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Phosphate import in plants: focus on the PHT1 transporters
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The main source of phosphorus for plants is inorganic phosphate (Pi), which is character-
ized by its poor availability and low mobility. Uptake of this element from the soil relies
heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins
that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery
of PHT1 transporters in 1996, various studies have revealed that their function is controlled
by a highly complex network of regulation.This review will summarize the current state of
research on plant PHT1 multigenic families, including physiological, biochemical, molecular,
cellular, and genetics studies.
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INTRODUCTION
Phosphorus is an essential macro-element for life. It plays a key
role in many crucial processes such as heredity (DNA, RNA), cellu-
lar compartmentalization (membrane lipids), energy metabolism
(ATP), and phosphorylation-based signaling mechanisms (Poirier
and Bucher, 2002; Vance et al., 2003; Misson et al., 2005; Jouhet
et al., 2007). Despite its abundance in the environment (ranked
as the 11th most abundant element), phosphorus is neither easily
accessible nor evenly distributed in most soils. For example, 20–
80% of phosphorus in soil can be present as organic pools (mostly
composed of plant and microorganism residues), which cannot be
absorbed directly by the plants (Richardson,1994). In plants,phos-
phorus represents 0.1–0.5% of the dry weight, and this element is
acquired in the form of phosphate [inorganic phosphate (Pi)], an
inorganic form of P. Depending on the pH, several anions can exist
( PO3−

4 , HPO2−
4 , H2PO−

4 ), however between pH 5–6 the predom-
inant form is dihydrogen phosphate ion ( H2PO−

4 ). Analysis of
Pi uptake indicates that this latter form is favored for transport
into the plants, since maximum Pi uptake is typically observed
within this pH range (Ullrich-Eberius et al., 1984; Furihata et al.,
1992; Schachtman et al., 1998). Two factors restrict the availabil-
ity of this anion in soil: (i) its assimilation by microbes and (ii) its
capacity to strongly interact with most of the cations. In acidic soils
(30% of soils worldwide), aluminum and iron are abundant and
often combined with Pi. This interaction can strongly limit their
bioavailability for biological processes (Von Vexhull and Mutert,
1998). Conversely, in vitro experiments have demonstrated that a
high Pi level can reduce the pool of some metals in Arabidopsis, by a
factor of 4–5 (Hirsch et al., 2006). The importance of Pi chelation

by cations or organic compounds is apparent, when juxtaposed
against the poor efficiency of phosphate fertilizers, where up to
80% of provided Pi cannot be acquired by the crops. Furthermore,
Pi is poorly mobile in the soil, as its diffusion coefficient is very
low (from 10−12 to 10−15 m2 s−1). As a consequence, Pi uptake by
the plant creates a depleted area around the roots (Ullrich-Eberius
et al., 1984; Furihata et al., 1992; Schachtman et al., 1998). There-
fore, Pi can easily be considered as one of the least available plant
macronutrients (Raghothama, 1999).

Before the modern intensification of agriculture, farmers relied
mostly on phosphorus naturally present in soils or from manure.
However, as a growing world population has put high demands
on food production (with adverse effects on soil degradation),
agriculture has become dependent on external sources of phos-
phate fertilizers (such as guano, ground bones, and phosphate
rock) to increase crop yields (Cordell et al., 2009). Phosphate
rock is an abundant and cheap source of phosphorus, and has
quickly become the main source of Pi for fertilizer production.
Despite this abundance, phosphate rock is still a non-renewable
resource, which required 10–15 million years for its production
(Cordell et al., 2009). As of 2009, the total mineable phosphate
rock reserves were estimated at 15–16 billion tons (containing
approximately 30% Pi), according to the US Geological Survey
(an organization that collects data worldwide to estimate levels
of our natural resources). The gravity of the situation is apparent
when it is taken into consideration that 170 million tons of phos-
phate rock were extracted that same year for fertilizer production.
The demand for phosphate rock will only steadily increase, with
the mounting concerns to feed a growing global population, and
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the development of plant culture dedicated to biofuel produc-
tion. These facts clearly strengthen the estimate of remaining Pi
rock reserves. According to these data, our Pi rock reserves should
be exhausted in only 50–100 years (Gilbert, 2009; Gross, 2010). A
700% increase in the price of Pi was observed in 2008, foreshadow-
ing the impact that Pi scarcity can have on the economy (Cordell
et al., 2009). This underscores an urgent need for an alternative
to the use of phosphate rock reserves, which are largely devoted
(82%) to fertilizer production. Moreover, this production process
demands the exploitation of high quality Pi reserves in order to
avoid contamination by toxic heavy metals such as cadmium or
isotopes of the natural decay series of uranium or thorium (Oth-
man and Al-Masri, 2007; Casacuberta et al., 2011; Da Conceicao
et al., 2011). Improving our knowledge of Pi acquisition and use
by plants will undoubtedly have a positive effect on reducing the
dependency on fertilizer supply for crop production.

