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Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also
a plethora of functional cis-elements that influence or coordinate a number of regula-
tory aspects of gene expression, such as mRNA stability, splicing forms, and translation
rates. Understanding the rules that apply to each of these element types (e.g., whether
the element is defined by primary or higher-order structure) allows for the discovery of
novel mechanisms of gene expression as well as the design of transcripts with controlled
expression. Bioinformatics plays a major role in creating databases and finding non-evident
patterns governing each type of eukaryotic functional element. Much of what we currently
know about mRNA regulatory elements in eukaryotes is derived from microorganism and
animal systems, with the particularities of plant systems lagging behind. In this review,
we provide a general introduction to the most well-known eukaryotic mRNA regulatory
motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive ele-
ments, AU-rich elements, zipcodes, and polyadenylation signals) and describe available
bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts
in search of functional elements, focusing on recent trends in bioinformatics methods and
tool development. We also discuss future directions in the development of better com-
putational tools based upon current knowledge of these functional elements. Improved
computational tools would advance our understanding of the processes underlying gene
regulations. We encourage plant bioinformaticians to turn their attention to this subject to
help identify novel mechanisms of gene expression regulation using RNA motifs that have
potentially evolved or diverged in plant species.
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BACKGROUND
Messenger RNA (mRNA) is a class of RNA molecules that is
transcribed from a DNA template (gene) and carries coding
information for protein synthesis. A eukaryotic mRNA mole-
cule is generated by transcription of a gene in the nucleus, at
which point it is known as pre-mRNA. The pre-mRNA molecule
then undergoes further processing (e.g., 5′ capping, splicing, 3′
polyadenylation) to become mature mRNA, which is transported
to the cytoplasm where several translation cycles are processed
by the ribosomal machinery. The mRNA molecule is eventually
degraded. This process is often referred to as gene expression.
The whole process of gene expression is accomplished by dynamic
association/dissociation of different regulatory molecules with
DNA/mRNA. For instance, the translation of a nucleic acid poly-
mer into an amino acid chain requires several additional mol-
ecules, such as cis-acting elements, trans-acting factors, transfer
RNAs (tRNAs), and ribosomes. Regulation of gene expression is an
important mechanism that increases the versatility and adaptabil-
ity of an organism by allowing the cell to express specific proteins at
a particular time. Gene expression was initially thought to be con-
trolled only at the DNA level by interaction between trans-acting

factors and the gene promoter, while transcribed mRNAs were
viewed as simple molecules containing only information for pro-
tein synthesis. However, later discoveries showed that mRNAs
and their precursors also contain various functional elements
that can interact with different RNA-binding proteins (RBPs) to
modulate gene expression at both the transcriptional and post-
transcriptional levels. Gene regulation at the transcriptional level
determines whether a gene is transcribed or not and to what extent
(Mignone et al., 2002). Post-transcriptional regulation of gene
expression acts on transcribed RNA molecules by altering their
stability (Bashirullah et al., 2001), translation efficiency (van der
Velden and Thomas, 1999), and subcellular localization (Jansen,
2001; Mignone et al., 2002). Functional elements of mRNA can
be defined as motifs/segments of the molecule that specifically
interact with RBPs or other cis- or trans-acting factors present in
the cellular milieu in order to regulate gene expression. Both the
primary sequences of these elements and the correct structural
conformation are often necessary for function.

Almost all eukaryotes utilize RNA polymerase II (Pol II) to syn-
thesize mRNA transcripts from protein-coding gene sequences.
The initial primary transcripts are converted to mature products
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in the nucleus by undergoing extensively complex processing steps:
addition of 7-methyl-guanylate (m7G) cap at 5′-end of the first
exon, removal of introns (splicing), cleavage, and addition of
poly(A) tail at the 3′-end of the last exon (Reed and Hurt, 2002;
Buratowski, 2005). This manipulation results in the formation of
a mature mRNA that consists of a 5′ untranslated region (5′-UTR,
also called a leader sequence), a coding region, and a 3′ untrans-
lated region (3′-UTR, also called a trailer sequence). The mRNA
is then exported to the cytoplasm to be translated into protein. All
of these processes are accomplished and regulated with the help of
several functional cis-elements, embedded either in the protein-
coding or in the untranslated regions (UTRs) of the transcript, by
interacting with RBPs.

In order to further our understanding of gene regulation, it
is imperative to know the prevalence of different types of func-
tional elements on mRNAs and their characteristic features. It
is also important to discern how a functional cis-element in the
transcript selectively interacts with an RBP and how mutations in
either functional cis-elements or regulatory proteins, such as trans-
acting factors, affect gene expression. In this review, we provide an
introduction to the major classes of functional elements present in
eukaryotic pre-mRNA and mature mRNA. We focus on the avail-
able bioinformatics resources (databases and tools) for the analysis
of these elements. We also discuss future directions in the develop-
ment of better computational tools based upon current knowledge
of these functional elements. Such tools would advance our under-
standing of the processes underlying gene regulations. We aim
to encourage plant bioinformaticians to turn their attention to
this subject and help identify novel mechanisms of gene expres-
sion regulation using RNA motifs that have potentially evolved or
diverged in plant species. In the following sections, we describe
those functional elements that still pose challenges. Understand-
ing the mechanisms of gene regulation in which these elements
are involved will require greater attention from investigators.

