute and sustaining this process requires the
continuous deposition of cell wall material in highly controlled
manner to ensure morphogenesis of a perfectly cylindrical shape
(Figure 3).

The development of the pollen grain, or microgametophyte,
occurs in the anther and comprises several, precisely regulated cell
divisions (meiotic and mitotic), the assembly of a highly structured
and extremely resistant cell wall, and the coordinated activation
of the cytoskeleton (Honys et al., 2006; Bou Daher et al., 2011;
Liu et al., 2011). Long term studies on orbital platforms have
shown that pollen formation was aborted at early stages and
young microspores were deformed and empty. In late develop-
mental stages, the pollen exine was able to form but the cytoplasm
seemed contracted and became disorganized (Kuang et al., 1995).
However, rather than an effect of micro-gravity, these phenomena
were found to be a consequence of the reduced carbon diox-
ide environment due to lack of convective air movement. When
plants were grown in high CO2 atmosphere, pollen with nor-
mal outer morphology could be obtained from Arabidopsis and
Brassica. However, although the percentage of viable pollen was
much higher than during the earlier experiment, fertilization did
not occur (Kuang et al., 1996). Optical and electron microscopy
showed that pollen grains developed in micro-gravity displayed
differences in size, shape, number of mitochondria as well as an

abundant presence of large starch grains absent in the pollen
that developed on the ground (Kuang et al., 1995, 2005). When
environmental conditions at micro-g such as CO2, light and con-
vection were more carefully controlled, it was possible to obtain
viable embryos, seeds, and siliques in Arabidopsis and Brassica
proving that pollen tube growth was indeed possible at micro-g
(Musgrave et al., 1997; Popova et al., 2009).

At hyper-gravity the effects on pollen and fertilization vary sig-
nificantly between species. While at 4-g seed set in Brassica was
not affected (Musgrave et al., 2009a), the formation of siliques was
significantly reduced in Arabidopsis (Musgrave et al., 2009b). The
authors found this to be due to a reduced ability of Arabidopsis
pollen tubes to germinate at 4-g. They propose that the increasing
g -force caused the cytoplasm to exert higher than normal pres-
sure on the cell wall disturbing the tip growth process (Musgrave
et al., 2009b). The main metabolic activity of the pollen tube is
the synthesis and the deposition of cell wall precursors which are
indispensable for the continuing assembly of the elongating cell
(Geitmann and Steer, 2006). The principal phenomenon respon-
sible for the tube expansion is the exocytosis of vesicles containing
pectins which occurs at high rates and is spatially and temporally
regulated by a multitude of parameters (Chebli and Geitmann,
2007). Other cell wall components such as cellulose, xyloglucans,
and callose are either deposited by exocytosis or directly synthe-
sized at the plasma membrane. Each of these components plays

FIGURE 3 | Spatial profile of mechanical properties and biochemical

processes in the cell wall of growing pollen tubes. Mechanical modeling
has shown that the precise spatial distribution of endomembrane trafficking,
cell wall assembly processes and cross-linking of cell wall polymers

determines the cellular morphogenesis, and the resulting shape in growing
plant cells. These processes occur particularly rapidly in pollen tubes making
them an ideal model system for experiments based on short-term exposure
to micro-gravity.
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Glossary

Gravimorphogenetic Developmental change in response to the presence or the change in the orientation or magnitude of the g-vector

Graviperception The ability of a cell to become aware of the orientation or magnitude of the gravity vector

Graviresponse Physiological or morphogenetic response of a cell or a tissue to gravity induced trigger. The responding cell does not need to

be identical to the perceiving cell

Gravisensing Perception of gravity stimulus

Gravistimulus Mechanical process caused by the presence or change in magnitude or orientation of gravity

Gravitropism Ability of a plant, organ or cell to orient its growth in the direction of the gravity vector

Gravity resistance Gravimorphogenetic response that serves to reinforce the organism or organ against the effect of gravity. Typically a

reinforcement of the cell wall

Mechanotransduction Conversion of a mechanical stimulus into a chemical intracellular signaling pathway

Omnilateral From all sides

Statocyte Cell specialized in graviperception and typically equipped with statoliths

Statolith Intracellular body with density higher than the surrounding cytosol causing the body to sediment in the direction of the gravity

vector. Either the sedimenting motion or the new position of the statolith provides the cell with information on magnitude and

orientation of the gravity vector

a defined mechanical role during pollen tube growth and in each
plant species these components are distributed differently form-
ing a characteristic spatial profile (Geitmann and Dumais, 2009;
Fayant et al., 2010; Figure 3). Intriguingly, the pollen tube is able
to compensate for the lack of one of the components by over-
production of another (Aouar et al., 2010), demonstrating that
sophisticated mechanical control mechanisms must be in place to
ensure that the final product is functional.