Inorganic phosphate concentration in plant tissues has been
measured at 5–20 mM (Raghothama, 1999), whereas the level
available in soils is typically less than 10 μM (Bieleski, 1973). This
sharp concentration gradient between the plant and the soil illus-
trates the crucial role of Pi transporters. The study of the PHT1
family of phosphate transporters is particularly appropriate, due
to their presence in the plant plasma membrane (at the interface
between the cell and the external medium). Several reviews have
focused on this family of transporters (Raghothama, 1999; Smith
et al., 2000; Rausch and Bucher, 2002; Smith and Barker, 2002;
Bucher, 2007), since the identification of phosphate transporters
in Arabidopsis thaliana in 1996 (Muchhal et al., 1996). More recent
advances have revealed novel processes that control this family
of transporters. The present article will synthesize this literature
with special attention to PHT1 regulation and the plant model A.
thaliana.

IDENTIFICATION OF PHT1 PHOSPHATE TRANSPORTERS
Beginning in the early 1990s, several high affinity phosphate trans-
porters were cloned in various fungi. The first one, PHO84, was
identified in the yeast Saccharomyces cerevisiae (Bun-Ya et al.,
1991). Several years later, transporter homologs were found in
Neurospora crassa (Versaw, 1995; Versaw and Metzenberg, 1995)
and in the mycorrhizal fungus Glomus versiforme (Harrison and
Van Buuren, 1995). Their discovery enabled the identification of
phosphate transporters in plants. Two separate approaches were
used for their identification in Arabidopsis, either by the heterolo-
gous complementation of the yeast pho84 mutant by plant cDNA
(Muchhal et al., 1996) or by the identification of Arabidopsis ESTs
closely related to these proteins (Mitsukawa et al., 1997; Smith
et al., 1997). Later, their function as phosphate transporters was
confirmed in planta by the analysis of Arabidopsis mutants such as
pht1;1 and pht1;4 and the corresponding double mutant (Misson
et al., 2004; Shin et al., 2004). The nearly simultaneous identi-
fication of these genes by several teams introduced some initial
confusion to the literature, as different nomenclatures were pro-
posed (PT or PHT) by these authors. Adding to this confusion, as
the genes turned out to belong to a wide multigenic family, sev-
eral authors published descriptions of different homologs under
the same name (Muchhal et al., 1996; Smith et al., 1997; Oku-
mura et al., 1998). Not until the complete sequencing of the A.

thaliana genome in 2000 was it revealed that the PHT1 family is
comprised of nine members (PHT1;1 through PHT1;9; Figure 1).
Their names have now been unified according to the rule of the
Commission on Plant Gene Nomenclature (Rausch and Bucher,
2002).

Homologs of PHT1 transporters have been characterized in
a wide range of species, since their initial identification in Ara-
bidopsis. This non-exclusive list includes: potato (Leggewie et al.,
1997), Lupinus albus (Liu et al., 2001), tomato (Daram et al., 1998;
Liu et al., 1998a), Catharanthus roseus (Kai et al., 1997), Medicago
truncatula (Liu et al., 1998b; Xiao et al., 2006), barley (Smith et al.,
1999), tobacco (Baek et al., 2001), lotus (Nakamori et al., 2002),
rice (Paszkowski et al., 2002; Ming et al., 2005), maize (Nagy et al.,
2006), wheat (Tittarelli et al., 2007), Populus trichocarpa (Loth-
Pereda et al., 2011) as well as more distant organisms such as
Chlamydomonas (Chang et al., 2005).

PHT1 STRUCTURE
Sequence analysis of different PHT1 transporters highlights an
amino acid sequence conserved from fungi to plants. Hydropho-
bicity analysis predicts that these transporters share a common
topology with 12 membrane-spanning domains, which are sep-
arated into two groups of six domains by a charged hydrophilic
loop (Raghothama, 1999). Both C- and N-termini are expected
to be oriented inside the cell, with the protein inserted in the
plasma membrane (Raghothama, 1999). The PHT1 family mem-
bers encode closely related proteins, as indicated by a greater than
76% identity in their protein sequences between various plant
species (A. thaliana, tomato, M. truncatula, potato, and C. roseus;
Raghothama, 1999; cf. Figure 1 for examples). Strong homologies
for this protein family are also observed between plants and yeast:
Arabidopsis PHT1 and yeast PHO84 proteins share 34% identity
and around 50% similarity.

In Arabidopsis, these transporters range in size from 520 to 550
amino acids, with an estimated molecular weight around 58 kDa.
As previously reported in Medicago (Chiou et al., 2001) or in
Arabidopsis (Figure 2) this weight is lower than expected. More-
over, these western blots exhibit also higher weight molecular
bands that are compatible with the presence of multimeric pro-
teins (Figure 2; Chiou et al., 2001). This hypothesis will require
further experiments for validation, such as those performed for
NRT2.1 (Wirth et al., 2007). In these experiments multimers were
also identified on SDS PAGE gel before validation by crosslinking.
Nevertheless, this view is also supported by the semi-dominant
character of the pht1;1–3 mutation in Arabidopsis (Catarecha et al.,
2007), a trait generally associated with multimeric transporters
(Ludewig et al., 2003; Loque et al., 2007) in which incorporating
the inactive subunits into the multimeric pore affects its global
structure.