FUNCTIONAL ELEMENTS OF AN mRNA MOLECULE
Numerous functional elements and the RBPs with which they
interact have already been reported and elements are still being
discovered. Figure 1 depicts some important functional elements
found on diverse eukaryotic mRNAs. These elements interact with
different RBPs expressed in the cell to perform particular func-
tions. Some interactions are highly specific, whereas others acquire

specificity only through the binding of auxiliary proteins. The ini-
tial step in gene expression is the transcription of pre-mRNA and
its subsequent processing to produce mature mRNA. Studies show
that several enzymes involved in the maturation of pre-mRNAs
are bound to Pol II and, therefore, the transcription and matura-
tion processes are not strictly separated but occur simultaneously.
The transcription start point for Pol II commonly lies within
the initiator element (Inr) sequence context (Y2CAY5, where Y is
any pyrimidine), which is located ∼70–80 bp downstream of the
CAAT box, ∼25 bp downstream of the TATA box, and/or ∼24 bp
upstream of the DPE element (AGAC) in the gene promoter. As
the 5′-end of the new transcript appears during transcription, the
γ-phosphate of the triphosphate group of the 5′ nucleotide (usu-
ally the adenine within the Inr sequence) is removed by the enzyme
RNA triphosphatase, so that the capping enzyme, guanylyl trans-
ferase, adds a GMP moiety to the resulting diphosphate group at
the 5′-end of the transcript through a non-canonical 5′–5′ linkage
reaction. Subsequently, the 7-nitrogen of the capping guanosine
is methylated by the enzyme methyl transferase. The result is the
formation of the m7GpppN at the 5′-end of the mRNA, which
is referred to as the 5′-cap that plays several essential roles such
as: preventing degradation of mRNA by exonucleases, assisting in
ribosome binding for the initiation of translation, and regulat-
ing nuclear export of the mRNA. During transcript termination,
the cleavage and polyadenylation specificity factor (CPSF) forms
a complex with the polyadenylation signal (PAS) sequence present
downstream of the coding sequence (CDS) in the pre-mRNA. Fur-
thermore, binding of the cleavage stimulation factor (CstF) to the
complex promotes cleavage of transcript at ∼35 nt downstream of
the PAS, and 150–200 adenine nucleotides are rapidly added to the
freshly generated 3′-end by the enzyme poly(A) polymerase while
poly(A)-binding proteins binds to the poly(A) tail. The result-
ing poly(A) tail assists in mRNA export from nucleus, provides
stability, and facilitates initiation and efficiency of translation.

The removal of introns leads to the formation of a mature
mRNA molecule, which assembles with proteins to form ribonu-
cleoprotein (RNP) particles before being exported to the cyto-
plasm for translation. RNP particles protect the mRNA from
degradation and promote the binding of adaptor proteins, which
facilitate its transport from the nucleus to the cytoplasm via
nuclear pore complexes (NPCs; reviewed in Kohler and Hurt,
2007). Instead of a random dispersion of mRNAs throughout

FIGURE 1 | A schematic representation of eukaryotic mRNA with functional elements. UTR, untranslated region; CDS, coding sequence; m7G,
7-methyl-guanosine cap; IRE, iron-responsive element; uORF, upstream open reading frame; IRES, internal ribosome entry site; ARE, AU-rich element; PAS,
poly(A) signal.
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cytoplasm, studies demonstrate that numerous mRNAs are deliv-
ered to specific locations in the cytoplasm. The cytosolic local-
ization of most of the mRNAs is achieved by RNA localization
elements (zipcodes) located in the 3′-UTR which, together with
RBPs, molecular motors, and the cytoskeleton, direct the trans-
port of mRNAs to a specific location in the cytosol for translation
(reviewed in Martin and Ephrussi, 2009). In the mRNA, the region
that codes for a protein is called the CDS, whereas the remaining
UTRs, the 5′-UTR and the 3′-UTR, are responsible for the regula-
tion of translation. During translation initiation, the eIF4F protein
complex, which consists of four subunits: eIF4E (the cap-binding
protein), eIF4A (the RNA helicase), eIF4G (which interacts with
various other proteins including polyadenylate-binding protein),
and eIF4B (which activates the RNA helicase activity of eIF4A to
unwind secondary structures formed at the 5′-end of the mRNA),
binds at the 5′-cap. Concomitantly, the small ribosomal 40S sub-
unit complexes with several protein factors and a GTP-charged
initiator tRNA to generate the so-called 43S preinitiation complex,
which is then ready to interact with the mRNA and associated pro-
teins, forming the 48S preinitiation complex. This complex scans
the mRNA toward its 3′-end to find the start codon (AUG). The
complete ribosome (80S) results from the dissociation of several
factors and the association of the GTP-charged eIF5A and, most
importantly, the large ribosomal 60S subunit. The complete ribo-
some translates the CDS from the start codon to the stop codon
into an amino acid chain. Although most eukaryotic mRNAs con-
tain the 5′ cap, some do not. In mRNA lacking the 5′ cap, the
ribosome is guided to the correct start codon with the help of
structural motifs located in the 5′-UTR, which are referred to as
internal ribosome entry sites (IRES). This process is known as cap-
independent initiation, which occurs by directing eIF4G (or the
small ribosomal subunit and associated factors directly) to bind
to the IRES, allowing the 43S preinitiation complex to bind to the
mRNA and to scan downstream of the sequence to identify the
start codon.

After several round of translation, the mRNA undergoes degra-
dation. The rate at which a particular mRNA decays is based
upon: (1) cis-acting elements present on the mRNA and (2) the
enzymatic environment in the cell. The mechanisms for mRNA
degradation can be divided into two broad classes. Most mRNA
undergoes degradation via the deadenylation-dependent decay
pathway, which is initiated by shortening of the 3′-poly(A) tail by
the deadenylase enzyme, poly(A) nuclease, followed by decapping
and ultimately cleavage of the end nucleotides by exonucleases
(Wilusz et al., 2001; Meyer et al., 2004). Alternatively, mRNAs
may be degraded by the deadenylation-independent decay path-
way, in which mRNA, without deadenylation, undergoes cleavage
by endonuclease and exonuclease enzymes via deadenylation-
independent decapping, endonucleolytic cleavage, oligo(U) addi-
tion (specifically to histone mRNAs), or microRNA (miRNA)-
mediated silencing. The trans-factors involved in this degradation
recognize specific sequences within the transcript and promote
transcript decay. Several mRNAs (8% of mammalian mRNAs)
contain AU-rich elements (ARE), which are destabilizing ele-
ments located at the 3′-UTR responsible for rapid degradation of
transcripts. These elements act by interacting with ARE-binding
proteins, which recruit the degradation machinery.

