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Despite the attention internal phosphorus utilization efficiency (PUE) of crops has received
in the literature, little progress in breeding crop cultivars with high PUE has been made.
Surprisingly few studies have specifically investigated PUE; instead, genotypic variation for
PUE has been investigated in studies that concurrently assess phosphorus acquisition effi-
ciency (PAE). We hypothesized that genotypic differences in PAE confound PUE rankings
because genotypes with higher PAE suffer a lower degree of P stress, resulting in lower
PUE. The hypothesis was tested by comparing soil-based screening to a modified tech-
nique whereby rice genotypes were grown in individual containers with a single dose of
solution P, to eliminate differences in P uptake among genotypes. Genotypic differences in
PUE were apparent in root and shoot tissue using the modified nutrient solution technique,
but PUE rankings showed no correlation with those from traditional soil-based screening.
We conclude that PUE in soil-based screening systems is unavoidably linked with geno-
typic PAE, resulting in PUE rankings confounded by differences in P uptake. Only screening
techniques assuring equal P uptake are suitable for the exploitation of genotypic variation
for PUE.
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INTERNAL PHOSPHORUS USE EFFICIENCY AS A KEY TRAIT
The development of phosphorus (P) efficient crops that grow and
yield well in soils low in plant-available P is a cost-effective means
of improving crop yields in low-input farming systems (Ismail
et al., 2007; Wissuwa et al., 2009). Such P-efficient crops would
ideally combine high P uptake (phosphorus acquisition efficiency,
PAE) with very efficient use of P in biomass accumulation (phos-
phorus utilization efficiency, PUE). In this perspective piece PUE
is defined as the amount of biomass produced per unit P, which,
in effect, is the inverse of tissue P concentration. Plants produc-
ing equal biomass at lower P concentrations (compared to other
plants) or higher biomass at equal P concentrations would be
considered to have high PUE.

While the importance of both aspects of P efficiency has long
been recognized, efforts to identify genotypic differences and sub-
sequently characterize underlying mechanisms and genes have
disproportionally focused on PAE (Wang et al., 2010). In fact,
when genotypic PUE has been assessed it has frequently been a
minor objective of a study primarily designed to investigate PAE.
In rice alone several such studies have reported genotypic differ-
ences in PAE while concurrently assessing PUE (Fageria et al., 1988;
Hedley et al., 1994; Fageria and Baligar, 1997; Saleque et al., 1998;
Wissuwa and Ae, 2001). Several similar studies have reported geno-
typic differences in PUE and PAE across multiple crop species (see
recent reviews by Shenoy and Kalagudi, 2005; Wang et al., 2010).

In addition, a limited number of studies have reported Quantita-
tive Trait Loci (QTL) for PUE (Wissuwa et al., 1998; Su et al., 2006;
Chen et al., 2009).

However, despite the presence of genotypic variation for PUE
and associated QTLs, there has been little progress in breeding
crops with high PUE. The perspective presented here is that this
lack of progress is in large part due to the fact that unsuitable
methods have been employed in evaluating PUE. To overcome this
limitation, we propose an alternative screening method that avoids
pitfalls of PUE screening in soil and we provide first estimates of
the genotypic variability for PUE present in rice.

ESTIMATES OF PUE ARE TYPICALLY CONFOUNDED IF
GENOTYPES DIFFER IN PAE
It has long been recognized that as the P level in growing media
increases, so do tissue P concentrations of plants grown in that
media, effectively leading to lower PUE (Chisholm and Blair, 1988;
Fageria et al., 1988; Saleque et al., 1998; Osborne and Rengel, 2002).
The first evidence that this phenomenon confounds PUE in geno-
typic screening studies was provided by Wissuwa et al. (1998) who
identified a major QTL for P uptake (Pup1) in rice. Surprisingly,
the main QTL for PUE was mapped at the exact same location as P
uptake, but whereas the Pup1 locus almost doubled P uptake, it sig-
nificantly reduced PUE, such that lines with the highest P uptake
showed the lowest PUE. While it is possible that this negative
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association arises because a high PAE trait negates the need for
these genotypes to evolve with high PUE traits, it seems equally
likely that genotypes acquiring more P from soil in screening stud-
ies suffer a lower degree of P deficiency stress, and consequently,
have lower PUE. Stated simply, the more P plants accumulate, the
lower the PUE becomes and under realistic (field or soil-based)
growing conditions, PUE and PAE are unavoidably linked.