PHT1 ARE Pi:H+ CO-TRANSPORTERS
The study of Pi uptake kinetics in planta using radioactive Pi
isotopes (P33 or P32) identified two distinct phases, which were
interpreted as the co-existence of a high and a low affinity system
(Cogliati and Clarkson, 1983; Drew and Saker, 1984; Drew et al.,
1984). Pi uptake kinetics have been measured for several species
(Lemna gibba, Brassica nigra, C. roseus, tobacco, Arabidopsis), with
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FIGURE 1 | Sequence alignment of several PHT1 transporters from

Medicago truncatula (Mt), Arabidopsis thaliana (At), Hordeum vulgare

(Hv), and Oryza sativa (Os). High or low affinity characterized PHT1 are
indicated by orange or green colors respectively. Stars indicate the 7 amino

acids with non-conservative changes between the three low affinity (MtPT1,
Mt PT2, MtPT3) and the high affinity transporters (MtPT5) identified by Liu
et al. (2008). The serine identified in AtPHT1.1 (Bayle et al., 2011) that
regulates exit from the ER is boxed and the putative ER exit site is underlined.

K m values for the high affinity system in the range of 2.5–
12.3 μM, whereas K m values for the low affinity system were
usually observed between 50 and 100 μM (Ullrich-Eberius et al.,

1984; Lefebvre et al., 1990; Furihata et al., 1992; Shimogawara and
Usuda, 1995; Dunlop et al., 1997). In rare cases, only high affin-
ity phosphate transporters could be detected (Drew and Saker,
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FIGURE 2 | Western blot analysis of PHT1;1, PHT1;2, and PHT1;3 on

root membrane protein extracts reveal the presence of potential

multimers. Plants were grown in vitro on medium supplemented with high
(500 μM) or low (10 μM) Pi content (+P or −P respectively). Five
micrograms of membrane protein were loaded per lane, on 10%
acrylamide SDS PAGE gels before protein transfer onto nitrocellulose
membranes. (A) The primary antibody was designed against two peptides
common to PHT1;1, PHT1;2, and PHT1;3. In parallel, an anti GFP antibody
(Roche) was used for control western blots at the same dilution (B). Lanes
were loaded as follows: (1) Transgenic line expressing 35S:PHT1;1:GFP
construct; and wild type control on +P (2) or −P (3) and Bio-Rad Precision
Plus Protein Standards (4). GFP tagged (∗) and untagged (#) PHT1
monomeric form, putative multimers (>) and cleaved GFP (−).

1984), and it remains to be determined if this is linked to the plant
samples or the experimental design.

Inorganic phosphate uptake is an energy-mediated process that
promotes the alkalinization of the medium, which points toward
a Pi/H+ co-transport (Ullrich and Novacky, 1990). The mea-
surements of phosphate absorption and proton flux revealed a
stoichiometry of two to four protons for each phosphate ion trans-
ported across the plasma membrane (Ullrich-Eberius et al., 1981,
1984; Sakano, 1990).

It should be noted that phosphate transporters (in particu-
lar PHT1 proteins) can also transport Pi analogs such as phos-
phite (Ticconi et al., 2001; Varadarajan et al., 2002) and arsenate
(Lee et al., 2003; Catarecha et al., 2007; Wu et al., 2011). This
last compound is highly toxic and can be found in the soil or
water of certain areas. Interestingly, both arsenate and phosphite,
like Pi, down-regulate PHT1 transcription (Ticconi et al., 2001;
Varadarajan et al., 2002; Catarecha et al., 2007).

A RANGE OF AFFINITIES
Several approaches have been used to investigate the Pi transport
properties of the various PHT1 family members. One approach
relies on the complementation by plant phosphate transporters of
the yeast pho84 mutant or pho84/pho89 double mutant (PHO84
and PHO89 are the two major high affinity Pi transporters present
in yeast). The K m values measured for several PHT1 family mem-
bers were: 280 and 130 μM, for two of the potato PHT1 trans-
porters (Muchhal et al., 1996; Leggewie et al., 1997; Liu et al.,
1998b); 97 μM for the rice OsPT6 (Ai et al., 2008) or 23 μM for
OsPT8 (Jia et al., 2011); and 192 μM for Medicago MtPT1 (Liu
et al., 1998b).

Although a range of affinities can be determined from yeast
complementation assays, in most cases these measurements greatly
exceed the expected K m calculated from in planta radioactive
Pi uptake experiments (from 2.5 to 100 μM as mentioned in a

previous section). This suggests that yeast complementation can
only partially reflect the behavior of PHT1 proteins in plants, and
it is important to keep this information in mind when predicting
the affinities of PHT1 proteins in the plant.