In order to maintain iron homeostasis in the cell, some mRNAs
form several stem–loop structures in the 5′- or 3′-UTR that act as
stabilizing motifs called iron-responsive elements (IREs). Under
conditions of iron starvation, the iron regulatory protein (IRP)
binds to the IRE and induces an allosteric change in order to con-
trol the expression of target mRNAs either by promoting mRNA
degradation or repressing translation. Similarly, many prokaryotic
mRNAs use riboswitches as functional element to sense the pres-
ence of specific molecules which can help to switch gene expression
on or off. Bacteria and viruses possess small genomes and uti-
lize functional elements to expand the number of possible protein
products. To enhance the information content of an mRNA, motifs
called ribosome frameshift signals (RFS) are used, which shift the
ribosome to an alternative coding frame and yield two different
protein products from the same mRNA or a single protein from
two overlapping ORFs.

A decade ago, it was discovered that eukaryotic cells evolved
RNA interference mechanisms (RNAi) to control gene expres-
sion at the post-transcriptional level. This process produces small
RNAs of ∼21–24 nt called miRNA, which are derived from hairpin
structure embedded in a long miRNA primary transcript (pri-
miRNA). The pri-miRNA undergoes two subsequent cleavages by
members of the RNase III superfamily, Drosha, in a complex with
the essential cofactor Pasha, and Dicer (in animals) or DCL1 (in
plants), which generate the miRNA:miRNA∗ duplex. Based on
sequence and structural features, only one strand of the duplex,
the miRNA, incorporates into the RNA-induced silencing complex
(RISC), while the passenger strand, the miRNA∗, is thought to be
degraded (Schwarz et al., 2003; Ahmed et al., 2009a). The activated
RISC, containing the miRNA, binds to the target mRNA (which
possesses some base complementarity to the miRNA), resulting
in either cleavage of the mRNA or arrest of translation. Interest-
ingly, miRNA binding sites are mostly found in the 3′-UTR of
animal mRNAs, whereas in plants, both CDS and UTR regions
are targeted (Dai and Zhao, 2011; Dai et al., 2011). Other small
non-coding RNA classes exist with diverse mechanisms involved
to control gene expression via RNA degradation, translation arrest,
DNA methylation and heterochromatin formation. Here, we focus
on intrinsic RNAi mechanisms of gene expression control. Trans-
acting small interfering RNAs (tasiRNAs) are ∼21-nt long, found
in plants, and generated by a pathway that involves miRNA-
mediated cleavage of a precursor mRNA sequence. They are often
associated with the silencing of hormone-related developmental
genes. (Dai and Zhao, 2008). Among the other small RNA species,
it is worth mentioning Piwi-interacting RNAs (piRNAs), which
are found in animal germ cells. These small RNAs are produced
by a different pathway, are longer (26–31 nt) and more complex
(with a lower level of sequence conservation) than miRNAs, and
their function is related to the epigenetic and post-transcriptional
silencing of retrotransposable elements. Repeat-associated siRNAs
(rasiRNAs) are a subclass of piRNA that act in germline cells to
control heterochromatin architecture and silence transposable and
repetitive elements.

SPLICING REGULATORY ELEMENTS
Eukaryotic pre-mRNA contains small segments of coding regions
known as exons (∼50- to 250-bp long), usually interrupted by
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large segments of non-coding regions known as introns (hun-
dreds to thousands of basis point long). In order to generate
the functional mature mRNA, it is necessary to splice exons at
the intron–exon boundary, removing the introns, and ligating the
exons. For splicing to occur at the correct position, the intron has
well-conserved cis-elements known as the 5′ splice site (GU), the
branch site (UACUAAC), a polypyrimidine (Y) tract, and the 3′
splice site (AG; Figure 2). All of these elements are known as the
core splicing signals on which the spliceosome complex [which
contains five small nuclear RNPs (snRNPs) and various auxiliary
proteins] is assembled in order to catalyze proper intron excision
and exon ligation.

Minor spliceosome machinery exists in multicellular eukary-
otes that performs a less canonical splicing between AU-AC sites
rather than between the GU-AG sites targeted by the major
spliceosome machinery. Moreover, there are some pre-mRNAs
that undergo alternative splicing (AS) in which exons are alterna-
tively integrated into the mature mRNA depending on the cell type
and physiological conditions. Such pre-mRNA presents weaker
patterns of core splicing sites, which require some auxiliary ele-
ments known as splicing regulatory elements (SREs) for correct
identification of splicing sites. The process of AS allows the genera-
tion of multiple forms of mRNA from a single pre-mRNA species,
leading to protein diversification. This process not only helps to
add or remove protein domains, but it can also shift the reading
frame to translate a different protein. When it occurs in the 5′
or 3′-UTR of pre-mRNA, regulatory elements can be added or
removed to modulate the fate of the mRNA.

The SREs that stimulate or repress splicing site selection
are called splicing enhancers or splicing silencers, respectively.
Enhancers promote the inclusion of exons in the mature mRNA
by assisting in the assembly of the spliceosome complex. Splicing
silencers promote exon exclusion by binding to repressor proteins
to block either the assembly of the spliceosome complex or the
interaction between proteins responsible for intron excision (Ule
et al., 2006). Furthermore, enhancers and silencers may be present
in exonic or intronic regions. Thus, based on function and loca-
tion, SREs can be classified as exonic splicing enhancers (ESEs),
intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs),
or intronic splicing silencers (ISSs). For proper function, SREs are
bound by specific classes of RBPs, such as serine/arginine-rich pro-
teins (SR) and heterogeneous nuclear RNPs (hnRNP; Black, 2003).
Thus, tissue-specific expression of particular RBPs determines
the inclusion or exclusion of alternative exons. Several examples
demonstrating the importance of SREs for correct splice site iden-
tification and the mechanism of alternative splicing have been
well documented in recent reviews (Smith and Valcarcel, 2000;
Ladd and Cooper, 2002; House and Lynch, 2008; Wang and Burge,
2008).