To test this hypothesis a study was conducted comparing a
traditional soil-based screening method with a modified, yet sim-
ple screening method where 29 genotypes were grown separately
in containers in nutrient solution with a fixed amount of solu-
ble P supplied. When plants were grown in P deficient Andisol
soil (see Wissuwa and Ae, 2001 for details), genotypic variation
was observed for total plant P uptake (0.14–0.59 mg plant−1) and
for shoot PUE (shPUE) (1.45–3.61 g shoot dry weight mg−1 P;
Figure 1). This has also been observed in similar studies with rice
(Fageria et al., 1988; Hedley et al., 1994; Fageria and Baligar, 1997;
Saleque et al., 1998; Wissuwa and Ae, 2001). As hypothesized, there
was a significant negative correlation between shoot P accumula-
tion (PAE) and shPUE (R2 = 0.70), clearly indicating that PUE
and PAE are unavoidably linked in traditional screening studies,
leading to confounded results.

TRUE DIFFERENCES IN PUE ARE REVEALED IF ALL
GENOTYPES HAVE THE SAME P SUPPLY
To test our hypothesis that variation for PUE can only be assessed
properly in the absence of differences in P accumulation, we devel-
oped a simple screening method where genotypes were grown
individually in 140 mL plastic containers filled with Yoshida nutri-
ent solution (Yoshida et al., 1976) with a fixed amount of P (500 μg
P as Na2HPO4). Solution P concentrations in the 500-μg P bottles

FIGURE 1 | Association between PUE and P accumulation across 29

rice genotypes that were grown in a greenhouse for 50 days in large

1 m × 0.8 m × 0.3 m high free draining tubs filled with P deficient

Andisol. Germinated seeds were sown in a six row × five column grid per
tub in a RCB design with four replicates. Plants received nitrogen (N )
fertilizer 14 DAS at 2.5 g N per box as ammonium sulfate. Plants were
watered weekly for the first 2 weeks then every 3 day for the duration of
the experiment, with sufficient water added to allow some drainage from
the bottom of the tubs. At harvest, root, and shoot material were separated
and oven-dried at 60˚C for 72 h and ground. A 0.5-g subsample was acid
digested and P in the samples measured spectrophotometrically (Rose
et al., 2010).

dropped from around 20 μM P at day zero to less than 0.3 μM P
at day six, suggesting that all P was absorbed (for more details see
Figure 2). This 500 μg P treatment was compared with a control
treatment with high P supply (100 μM, supplied weekly) and to
the soil screening described previously.

Plants in the 500-μg P treatment responded similarly to those
in the soil-based treatment in that plants began showing symp-
toms of P deficiency (yellowing of older leaves) beyond 30 DAS.
At 50 DAS P deficiency was reflected in average shoot P concen-
trations of 0.49 and 0.74 mg g−1 for plants grown in soil or in
hydroponics with 500 μg P, respectively, which were well below
the critical value of 1 mg g−1 for vegetative stage plants (Dober-
mann and Fairhurst, 2000). Growing plants for a 6-week period
ensured that all plants became P deficient, such that differences
in seedling vigor did not confound the results; rather, genotypes
with higher initial growth rates simply became P deficient earlier.
Further, plant biomass was three times higher and P uptake ten
times higher in the plus-P control than in the 500-μg P treatment
(data not shown), indicating that under sufficient P supply plant
growth was not inhibited by the growth conditions (i.e., 140 mL
bottles supplied with nutrient solution).

Genotypic variation in shPUE ranged from 1.08 to 1.58 g dry
weight mg−1 P in the 500-μg P treatment (Figure 2A), confirm-
ing that genotypic variation for PUE does exist in the absence of
confounding effects of differential P accumulation. In roots the
overall PUE was higher (1.63 to 2.61 g mg−1 P; Figure 2B), as
also observed by Fageria et al. (1988), suggesting that at least in
rice, roots have a lower P cost than shoots. Further examination
of the relatedness between different traits suggest that the geno-
typic differences observed in the 500-μg P treatment are indeed
valid estimates of genotypic variation for PUE. Correlation coef-
ficients between shPUE and total P accumulation (TP) showed a
negative association in all three screening treatments (Table 1),
which is to be expected because shPUE, the inverse of shoot P
concentration, will always be correlated to shoot P accumula-
tion which is defined as biomass × P concentration. However, the
tight correlation (r = −0.81) in the soil treatment indicates that P
accumulation has an overriding bearing on shPUE and that high
PUE (low shoot P concentration) was most likely the result of P
starvation due to insufficient P uptake.