Because of the discrepancies between the in planta affinities and
the values obtained in yeast, alternative methods may be needed
for precise Pi uptake measurements. One such technique is the het-
erologous transformation of Xenopus oocytes with PHT1 trans-
porters, although measured affinities based on this method can
also largely differ from the expected values in planta. For instance,
the rice Pi transporter OsPT2 exhibits low affinity characteristics in
the mM scale, when expressed in oocytes (Ai et al., 2008). By con-
trast, using the same method reveals a K m value of 19 μM for the
barley high affinity Pi transporter HvPHT1 (Preuss et al., 2011).
One revealing potential study could be to compare values obtained
for both systems (yeast vs. oocytes) for several transporters.

To avoid using a heterologous system, the kinetic parameters
can be investigated by gene over-expression in plant cell culture.
This technique was used to estimate K m values for AtPHT1;1
(3.1 μM, Mitsukawa et al., 1997), and for barley HvPHT1;1
(9.06 μM) and HvPHT1;6 (385 μM, Rae et al., 2003). These data
are much closer to the affinities expected for Pi uptake measure-
ments in planta, although the high Km determined for HvPHT1;6
reinforces the idea that PHT1 members could encode both high
and low affinity transporters.

One study has attempted to identify which amino acid alter-
ations are responsible for the variation observed in transporter
affinity, in M. truncatula. The results indicate that slight varia-
tions in the protein sequence of the PHT1 proteins could influence
their affinity for Pi transport (Liu et al., 2008): when several M.
truncatula PHT1 transporters with an 84% amino acid identity
were expressed in yeast, their K m ranged broadly from 13 to
858 μM. Analysis of the transporter sequences revealed that only
seven amino acids showed non-conservative changes between the
three low affinity (MtPT1, Mt PT2, MtPT3) and the high affin-
ity transporters (MtPT5). These amino acid positions are located
all along the protein sequence (Figure 1). The predicted struc-
tural model hypothesizes that they are clustered in two regions of
the protein: one on the extracellular surface, and one within the
membrane (Liu et al., 2008). The authors posit that these particu-
lar extracellular membrane areas could be directly responsible in
controlling the PHT1 affinities. Nevertheless, sequence compar-
isons with other PHT1 transporters that exhibit distinct affinities
for Pi could not reveal a correlation with these results (Figure 1).
This suggests either independent evolution in separate species, or
that the amino acids identified from the M. truncatula data cannot
account for affinity changes in other species.

SPATIAL DISTRIBUTION
Most members of the PHT1 family exhibit strong expression in
roots, and this property is shared between monocotyledonous and
dicotyledonous species (Muchhal et al., 1996; Leggewie et al., 1997;
Smith et al., 1997; Liu et al., 1998a,b; Schunmann et al., 2004a;
Koyama et al., 2005; Nagy et al., 2006; Xiao et al., 2006; Tittarelli
et al., 2007; Jia et al., 2011; Loth-Pereda et al., 2011). However,
PHT1 proteins are also detected in aerial organs such as leaves or
flowers (Figure 3).
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More precisely, in situ hybridization performed in tomato
revealed the presence of LePT1 transcript in the root cap and
in the external layers of the root (Daram et al., 1998; Liu et al.,
1998a). Similar experiments in M. truncatula and A. thaliana
localized MtPT1 and AtPHT1;4 in the root epidermis and root
hairs (Chiou et al., 2001; Misson et al., 2004). Immunoblot analyses

of tomato LePT1 (Muchhal and Raghothama, 1999) and potato
StPT2 (Gordon-Weeks et al., 2003), or use of translational GFP
fusions with either AtPHT1;1, AtPHT1;2, or AtPHT1;4 (Gonzalez
et al., 2005; Bayle et al., 2011) have all provided similar results,
localizing these transporters mainly in epidermis and root hairs.
Additionally, translational fusion experiments between PHT1 and

FIGURE 3 | Expression patterns of the nine PHT1 transporters from

Arabidopsis thaliana, based on a compilation of histological and

transcriptomics data (combining information for both +P and −P

conditions). The different plant parts are not presented to scale; in particular,
the root system has been simplified so that only a single primary root and
lateral root are represented. References corresponding to histological studies
(promoter::GFP/GUS fusions or in situ hybridization) are identified on the
figure by the following symbols: red square (Mudge et al., 2002), green circle
(Karthikeyan et al., 2002), pink rectangle (Misson et al., 2004), black rhombus