It has been reported that some SREs can act as either enhancers
or silencers of splicing, depending on their locations relative to
alternative exons. For instance, YCAY clusters, the binding sites of
the Nova protein, act as silencers when located in an exon or in the
preceding intron while they act as splicing enhancers when found
in the downstream intron (Sugnet et al., 2006; Ule et al., 2006).
Mutation or loss of SREs leads to incorrect splicing that generates

FIGURE 2 | Alternative splicing of pre-mRNA using splicing

regulatory elements. Core splicing signals help to recruit the
spliceosome complex. The assembly of five ribonucleoprotein subunits
(U1, U2, U4, U5, and U6 snRNPs) with several other proteins make up
the spliceosome, which catalyzes the splicing and ligation of exons.

(A) Exonic splicing enhancers (ESEs) promote the binding of the
spliceosome complex, which leads to the splicing and removal of
introns for exon inclusion. (B) Exonic splicing silencers (ESSs) bind to
trans-acting factors that prevent the binding of the spliceosome
complex or other protein factors, which leads to exon exclusion.
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toxic proteins, which have been implicated in severe pathologies.
To date, the patterns that determine alternative splicing have not
been fully elucidated; therefore, it is necessary to further study spe-
cific alternative splicing choices and gene products under different
cell conditions.

Several computational methods have been developed to predict
splicing sites in eukaryotic genes by considering sequence features
around the core splicing sites consensus of GT. . .AG), such as
SplicePredictor (Usuka and Brendel, 2000), GeneSplicer (Pertea
et al., 2001), SpliceMachine (Degroeve et al., 2005), and others
(Pavy et al., 1999; Lim et al., 2011). In spite of the high preva-
lence of alternative splicing in animals and plants (Wang et al.,
2008; Koscielny et al., 2009), an important factor missing in most
of these genome annotation tools is the prediction of SREs. SREs
play an important role in determining the boundaries of introns
when core splicing signals are weak. A recent study has shown
that integration of predicted ESEs increases the splice site pre-
diction accuracy of GeneSplicer and SpliceMachine (Pertea et al.,
2007). In the study, 50-nt regions on either side of internal exons
in Arabidopsis thaliana were analyzed by searching for conserved
patterns. They identified 84 hexameric ESE candidates, of which
35 were experimentally reported as ESEs (Pertea et al., 2007).

Expression of tissue/cell-specific splicing factors may provide
mechanistic insights into AS. However, patterns that determine
alternative splicing are still poorly understood, especially in plants
(Kazan, 2003). AS databases are valuable resources for the study of
SREs, and several of them are publicly available (Table 1). Gener-
ally, AS can be identified by aligning ESTs/mRNA to the genome
assembly using tools such as BLAST or BLAT (Kim and Lee, 2008).
Determining how alternative splicing is regulated under differ-
ent physiological conditions remains a challenging problem. Data
mining on how transcripts are expressed at specific stages or in
specific tissues can help detect novel and specific SREs. More-
over, instead of analyzing terminal sequences at exons–intron
borders, the whole transcript sequence should be analyzed. There
are several tools available for sequence pattern recognition, such as
MEME (Bailey and Elkan, 1994), GIMSAN (Ng and Keich, 2008),
and Gibbs sampling (Stormo, 2010). Furthermore, new insights
are emerging on the role of secondary structures in pre-mRNA
during AS that are still unexplored (Jin et al., 2011). The compiled
AS sequence data could be made more reliable by comparing it
with the amino acid sequences of known protein isoforms. Subse-
quently, the discovery of important patterns in introns and exons
can be utilized to develop more accurate computational methods
for gene annotation.

INTERNAL RIBOSOMAL ENTRY SITES
These cis-elements enable the cap-independent recruitment of
the 40S ribosomal subunits to the 5′-UTR of the transcript, thus
bypassing the requirement of some translation initiation factors.
Many viruses, such as the hepatitis C virus and HIV, contain tran-
scripts with strong IRESs to manipulate the host cell to translate
viral protein-coding RNAs. The bacterial Shine–Dalgarno element
(AGGAGG) is a well-characterized motif located ∼10 bp upstream
of the initiation codon of the regularly uncapped transcripts. It
induces high translation rates with minimal recruitment of ini-
tiation factors due to its base-pairing property with the small

ribosomal subunit. In addition to its canonical localization in the
promoter region, it can also be positioned downstream of the first
start codon, thus acting as an alternate IRES to permit polycistronic
transcripts that encode alternative proteins in prokaryotes. It has
been demonstrated that eukaryotic transcripts also use this mech-
anism to induce high translation rates for proteins like p27/Kip1
(a cyclin-dependent kinase inhibitor that controls the cell cycle;
Zheng and Miskimins, 2011) and the insulin-like growth factor
receptor, IGF1R, (Meng et al., 2010) under certain physiologi-
cal conditions. IRES-regulated (i.e., cap-independent) translation
has been shown to be involved not only in the etiology of viral
diseases, but also other diseases, such as several cancer types and
Alzheimer’s (Beaudoin et al., 2008; Allam and Ali, 2010). Certainly,
a better understanding of the secondary and tertiary structures of
this type of eukaryotic mRNA element (Spriggs et al., 2009) will
shed more light on the eukaryotic cap-independent recruitment
mechanisms of the translational machinery, which will contribute
to the discovery of novel eukaryotic IRES-containing transcripts.
Bioinformatics will unquestionably play a crucial role in this
development, starting with the development of IRES databases
(Mokrejs et al., 2010), which may lead to the construction of
a model to understand and discover genes under the control of
IRESs that induce cap-independent translation.