The relationships between shPUE and plant biomass are even
more telling: shPUE should be positively related to biomass pro-
duction if it is truly defined as “efficiency.” However, such was
only the case in the 500-μg P treatment (r = 0.51; Table 1). That
shPUE was negatively correlated to biomass production in the soil
experiment (r = −0.65) is consistent with our hypothesis that P
uptake drives growth in such systems and confounds PUE rank-
ings. This notion was further confirmed by partial correlations:
when adjusted for TP, the residual correlation between TDWt and
ShPUE changed from the original negative 0.65 in the low-P soil
to a positive 0.76 (Table 1). The respective change in the plus-P
treatment was also very significant (from −0.02 to 0.94) but only
gradual in the 500-μg P treatment (from 0.51 to 0.88), indicat-
ing that screening experiments that allow genotypes to differ in
P uptake will lead to PUE estimates that are strongly affected by
plant P content. Interestingly, the lack of any significant relation-
ship between shPUE and biomass in the plus-P treatment suggests
biomass was driven (or limited) by factors other than P nutrition.
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FIGURE 2 | Variation in shoot (A) and root (B) PUE among 29 rice

genotypes grown in individual bottles supplemented with 500 μg

soluble P. Seedlings were raised on a floating mesh and after 13 days were
transferred in pairs to 140 mL bottles (plants were supported by foam
material) filled with full strength Yoshida solution and a one-time shot of

500 μg P per bottle as Na2HPO4−. The pH was adjusted to 6.5 and buffered
using 1 mM MES. Bottles were re-filled with DI water twice per week for the
first 2 weeks, every second day for the ensuing 2 weeks then daily for the
duration of the experiment. Each week, 10 mL nutrient solution (5×
Yoshida – without P for the 500-μg P treatment) was pipetted into each bottle.

Thus, while genotypic differences existed in all three screening
systems investigated, only those in the 500-μg P treatment can
be considered valid under the definition of “efficiency” and war-
rant further examination. The positive relationship between PUE
and biomass in the 500-μg P treatment ensures that the modified
screening method does not select for low growth rates.

The modified method presented here could be used to screen
large numbers of rice genotypes for PUE for purposes such as
QTL or association mapping with some adaptations. One neces-
sary adjustment to the method would be to provide a larger dose
of P than 500 μg P to nullify any effects of seed P content on PUE.
In the present study, seed P content was associated with total plant
P (Table 1), in effect conflicting with our goal of providing equal
P to all genotypes. Increasing the amount of P supplied would
render genotypic differences in seed P content negligible which
should ultimately make it possible to simply use plant biomass
to estimate PUE instead of relying on the more laborious tissue
P concentrations. Further, while the level of P stress imposed by

providing 500 μg P created plants of similar size to those in the soil
treatment, such P deficient plants are not representative of field-
grown plants: increasing the amount of P supplied would enable
screening at more realistic levels of P stress.

It is further acknowledged that differences in partitioning of P
between roots and shoots of individual genotypes may influence
the root or shPUE of that genotype, and that this relationship may
further be affected by feedback mechanisms that exist when roots
are grown in soil. However, in the absence of a better screening
system, we propose that the screening method developed in this
study provides the best chance known to separate the impacts of
PUE and PAE and to allow identification of QTL that confer higher
PUE in future studies.

ARE GENOTYPIC DIFFERENCES FOR PUE LARGE ENOUGH TO
JUSTIFY BREEDING?
Genotypic variation for PUE was observed in shoots and roots
but genotypic ranking differed entirely between the PUEs in both
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Table 1 | Correlation coefficients between biomass and P accumulation and utilization* parameters for 29 rice genotypes after a 50-day growth

period in low-P soil compared to growth in individual containers filled with nutrient solution and either a one-time dose of 500 μg P or

continuous high P supply.

low-P soil 500 μg P plus-P

TP TDWt TP TDWt TP TDWt

TDWt 0.96** 0.47** 0.96**

RDWt 0.86** 0.89** (0.43)a 0.17 0.56** (0.55) 0.92** 0.94** (0.54)

ShDWt 0.94** 0.98** (0.84) 0.43** 0.79** (0.73) 0.95** 0.99** (0.97)

RPUE 0.13 0.24* (0.41) −0.33** 0.15 (0.36) 0.16 0.29** (0.49)

ShPUE −0.81** −0.65** (0.76) −0.43** 0.51** (0.88) −0.30** −0.02 (0.94)

RP 0.82** 0.82** (0.18) 0.38** 0.42** (0.29) 0.90** 0.88** (0.14)

ShP 0.99** 0.94** (−0.18) 0.85** 0.26** (−0.29) 0.99** 0.95** (−0.14)

SeedP 0.10 0.07 (0.06) 0.40** 0.59** (0.50) 0.10 0.10 (0.01)

TDWt, total dry weight; RDWt, root dry weight; ShDWt, shoot dry weight; RPUE, root phosphorus use efficiency; ShPUE, shoot phosphorus use efficiency; RP, root

total phosphorus; ShP, shoot total phosphorus; SeedP, seed total phosphorus.