(Karthikeyan et al., 2009), and gray triangle (Nagarajan et al., 2011). Results
based on transcriptomics studies are indicated by a blue T, and they
correspond to a summary of several data sets presented on the eFP server
(Winter et al., 2007). ∗Due to the design of most transcriptomic chips, it is not
possible to distinguish the expression patterns of PHT1;1/PHT1;2 as well as
PHT1;4/PHT1;7. When a PHT1 transporter is predominantly (but not
exclusively) expressed in one or several tissues, its name is underlined. The
subset of expression data indicated between brackets () are based on RT-PCR
and/or transcriptomics only (i.e., not validated by promoter::reporter studies).
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GFP reporter genes confirmed that these phosphate transporters
are targeted to the plasma membrane in various species (Gon-
zalez et al., 2005; Bayle et al., 2011; Jia et al., 2011). Transcrip-
tional fusions between PHT1 promoters and the GUS or GFP
reporter genes have also facilitated the study of the expression pat-
terns of PHT1 members from different species, along with the
identification of promoter elements involved in the control of
these expression patterns (Karthikeyan et al., 2002; Mudge et al.,
2002; Schunmann et al., 2004a,b; Misson et al., 2005; Jia et al.,
2011). In the specific case of the plant model A. thaliana, the
full genome sequence permitted extensive analyses of all Ara-
bidopsis PHT1 family members, using either RT-PCR (Mudge
et al., 2002; Misson et al., 2005) or promoter fusions with GUS
or GFP reporter genes (Karthikeyan et al., 2002; Mudge et al.,
2002). A landmark contribution to this field was provided by
Mudge et al. (2002), who performed a systematic study of the
nine PHT1 transporters. Subsequently, the expression patterns
were confirmed or analyzed more precisely by several other lab-
oratories (Karthikeyan et al., 2002, 2009; Misson et al., 2004;
Nagarajan et al., 2011). In addition, the publication of multi-
ple transcriptomics studies allows us to take into account data
sets that were not initially developed for the study of phosphate
transport. Powerful tools such as the eFP browser provide an effi-
cient way of analyzing this vast amount of data (Winter et al.,
2007). Figure 3 summarizes the expression patterns for the nine
PHT1 members of A. thaliana, and compares their published
expression patterns to values contained within transcriptomics
data sets.

It appears that the vast majority of the transporters (eight of the
nine Arabidopsis PHT1 members) are expressed at least in roots,
in line with their major role in Pi uptake from the soil. Within
the roots, the expression of phosphate transporters is mostly con-
centrated in root epidermis and central cylinder, particularly in
the root hair zone (Karthikeyan et al., 2002; Mudge et al., 2002;
Misson et al., 2004; Koyama et al., 2005; Xiao et al., 2006; Hirsch
et al., 2011).

Most PHT1 transporters are not present in a single cell type,
but are found in diverse tissues from various organs, often in over-
lapping patterns with other PHT1 members, suggesting a greater
complexity in their roles (Karthikeyan et al., 2002; Mudge et al.,
2002; Figure 3). However, each PHT1 member taken individually
is defined by a preferential expression in a given tissue, which may
indicate the location of its predominant role. It should be noted
that this location is often strongly influenced by environmental
or developmental factors. For instance, strong AtPHT1;6 expres-
sion in pollen could reveal a role for PHT1 transporters during
flower development (Karthikeyan et al., 2002; Mudge et al., 2002).
Functional confirmation of these expression patterns can be per-
formed by reverse genetic analyses: the role of PHT1 protein in soil
Pi uptake was demonstrated with Arabidopsis pht1;4 and pht1;1
single and double mutants, which are dramatically attenuated in
their phosphate uptake capacities (Misson et al., 2004; Shin et al.,
2004). A similar strategy was recently applied to understand the
importance of the strong expression of PHT1;5 in senescing leaves
(Nagarajan et al., 2011; Figure 2): analysis of the pht1;5 mutant
confirmed a role in senescing leaves, and revealed its role in source-
to-sink Pi mobilization. Altogether, this literature suggests a major

role for PHT1 transporters in Pi uptake from soil, and additional
roles in Pi re-mobilization from other organs.

One category of PHT1 transporters which cannot be studied
in Arabidopsis are the PHT1 transporters that are induced by
mycorrhizal symbiosis (endo and ectomycorhizal associations).
Arabidopsis is among the minority of plants which is incapable of
establishing any symbiosis with mycorrhizal fungi. This symbiosis
is however widespread among the plant kingdom (80% of vascu-
lar plants), and its impact on the capacity of plants to acquire Pi
from the soil has been well established (Smith and Read, 1997).
This adaptation of plants has probably evolved to benefit from the
ability of the fungus to explore a greater part of the soil (exploring
up to 100-fold more soil volume) and to have access to mineralized
organic phosphorus (Bucher, 2007).