RIBOSOME FRAMESHIFT SIGNALS
These signals direct elongating ribosomes to shift the reading
frame a single nucleotide (forward or reverse) on the coding
mRNA, which can lead to premature stop codons (which can result
in mRNA destabilization via the nonsense-mediated decay path-
way) or the production of an alternative protein from the same
transcript. This phenomenon is well-characterized in viruses,
prokaryotes, and organelle systems. Programmed −1 RFSs are
present in eukaryotic transcripts as heptameric “slippery” sites
(e.g., AAAAAAT) followed by a spacer and a secondary struc-
ture (pseudoknot) that together induce the ribosome to reverse
one nucleotide (Figure 3). The pseudoknot structure has also
been predicted to halt translation (perhaps under certain situa-
tions when the secondary structure is more stable, such as cold
temperatures in non-homeothermal organisms or high intracel-
lular levels of salt), inducing mRNA destabilization via the no-go
decay (NGD) pathway. Databases of computationally predicted
frameshift signals in eukaryotes and prediction tools are available
(Table 1 and 2). Phylogenetic analyses indicate that these RNA
cis-elements evolve rapidly, and sequence analysis with yeast iden-
tified −1 RFSs with high confidence in ∼10% of the genes in
eukaryotic genomes (Belew et al., 2011). The potential impact of
RFSs in post-transcriptional control of gene expression or pro-
duction of alternative protein forms from the same transcript in
higher eukaryotes, including plants and humans, still awaits full
investigation.

RIBOSWITCHES
These are catalytic domains of mRNA molecules that undergo
conformational changes when bound to small molecules or metal
ions, leading to changes in transcription, translation, or splicing,
independently of protein regulators (Mandal et al., 2003; Winkler
and Breaker, 2003). The aptamer region of the riboswitch, usually
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Table 1 | Databases of different functional elements of mRNA and their components.

Elements URL and Description References

Untranslated

regions

(UTRs)

http://utrdb.ba.itb.cnr.it/; UTRdb and UTRsite: a curated/non-redundant database of 5′ and 3′ untranslated

regions of 79 different eukaryotic mRNAs. It also contains information about nine functional elements located in

the 5′-UTR and 40 functional elements located in the 3′-UTR, including miRNA binding sites. Additional

information regarding structure of functional elements and their binding proteins could be useful for further

study. It also provides a tool for searching for functional elements in a given sequence

Grillo et al. (2010)

http://www.UTRome.org; TRome: a collection of predicted and experimentally validated functional elements in

3′-UTRs of Caenorhabditis elegans. It also contains isoforms and their expression profiles in the various stages

of the organism

Mangone et al.

(2008)

cis-Acting

elements

http://uther.otago.ac.nz/Transterm.html; Transterm: a database of experimentally determined regulatory

elements associated with mRNA sequences in 24 different organisms and their strains, including animals,

plants, yeast, and bacteria. The mRNAs are divided into five biologically relevant sections: 5′-UTR, 3′-UTRs,

initiation, and termination regions and full CDS sequences. Regulatory elements can be sought in specific

regions

Jacobs et al.

(2009)

http://rfam.sanger.ac.uk/; Rfam: a database of various cis-regulatory elements. Each family model is

represented by multiple sequence alignments, consensus secondary structures, and covariance. The current

version of Rfam (10.1) contains 1973 families

Gardner et al.

(2011)

Exon–intron www.meduohio.edu/bioinfo/eid/; EID: a collection of sequences and annotations for all exons and introns

containing genes obtained from GenBank of human, mouse, rat, dog, chicken, zebrafish, fruit fly, C. elegans,

and Arabidopsis. It also contains data from untranslated regions of gene sequences and intron-less genes as

well. The comprehensive dataset of sequences can be utilized for the study of exon–intron gene structures and

pre-mRNA splicing

Shepelev and

Fedorov (2006)

http://www.plantgdb.org/ASIP/EnterDB.php; ASIP: database of alternative splicing sites in mRNA of

Arabidopsis, Medicago, Lotus, and rice. It gives information about alternative donors, acceptors, and positions

as well as exon skipping and intron retention

Wang and Brendel

(2006)

Internal

ribosome

entry sites

http://www.iresite.org/; IRESite: this database stores experimentally studied IRESs found in viruses and some

eukaryotic cellular mRNAs. It also presents information about mRNA, ORFs, and methodological characteristics

of the IRES experiments

Mokrejs et al.

(2010)

Ribosomal

frameshift

signals

http://dinmanlab.umd.edu/prfdb; PRFdb: a database of computationally predicted programmed 1 ribosomal

frameshift signals in mammals and yeast genes. It provides information about the gene, its start codon, and

stop codon. In addition, the slippery site followed by the −1 frame stop codon is also given. The database

contains 24 canonical slippery motifs of NNNWWWH. It is also possible to examine the minimum free energy

landscape of the gene and structural information downstream of the slippery motif

Belew et al.

(2008)

http://recode.ucc.ie/; RECODE: a database of genes using programmed ribosomal frameshifting, translational

bypassing, and codon redefinition. The database contains information about recoding events (frameshifting,

bypassing, readthrough, selenocysteine) in all organisms. The entries also contain information about encoded

proteins for both normal and alternate decoding, as well as trans-factors and cis-elements that influence

recoding

Baranov et al.

(2001); Baranov

et al. (2003);

Bekaert et al.

(2010)

http://wilab.inha.ac.kr/fsdb; FSDB: this database has a comprehensive compilation of experimentally known and

computationally predicted programmed ribosomal frameshifting (−1 and +1 type) forms in viruses, prokaryotes,

and eukaryotes. The database provides a graphical view of the frameshift cassettes and the genes utilizing

frameshifting for their expression. All the data available in the database can be saved in the extensible markup

language (XML) format and downloaded for later analysis

Moon et al.