Very conveniently, pollen tubes are easily cultured in vitro thus
allowing high resolution microscopic observations. Crucial in the
present context, the high growth rate entails rapid and easily
visible cellular responses upon mechanical or chemical manip-
ulation (Geitmann and Steer, 2006; Chebli and Geitmann, 2007).
The responses of in vitro growing pollen tubes developing under
micro-g conditions or during clinostat rotation vary between plant
species. In Prunus persica pollen tubes grown in a clinostat, callose
plugs were four times longer than those in the control tubes and
callose was spread along throughout the tube (De Micco et al.,
2006a,b) indicating that cell wall assembly under altered grav-
ity conditions is affected. Unlike somatic plant cells in which an
altered cell wall assembly clearly fulfills a structural purpose since
it reinforces the cell wall against the mechanical stress to which
it is exposed, the performance of a pollen tube would not really
be improved by a stiffer cell wall. The cellular response is there-
fore likely unspecific and offers the unique possibility to study
the fundamental effect of altered gravity conditions on plant cell
metabolism.

Cell wall assembly in the pollen tube is ensured by a high rate of
intracellular trafficking targeted toward the growing end of the cell
(Bove et al., 2008; Kroeger et al., 2009; Bou Daher and Geitmann,
2011). Temporal and spatial control of the vesicle fusion responsi-
ble for cell wall assembly at the growing tip is required to determine
the rate and direction of growth (Fayant et al., 2010). The influx
of calcium through plasma membrane located calcium channels
at the tip of the cells plays an important role in the temporal and
spatial regulation of the growth process (Hepler, 1997; Feijó et al.,
2001; Chebli and Geitmann, 2007). Exocytosis in the tip region
is accompanied by membrane endocytosis to ensure a balanced
deposition rate of cell wall and membrane material. The delicate
equilibrium between exocytosis and endocytosis is disturbed when

in vitro growing pollen tubes are exposed to micro- and hyper-g
conditions. In micro-gravity, the uptake of a fluorescent phospho-
lipid into pollen tubes, an indication for endocytosis, is increased,
whereas the contrary is true for hyper-gravity conditions (Lisboa
et al., 2002). Since pollen tubes are not gravitropic (De Micco
et al., 2006b), they can therefore serve as model systems that
allow the investigation of statolith-independent, non-gravitropic
responses of plant cells upon altered gravity conditions. Moreover,
understanding the performance of this cell is crucial for future
applications in space flight as successful fertilization is essential
for on-board production of plant-based food.

CONCLUSION
Experiments based on entire plants are inevitable to understand
plant functioning under altered gravity conditions. Nevertheless,
single-cell experimental systems have emerged as excellent tools
that allow for in-depth studies of individual processes that are
altered as a consequence of exposure to micro- or hyper-gravity
conditions. It becomes increasingly clear that statolith mediated
effects are not the only responses that contribute to plant behavior
under altered gravity conditions. So far, each of the cellular systems
mentioned above has been used to investigate particular aspects of
cellular functioning. An important step forward will be the com-
bined analysis of different processes on a single system to obtain
a more holistic view of the involved mechanisms and to connect
the dots. Secondly, identifying common principles shared by dif-
ferent cellular systems, as well as distinctive features that can be
explained by the particular functionality of the cell wall will allow
to make conclusions for general plant cell functioning. By way
of example, cell wall regeneration was investigated in recovering
protoplasts, but elongating tip-growing cells represent alternative
systems that provides complementary information. The effect of
gravity on the cytoskeleton has mostly been studied on compa-
rably slowly developing cells such as BY-2 cells, but important
information could probably gained from and short-term exper-
imental devices could be exploited for systems in which these
cellular features are highly dynamic such as growing pollen tubes.
Ion fluxes, so far only studied in fern spores in the context of grav-
ity research, could, and should equally be studied in other growing
cells in which ion flux profiles have been established. Single-cell
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systems allow for the use of imaging methods that operate at high
spatial and temporal resolution and will therefore enable us to
determine the roles of sub-cellular features such as targeted trans-
port processes and ion fluxes that lead to a tropic response or a
change in metabolic homeostasis. It will then be possible to link
these results to those obtained from transcriptomic and proteomic
approaches, thus making sense of the overwhelming wealth of data
that these types of studies produce (Martzivanou and Hampp,
2003; Martzivanou et al., 2006; Wang et al., 2006; Babbick et al.,
2007; Barjaktarovic et al., 2007, 2009). An integration of cell bio-
logical and imaging approaches with quantitative information on
the expression of proteins involved in cell wall synthesis, lipid

metabolism, cell division, etc., will help to validate existing models
and inform future models. Crucially, a multifaceted view will guide
the development of new biomechanical and structural approaches
to decipher the pathways of gravisensing and graviresponse.
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