The induction of specific plant PHT1 transporters in response
to mycorrhization is a widely reported feature of these symbioses
(Javot et al., 2007b; Hata et al., 2010; Loth-Pereda et al., 2011). In
the case of the endomycorrhizal symbiosis, the fungus penetrates
into the root system and develops hyphal structures (referred to
as arbuscules) in the cortex. These arbuscules are composed of
a trunk and arbuscular branches, which are enveloped by the
plasma membrane of the cortical cell. The expression of a sub-
set of PHT1 members is induced in cells containing arbuscules,
which are believed to be the site of nutrient exchange between
the plant and the fungus (Smith and Read, 1997; Javot et al.,
2007a; Loth-Pereda et al., 2011). The symbiosis-specific PHT1
phosphate transporter MtPT4 from the plant M. truncatula is
only detected in cells containing arbuscules, and it has exclusively
been located in the plasma membrane that surrounds arbuscu-
lar branches (Pumplin and Harrison, 2009). The fine regulation
of arbuscule development and associated stimulation of PHT1
expression was recently illustrated by the study of the dynamics
of the rice transporter OsPT11 fused to GFP (Kobae and Hata,
2010).

Promising techniques using uptake of radioactive Pi isotopes in
planta can be applied to study specific PHT1 transporters. It is now
possible to visualize and analyze the precise dynamics of Pi dis-
tribution in planta. This technique, using X-ray films or imaging
plates, has revealed that the main location for phosphate uptake
in Arabidopsis is found close to the root tips, and that PHT1 pro-
teins are involved in this process (Misson et al., 2004). A recent
improvement in visualizing Pi flux dynamics is the use of a CsI
scintillator to convert β-rays into visible light (Kanno et al., 2007).
As illustrated in Figure 4, it is now possible to compare precisely
and in a non-destructive way the entry of Pi into various genotypes
of plants at the same time (in particular for mutations affecting
PHT1 transporters).

TRANSCRIPTIONAL REGULATION OF PHT1 TRANSPORTERS
The tissue specificity of PHT1 described above appears to be
mostly controlled at the transcriptional level. It is likely that
the spatial distribution of PHT1 proteins requires regulatory
elements located in the promoters, which remain poorly char-
acterized (Schunmann et al., 2004a,b; Karthikeyan et al., 2009).
Nevertheless, they are probably well conserved between mono-
cots and dicots, since fusion of the AtPHT1;1 promoter with the
GUS reporter gene has given fairly similar expression patterns

Frontiers in Plant Science | Plant Traffic and Transport November 2011 | Volume 2 | Article 83 | 6

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Traffic_and_Transport
http://www.frontiersin.org/Plant_Traffic_and_Transport/archive


Nussaume et al. PHT1 phosphate transporters

FIGURE 4 |Time course for phosphate absorption based on 32P

detection in Arabidopsis. Plants were supplied with 10 μM Pi
with 32P (H3PO4, 12.5 kBq/ml). Images of radioactivity were
obtained every 3 min; 10 images are presented here. For each
panel, two phf mutants (left) and one wild type (Col-0; right)

plantlet are shown. Circles on the left are 32P standards:descending
from the upper left corner, they represent 2.5, 1, and 0.5k Bq/μl. The plants
shown are 11 days old, grown in vitro using 1/10 MS medium containing
500 μM Pi and subsequently transferred to 10 μM Pi for 3 days before
analysis.

in both rice and Arabidopsis transformants (Koyama et al.,
2005).

The expression of specific plant PHT1 transporters that are
induced in roots in response to mycorrhizal symbiosis is also under
transcriptional control in species as diverse as: rice (Paszkowski
et al., 2002), Medicago (Harrison et al., 2002; Javot et al., 2007a),
potato (Nagy et al., 2005), maize (Nagy et al., 2006), various cereals
(Glassop et al., 2005), tomato (Nagy et al., 2005; Balestrini et al.,
2007; Xu et al., 2007), and trees such as poplar (Loth-Pereda et al.,
2011).

The internal Pi concentration of cells is a major factor in the
control of PHT1 expression. This role has been clearly illustrated
by various transcriptomics experiments (Hammond et al., 2003;
Wu et al., 2003; Misson et al., 2005; Morcuende et al., 2007; Winter
et al., 2007; Calderon-Vazquez et al., 2008; Bustos et al., 2010;
Thibaud et al., 2010), or with the assistance of reporter genes
(Karthikeyan et al., 2002; Mudge et al., 2002; Misson et al., 2004.).
Interestingly, plants can adjust PHT1 transcription when chal-
lenged with a broad spectrum of Pi concentrations (from 0 to
1250 μM) that are outside of the expected range in soils, typi-
cally observed below 10 μM (Muchhal and Raghothama, 1999;

Karthikeyan et al., 2002; Misson et al., 2004). Low basal levels of
gene expression are usually observed when the Pi concentration
of the medium exceeds 250 μM (Muchhal and Raghothama, 1999;
Karthikeyan et al., 2002; Misson et al., 2004).