(2007)

AU-rich

elements

http://brp.kfshrc.edu.sa/ARED/; ARED: there are five different versions of this database. The most advanced is

“ARED organism,” which contains ARE-mRNAs of human, mouse, and rat. The program FindPatterns+ was

used to search for the AU-rich pentamer (AUUUA) in the 3′-UTR of all mRNAs. Each entry contains the gene

name, NCBI GeneID, ENSEMBL geneID, pattern of ARE, location of ARE in the mRNA, Unigene, chromosome

number, GO, and also links to other databases (NCBI, ENSEMBL, Unigene, and AREsite). AU-rich elements are

grouped into five clusters depending on number of pentamer repeats. There are several options for field search

and for data export. However, the database does not give any information about experimentally verified ARE

Bakheet et al.

(2001); Bakheet

et al. (2003);

Bakheet et al.

(2006); Halees

et al. (2008)

(Continued)
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Table 1 | Continued

Elements URL and Description References

http://rna.tbi.univie.ac.at/AREsite/; AREsite: an online resource for AREs present in mRNAs of human and

mouse. It provides a search option to find eight different ARE motifs in a particular gene. Each query gives an

output with detailed information about number of transcripts generated from a gene with their ENSEMBL ID

and location of ARE motifs. It also provides structure information of ARE sites and detailed phylogenetic

conservation patterns across vertebrates. Literature support is given for experimental evidence about mRNAs

targeted by ARE-binding proteinsTTP, HuR, and Auf1. However, there is no information provided for experimental

validation of ARE patterns. The download option can be utilized to retrieve bulk data for a particular ARE pattern

Gruber et al.

(2011)

Poly(A)

signals

http://www.ebi.ac.uk/atd/; ATD: a compilation of alternative splicing, polyadenylation patterns, and resultant

alternate transcripts in human and mouse. This is a very comprehensive database in a flat file and can be easily

parsed for further study

Le Texier et al.

(2006)

http://harlequin.jax.org/pacdb; PACdb: a database of Poly(A) sites from 14 different organisms, including animals,

plants, and yeast. Cleavage site flanking regions of the genome can also be retrieved for further study

Brockman et al.

(2005)

http://exon.umdnj.edu/polya_db/; PolyA_DB: this contains information about poly(A) sites in mRNAs of human,

mouse, rat, chicken, and zebrafish. Sequence alignments between orthologous sites are also available. In

addition, genomic sequences of flanking regions from −125 to +125 nt of a poly(A) site and 15 cis-elements

identified by a bioinformatics method are also given

Lee et al. (2007)

FIGURE 3 | A typical −1 ribosomal frameshift signal contains a slippery

site, a spacer, and a pseudoknot. Protein x is produced in the 0 frame
from CDS 1 while a −1 frameshift bypasses the stop codon, resulting in the
fusion of CDS 1 and CDS 2, which produces a longer protein, y.

in the 5′-UTR, forms a secondary structure where the ligand is
recognized, which induces an allosteric change of the riboswitch
configuration that causes a reaction, such as cleavage of the mRNA
or early termination of transcription to prevent gene expression.
In this way, riboswitches adopt two different conformations. The
repressed conformation, with a bound ligand, causes premature
termination of transcription or inhibition of translation initi-
ation. The de-repressed conformation, without binding bound
ligand, allows translation and transcription to proceed normally.
The repressed conformation contains base pairs that either cover
the translation initiation site or form a terminator of transcription.

Such conformations are eliminated during the de-repressing stage.
Riboswitches are involved in the regulation of several metabolic
pathways, including the biosynthesis of vitamins, purines, and
amino acids. The advantage of riboswitches over other elements
is that they directly bind to ligands without the help of additional
proteins. In this way, riboswitches can sense the concentration
of ligands in the cellular environment, and if found in sufficient
amount, inhibit gene expression. Riboswitches are also conserved
across diverse organisms and are thus considered one of the oldest
regulatory elements (Vitreschak et al., 2004).

The potential applications of riboswitches in biotechnology
and medical fields are associated with their ability to control
gene expression based on the presence of specific molecules (such
as metabolites or ingested drugs; Mulhbacher et al., 2010a,b;
Verhounig et al., 2010). Although these cis-elements are mostly
characterized in prokaryotes, with an estimated 2% of bacter-
ial genes regulated by riboswitches (Mandal et al., 2003), there
is also evidence of a riboswitch in eukaryotic systems: the thi-
amine pyrophosphate (TPP) riboswitch that binds to vitamin B1
(Cressina et al., 2011), leading to changes in mRNA stability via
alteration of the polyadenylation pattern. There are six differ-
ent classes of riboswitches that have been reported: RFN, THI,
B12, G-box, S-box, and LYS-elements (reviewed in Vitreschak
et al., 2004). These differ in structural conformation and lig-
and binding, but all possess base stems, hairpins, and loops. For
instance, the RFN-element is present upstream of several mRNAs
involved in riboflavin biosynthesis (e.g., the rib operon and the
ypaA gene) in a variety of bacterial genomes. The RFN-element
binds to FMN when it is present in high concentrations, which
causes premature termination of transcription and inhibition of
translation initiation (Mironov et al., 2002; Winkler et al., 2002).
In plants, there are suggestions that the expression of hormone
receptors may be under the control of riboswitches with aux-
ins and cytokinins acting as ligands (Meli et al., 2002; Grojean
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Table 2 |Tools for predicting different functional elements in mRNA.

Elements URL and Description References

cis-Acting

elements

http://uther.otago.ac.nz/Transterm.html; Transterm: this database also provides tools for users to query the

functional elements in input mRNA sequences

Jacobs et al.

(2009)

http://rfam.sanger.ac.uk/; Rfam: a database of various cis-regulatory elements. Each family model is represented

by multiple sequence alignments, consensus secondary structures, and covariance, which are suitable for different

types of analyses

Gardner et al.