Phosphorus utilization efficiency is defined as tissue biomass produced per unit P accumulated in that tissue (g dry matter mg−1 P), or the inverse of tissue P

concentration (mg P g−1 dry matter). * and ** indicate significance at p = 0.05 and p = 0.01, respectively (n = 116).
aValues in brackets are residual correlations to TDWt based on a partial correlation analysis where correlations with TDWt have been adjusted for the factor TP.

tissues (Figure 2), indicating that root and shPUE are independent
traits and that they may be selected for separately in a breed-
ing program. In this nutrient solution experiment, the overriding
contribution of shoot dry weight to total dry weight and the signif-
icant correlation between total dry weight and shPUE (r = 0.51;
Table 1), but not with root PUE, suggest that shPUE may be a
more critical factor when looking to improve PUE in crops. How-
ever, when plants are grown in soil the importance of root PUE is
expected to increase as outlined further below.

In breeding, the maximum difference detectable within
germplasm is of less relevance than the difference between average
and maximum expression of a trait. Using the five most efficient
genotypes in comparison to the average gives a rough estimate for
the achievable selection differential of about 14 and 20% higher
PUE for shoots and roots, respectively. Such relatively low vari-
ability raises the question as to whether breeding for PUE would
improve performance in low-P fields. This question is difficult to
assess experimentally unless it can be ruled out that the genotypes
evaluated differ in PAE. However, theoretically this question can
be addressed using the plant growth model “P-LIM-GROW” that
had been developed to simulate plant growth and P uptake under
severely P deficient conditions (Wissuwa, 2003). Briefly, the model
assumes that root growth is directly limited by P rather than by
assimilate availability. This assumption has been confirmed by the
finding that excess assimilates accumulate in form of starch in
roots of P deficient plants and more so in plants suffering a higher
level of P deficiency (Wissuwa et al., 2005). Root biomass accu-
mulation would thus depend on the amount of P distributed to
root tissue and on root PUE. Root architectural parameters and
PAE will subsequently determine how much P is taken up by the
root biomass. This quantity of P is distributed between shoots and
roots, initiating another cycle of biomass accumulation.

At any time “x” a genotype with a 20% higher root PUE would
accumulate 20% more root biomass, leading to increased soil
exploration and up to 20% higher P uptake compared to a less

efficient genotype. Assuming 30% of P taken up remains in roots,
the additional benefit to the high PUE genotype in t = x + 1 would
be a 6% increase in P distribution to roots that would also be
turned into root biomass with the 20% higher efficiency, result-
ing in an extra 27.2% root biomass and P uptake in t = x + 1.
Model simulations with P-LIM-GROW, using parameter func-
tions derived from experimental data of P deficient Nipponbare,
predicted that a 10% increase in root PUE would increase P uptake
over a 98-day growth period by 53–78% and a 20% increase would
increase P uptake by almost 200% (Wissuwa, 2003). These values
represent upper limits since overlapping depletion zones in more
mature root systems were not taken into account in the model.

These simulations suggest that a relatively small increase in
root PUE would substantially improve P efficiency over an entire
growth period because subsequent root growth and P uptake
effects would amplify the initial effect of higher PUE. Improving
PUE in crops through breeding would, therefore, lead to results
similar to those expected for improving PAE; that is, ultimately
P acquisition will improve no matter which trait has been tar-
geted in breeding. Similar conclusions were drawn by Postma and
Lynch (2010) based on studies of aerenchyma formation in P defi-
cient roots, which was seen as a way of enhancing the efficiency
of root development with positive effects on P uptake. This exam-
ple further provides evidence for different efficiency mechanism
operating in roots versus shoots.

CONCLUSION
The results of the present study clearly show that genotypic com-
parisons of PUE are biased if genotypes differ in P uptake, and
therefore, identification of high PUE genotypes and valid QTLs
for high PUE traits requires screening methods that either sepa-
rate the effects of PUE from P accumulation, or at least minimize
differences in P uptake between genotypes. It is perhaps for this
reason that, despite the large number of studies reporting geno-
typic differences for PUE and even mapping of the associated

Frontiers in Plant Science | Plant Nutrition November 2011 | Volume 2 | Article 73 | 4

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Nutrition
http://www.frontiersin.org/Plant_Nutrition/archive


Rose et al. Phosphorus utilization efficiency

QTLs, no practical breeding outcomes have been achieved and no
mechanisms for high PUE in crop genotypes elucidated thus far.
The modified method used in the present study avoided competi-
tion for P between individual genotypes to assure equal P supply
translated to equal P uptake, and true genotypic variation for PUE
was revealed. However, in future studies the duration of screening
and the amount of P supplied should be dimensioned to nullify
genotypic differences in seed P content or seedling vigor. Increased
P supply to nullify seed P content will also allow screening of plants
at low levels of P stress than those imposed in the present study.
While labor intensive, the concept of screening large numbers of

genotypes equal plant P uptake would allow for the identification
of genotypes with high PUE and, potentially, of loci associated
with this superior PUE. Only once this has been achieved would
it be possible to truly test which of the mechanisms suggested as
improving PUE would be associated with genetic variability and,
hence, with a potential to be exploited in crop breeding.
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