Variation of Pi concentration in the medium promotes a rapid
modulation of PHT1 transcripts. In Arabidopsis, the detection of
Pi deficiency can occur within 12–24 h after removal of Pi from
the medium (Muchhal and Raghothama, 1999; Misson et al., 2004,
2005). Not surprisingly, re-supply of Pi triggered a faster response
(Karthikeyan et al., 2002), presumably since Pi accumulation
occurs more rapidly than its depletion from the vacuole (Ste-
fanovic et al., 2011). This phenomenon can be greatly affected by
the protocol for cultivating plants (hydroponics vs. solid medium),
as gelling agents are often contaminated with traces of Pi, which
can impact the responses of the plant (Jain et al., 2009). The
analysis of promoter sequences from barley, wheat, and Arabidop-
sis PHT1 transporters prompted the identification of regulatory
boxes involved in the response to Pi starvation (Schunmann et al.,
2004b; Tittarelli et al., 2007; Karthikeyan et al., 2009; Thibaud
et al., 2010). These studies revealed the presence of the P1BS
motif, which is the binding site for the R2R3 Myb transcription
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factor PHR1 (PHOSPHATE STARVATION RESPONSE 1, Rubio
et al., 2001; Nilsson et al., 2007) in Arabidopsis. This protein is
a homolog of Chlamydomonas reinhardtii protein PSR1 (PHOS-
PHORUS STARVATION RESPONSE 1,Wykoff et al., 1999). PHR1
belongs to a wide multigenic family that includes PHL1 (Bustos
et al., 2010). Both PHR1 and PHL1 bind to the P1BS DNA motif
(GNATATNC; Rubio et al., 2001), and play a crucial role in the Pi
responsiveness of PHT1 transporters as demonstrated with both
phr1 and phr1/phl1 mutants (Rubio et al., 2001; Bustos et al., 2010).
This DNA binding motif appears to be conserved between mono-
cots and dicots (Zhou et al., 2008). In addition, the P1BS motif
participates in the systemically regulated PHT1 response to inter-
nal Pi concentration, as revealed by the full genome analysis in
split root experiments (Thibaud et al., 2010).

Additional regulatory sequences have been proposed from
in silico analyses (including HLH, and NIT2 motifs highly present
in the promoters of the PHT1 genes), although no mechanism has
been characterized yet (Mukatira et al., 2001). The genes PHO1
and PHO2 have also been identified as critical to the control of
Pi homeostasis (Hamburger et al., 2002; Aung et al., 2006; Bari
et al., 2006). The corresponding pho1 and pho2 mutants accu-
mulate Pi in either roots or leaves, respectively (Poirier et al.,
1991; Delhaize and Randall, 1995), and affect the transcription
of PHT1;8 and PHT1;9 (Bari et al., 2006; Rouached et al., 2011).
It is likely that PHO1 (membrane protein of unknown func-
tion) and PHO2 (E2 conjugase protein) act along with additional
elements, since neither of these two proteins are transcription
factors.

Several transcription factors have been found in addition
to PHR1 that regulate PHT1 expression. For example, genetic
dissection of the AtPHT1;4 promoter identified putative bind-
ing sequences for AtMyb2 and AtMyc2 (two positive regula-
tors responding to water deprivation and abscisic acid stimuli)
and also WRKY proteins (Karthikeyan et al., 2009), which are
involved in biotic and abiotic stress responses. Reducing WRKY75
expression through RNAi silencing (Devaiah et al., 2007a) or
the over-expression of MYB62 (Devaiah et al., 2009) produces
plants that exhibit a decreased level of several PHT1 transporters,
although there is no evidence for a direct interaction between these
transcription factors and PHT1 promoters.

Further regulatory components were identified based on
genetic evidence and transcriptomic analysis of Pi starvation.
These include the zinc finger transcription factor ZAT6 (Deva-
iah et al., 2007b), the regulatory protein SPX3 (Duan et al., 2008),
the nuclear actin-related protein ARP6, and the histone H2A.Z
(Smith et al., 2010). These various proteins are reported to modu-
late PHT1 genes (see Chiou and Lin, 2011 for a recent review of the
Pi regulatory pathway), although a mechanism of action remains
to be proposed.

Factors other than Pi concentration also influence PHT1
expression, including active photosynthesis or sugars (Jain et al.,
2007; Karthikeyan et al., 2007; Hammond and White, 2008, 2011;
Lei et al., 2011). Cytokinins have also been observed to pre-
vent PHT1 induction during Pi deficiency; this action relies
on the cytokinin receptors CRE1/AHK3 and AHK4 (Franco-
Zorrilla et al., 2002, 2005). Many genes responding to Pi defi-
ciency are stimulated by sugars or are enhanced in the cre1/ahk4

mutant (regardless of cytokinin applications), suggesting cross-
talk between Pi deficiency, sugars, and cytokinin (Franco-Zorrilla
et al., 2005).