(2011)

http://wb2x01.biozentrum.uni-wuerzburg.de/; RNA Analyzer: a web-based tool to identify different regions (5′-UTR,

CDS, 3-UTR) in a given mRNA and some of the functional elements

Bengert and

Dandekar (2003)

http://RegRNA.mbc.NCTU.edu.tw/; RegRNA: a web-based tool to identify motifs and structural elements in mature

and pre-mRNA. Currently, RegRNA has 1274 entries of regulatory motifs represented by sequence and/or

secondary structure patterns

Huang et al.

(2006)

Internal

ribosome

entry site

http://140.135.61.9/ires/; IRSS: a web server to predict IRESs in mRNA. RNA secondary structure prediction and

comparison software programs were implemented to construct a two-stage strategy for the IRSS. The algorithm

employs two programs for RNA secondary structure prediction: RNAL Fold to predict the structure of input

sequence and RNA Align to compare those predicted structures with known IRES structures

Wu et al. (2009)

Ribosomal

frameshift

signals

http://wilab.inha.ac.kr/FSFinder/; FSFinder: this allows users to find frameshift sites-both −1 (more common) and

+1 (less common) – in mRNA based on a model using features of the slippery sequence, spacer, and pseudoknot.

It is available in both a web-based application or standalone program and is useful in discovering unknown genes

that utilize alternative decoding for gene expression

Moon et al.

(2004)

http://bibiserv.techfak.uni-bielefeld.de/knotinframe/; KnotInFrame: this is a web-based tool for predicting −1

ribosomal frameshift events. In addition to identifying the slippery pattern, KnotInFrame also employs a specialized

RNA-folding program at its core to distinguish true −1 PRF events from random ones. The complete pipeline is fast

enough for genome-wide analyses

Theis et al.

(2008)

Riboswitches http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/; Riboswitch finder: a web-based tool for predicting

riboswitches. It analyzes the specific sequence patterns and secondary structure in a given sequence.

Furthermore, it runs a number of other tests to identify riboswitch motifs

Bengert and

Dandekar (2004)

http://RiboSW.mbc.nctu.edu.tw/; RiboSW: users can identify 12 kinds of riboswitches in a sequence through this

web interface. The tool is based on RNA secondary structure, sequence conservation, and the phenomenon of

compensatory mutations within riboswitches

Chang et al.

(2009)

Iron-

responsive

elements

http://ccbg.imppc.org/sires/index.html; SIREs: a web-based tool for predicting IREs in a given sequence. This tool

has Perl script that screen sequence and structure patterns in 19- to 20-nucleotide sequences, corresponding to

the core sequence of IREs

Campillos et al.

(2010)

Zipcodes www.rna2dsearch.com; RNA2DSearch: this is a standalone program used for searching for zipcodes based upon

RNA secondary structure information

Hamilton et al.

(2009)

Poly(A) signals http://www.imtech.res.in/raghava/polyapred; PolyApred: this web server takes a human DNA sequence of more

than 106-nt long. An SVM-based model is employed to predict 13 different patterns of poly(A) signals in a

sequence. The output results are in three tables based on PAS signatures. In addition, it can also predict novel

PAS’s based on sequence features

Ahmed et al.

(2009b)

http://www.polyA.org; PASS: standalone software for determining poly(A) sites in plant mRNA sequences. A

GHMM model is used to calculate a score for each nucleotide to be a poly(A) site. Then, from prediction scores,

the most probable region for poly(A) sites can be judged

Ji et al. (2007)

Regulatory

small RNAs

http://plantgrn.noble.org/psRNATarget; psRNATarget: a web server for predicting targets of plant small RNAs. The

target prediction is based on two important features: (1) reverse complementary matching between miRNAs and

the target transcript using a proven scoring schema, and (2) target site accessibility evaluation by calculating

unpaired energy (UPE) required to “open” the secondary structure around the miRNA target site on the mRNA.

The tool is capable of analyzing large-scale, high-throughput-generated small RNA data efficiently

Dai and Zhao

(2011)

http://bioinfo3.noble.org/pssRNAMiner; pssRNAMiner: a web server to analyze plant short small RNA regulatory

cascades (ta-siRNA). It can identify both the clusters of phased small RNAs as well as the potential phase-initiator

Dai and Zhao

(2008)

(Continued)

Frontiers in Plant Science | Technical Advances in Plant Science November 2011 | Volume 2 | Article 84 | 8

http://uther.otago.ac.nz/Transterm.html
http://rfam.sanger.ac.uk/
http://wb2x01.biozentrum.uni-wuerzburg.de/
http://RegRNA.mbc.NCTU.edu.tw/
http://140.135.61.9/ires/
http://wilab.inha.ac.kr/FSFinder/
http://bibiserv.techfak.uni-bielefeld.de/knotinframe/
http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/
http://RiboSW.mbc.nctu.edu.tw/
http://ccbg.imppc.org/sires/index.html
http://www.rna2dsearch.com
http://www.imtech.res.in/raghava/polyapred
http://www.polyA.org
http://plantgrn.noble.org/psRNATarget
http://bioinfo3.noble.org/pssRNAMiner
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive


Ahmed et al. Mining functional elements in mRNAs

Table 2 | Continued

Elements URL and Description References

http://crdd.osdd.net:8081/RISCbinder/; RISCbinder: a web-based tool for predicting the functional strand

(RISC-binding) of microRNAs (guide strand) from putative miRNA:miRNA* duplex intermediates generated during

RNA interference pathways.The sequence and secondary structure features of RNAs are implemented into support

vector machine (SVM) for model development. The model also has potential to predict functional strands in siRNAs

Ahmed et al.