POST-TRANSCRIPTIONAL REGULATION OF PHT1
Beyond transcriptional control, PHT1 targeting and accumula-
tion in the plasma membrane are also modulated by multiple
steps of post-translational regulations. A mutant allele of the
PHF1 locus (PHOSPHATE TRANSPORTER TRAFFIC FACILI-
TATOR1) has been identified, which displays a severe decrease
in Pi influx (Gonzalez et al., 2005). In accordance with its status
as an endoplasmic reticulum (ER) resident protein, the loss of
PHF1 results in the abnormal accumulation of PHT1;1, PHT1;2,
and PHT1;4 in the ER, suggesting that PHF1 could be involved in
intracellular trafficking of several PHT1 family proteins (Gonza-
lez et al., 2005; Bayle et al., 2011). These observations can explain
how the phf1-1 mutant shows a strong reduction (80%) of Pi
uptake capacity compared to WT when grown in low Pi (Gon-
zalez et al., 2005; Figure 4). Recently, similar results were found
in rice, where a mutant of OsPHF1 was shown to affect several
members of PHT1 family, including the low affinity Pi trans-
porter OsPT2 and the high affinity Pi transporter OsPT8 (Chen
et al., 2011). A similar targeting defect was described for axr4, an
auxin-resistant mutant that is affected in the expression of an ER
accessory protein; this defect promotes the retention of the auxin
influx facilitator AUX1 in the ER (Dharmasiri et al., 2006). These
results suggest that several membrane proteins may require assis-
tance in transiting through the ER compartment. PHF1 exhibits
structural homologies with yeast SEC12 protein, an ER resident
component involved in the formation of COPII vesicles (Gon-
zalez et al., 2005). These vesicles are involved in the export of
newly synthesized cargo proteins, including PHT1, from the ER
to the Golgi apparatus in eukaryotic cells. Although PHF1 shares
structural homologies with SEC12, multiple amino acids that have
been conserved between all SEC12 proteins are lost in the plant
PHF1 homologs. This suggests a functional specialization that has
diverged from that of SEC12 (Gonzalez et al., 2005). Indeed, cell
biology experiments in Arabidopsis revealed the absence of co-
localization between COPII markers and PHF1, demonstrating
the independence of PHF1’s role from COPII formation (Bayle
et al., 2011).

Phospho-proteomic studies have determined that phosphory-
lation events occur at the C-end of PHT1 proteins when Pi is
abundant in the environment (Nuhse et al., 2004; Hem et al., 2007).
A phosphorylation-mimicking mutagenesis of PHT1;1 (at Ser 514,
Figure 1) resulted in its accumulation in the ER (Bayle et al., 2011),
implicating phosphorylation as an additional way for plant cells
to modulate PHT1 exit from the ER. Phosphorylation events on
serine residues located at the C-end of the PHT1;1 protein could
provide additional negative charges in the vicinity of the putative
ER export site (D/E-X-D/E), thereby altering the recognition of
this motif and resulting in the accumulation of PHT1;1 in the ER
(Figure 1). This mechanism is likely conserved between the differ-
ent PHT1 transporters, since phosphorylation of other Arabidopsis
members of this family (PHT1;4, PHT1;5; PHT1;7, PHT1;9) at
the C-end of the protein has been reported (Bayle et al., 2011).
This regulation recalls the previously identified phosphorylation
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of the C-terminal serine residue during subcellular trafficking of
PIP2;1 toward the plasma membrane (Prak et al., 2008). However,
phosphorylation has distinct effects on these proteins. Whereas
phosphorylation of PIP2;1 is required for its proper localization,
in the case of PHT1;1, phosphorylation was found to prevent the
protein from reaching its final destination.

Finally, a new type of post-transcriptional regulation has
recently been identified, which specifically degrades plasma mem-
brane PHT1 in the presence of phosphate (Bayle et al., 2011).
This mechanism is dependent upon endocytosis and subse-
quent degradation of the protein in the vacuole. Similar reg-
ulatory mechanisms have been identified for many types of
plasma membrane proteins in yeast, plants, and animals (Lager-
stedt et al., 2002; Persson et al., 2003; Takano et al., 2005). As
for the broader family of Pi transporters, this regulation has
already been reported for the yeast PHO84 transporter (Lager-
stedt et al., 2002; Persson et al., 2003). An important dis-
tinction here is that the regulatory mechanism identified in
yeast requires the phosphorylation of an amino acid to observe
this degradation phenomenon, whereas this particular amino
acid is not conserved in plant PHT1 (Lundh et al., 2009).
Thus, despite the high homologies between PHO84 and PHT1

proteins, similar regulatory mechanisms could rely on distinct
types of machineries. This probably reflects adaptive steps used
by plants to cope with a complex environment and a multicellular
organization.

CONCLUSION
Great strides have been made in the characterization of the PHT1
family of Pi transporters since their identification in 1996. The fact
that these transporters belong to broad multigenic family often
exhibiting overlapping expression patterns limits the analysis of
their role in planta. Another obstacle to the characterization of
PHT1 proteins is their hydrophobic nature, which has impeded
the study of their biochemistry and structural biology. This issue
will eventually be surmounted as improved techniques in genet-
ics, cell and molecular biology become more readily available. In
view of the ever-expanding array of tools available to researchers,
rapid advances are anticipated in our understanding of the finely
regulated, sophisticated mechanisms of the PHT1 family.
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