(2009a)

http://www.imtech.res.in/raghava/desirm; desiRm: a web server for designing highly effective complementary and

mismatch siRNAs for silencing a gene. The tool will be very helpful to target mutant/SNP-specific genes without

affecting wild-type genes

Ahmed and

Raghava (2011)

and Downes, 2010). This hypothesis is compelling, although it
remains experimentally untested. The human cleavage factor Im
(CFIm), a key component of the pre-mRNA 3′ processing com-
plex involved in poly(A) site recognition, interacts with RNA only
in the presence of the signaling molecule diadenosine tetraphos-
phate (Ap4A), indicating a possible role for ligands in mRNA
3′ processing in eukaryotes (Yang et al., 2010). Computational
methods to discover riboswitches are an obvious choice. In addi-
tion, given the evolutionary conservation of aptamer sequences
belonging to the same riboswitch class, a recently developed algo-
rithm based on profile hidden Markov models (pHMMs) can
be used to identify known classes of riboswitches, especially in
prokaryotes (Singh et al., 2009). Despite their prokaryotic ori-
gins, mitochondria, and plastids do not hold known riboswitch
genes. However, a synthetic theophylline riboswitch introduced
into tobacco chloroplasts was recently demonstrated to function
in planta (Verhounig et al., 2010), opening avenues to control
gene expression in cell organelles. Given the paucity of known
eukaryotic riboswitch systems and the complexity of predicting
the interaction between the secondary structure of mRNAs and
small molecules, methods to discover novel riboswitch classes
using computational programs are still a far-reaching goal. How-
ever, attempts to achieve this goal coupled with experimental
confirmation might generate successful results. A more tangible
goal, however, might be the use of programs to design organel-
lar (plastidial, potentially also mitochondrial) riboswitches using
well-established systems.

IRON-RESPONSIVE ELEMENTS
These highly conserved stem–loop structures are mainly responsi-
ble for maintaining iron homeostasis in vertebrates (Muckenthaler
et al., 2008). IREs are located in the 5′ or 3′-UTR of various
mRNAs that encode proteins involved in iron metabolism, such
as ferritin, transferrin receptor, erythroid 5-aminolevulinic-acid
synthase, mitochondrial aconitase, ferroportin, and the divalent
metal transporter 1. IREs undergo conformational changes upon
interacting with IRPs, and the fate of the mRNA is modulated
depending on the UTR location of the IRE. These elements are
grouped into nine classes based on the mRNA in which they are
present (Piccinelli and Samuelsson, 2007). They possess a 26- to
30-nt long hairpin structure with a conserved central loop of
CAGWGN and an unpaired C residue (UGC in ferritin) in the
stem region (Figure 4). NMR-spectroscopy has shown base pair
formation between C1 and G5 of the CAGWGN hexaloop, which

FIGURE 4 | Structures of iron-responsive elements (IREs) in mRNAs

encoding human ferritin and transferrin receptor proteins. Conserved
regions are shown in red and blue curves.

pushes the AGW segment into the solvent, facilitating IRP bind-
ing with the hairpin (Addess et al., 1997). Substitution of C-G for
AU prevents IRP binding, which also indicates its crucial role in
the RNA-protein interaction. Directed mutagenesis studies have
shown that the residues between the hexaloop and the C-bulge
or loop bulge, also contribute to protein binding. Several diseases
have been found to be related to impaired interactions between
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IREs and IRPs (Girelli et al., 1995; Kato et al., 2001; LaVaute et al.,
2001).

Binding of IRPs to IREs in the 5′-UTR reduces rates of transla-
tion, while IPR binding to IREs in the 3′-UTR has been reported
to increase mRNA stability. For instance, ferritin is an iron storage
protein and its mRNA has an IRE in the 5′-UTR. When con-
centrations of iron become low, IRPs bind to the ferritin mRNA,
resulting in repression of translation. However, at high iron con-
centrations, the IRP has lower affinity for the IRE and the ferritin
mRNA is translated. The mRNA of the transferrin receptor con-
tains five copies of IREs, which are all located in the 3′-UTR.
Under conditions of low iron concentration, the IRP binds to the
IREs, resulting in stabilization of the transferrin receptor mRNA.
In contrast, under conditions of high iron concentration, the IRP
has low affinity for the IREs, and the transferrin receptor mRNA is
degraded. Many oxygen metabolism proteins, heat shock house-
keeping proteins, proto-oncogenes, chlorophyll-binding proteins,
and ribonucleotide reductases also have IREs in their transcripts.
It is noteworthy that animal and plant ferritin CDSs are highly
conserved, but plant ferritin mRNAs lack IREs (Kimata and Theil,
1994).

Recently, an informatics approach has been utilized to under-
stand the sequence and structural characteristics of IREs and
their phylogenetic conservation among eukaryotes (Piccinelli and
Samuelsson, 2007). In the study, 49 known IREs were used to gen-
erate HMM profiles for each class of IREs. Moreover, they also
used Rfam models of IREs, consisting of sequence, structure, and
covariance features. Using these models, they scanned metazoan
genomes and mRNAs, resulting in the discovery of 107 novel IREs.
The study also indicated that the ferritin IRE is the most primitive
and ancestral of all IREs found in other mRNAs. Very recently,
an experimental study identified multiple sequence and structural
determinants in IREs found in the 5′-UTR that are responsible for
efficient binding with IRP1 (Goforth et al., 2010). This work pro-
vided useful data to generate bioinformatics models for IREs and
to identify IRE-regulated mRNAs. Several tools are available for
RNA secondary structure formation and pattern searches, such as
PatScan. However, each tool has its own limitations. Thus, instead
of using a single tool, various suitable tools should be utilized for
model generation and pattern searching. Furthermore, the occur-
rences of single nucleotide polymorphisms (SNPs) in IREs have
been largely underexplored. Thus, this is an area worth examin-
ing to enhance our understanding of the genetic basis of complex
diseases in humans, and plant adaptation.

AU-RICH ELEMENTS
These are adenine- and uridine-rich segments embedded in the
3′-UTR of mammalian mRNAs that are responsible for rapid
mRNA turnover (Caput et al., 1986). The control of mRNA
stability is essential for adjusting mRNA levels and for limiting
protein expression in order to prevent detrimental effects caused
by overexpression (Bakheet et al., 2001). AREs are commonly
found repeats of a core sequence of the AUUUA pentamer and
are classified according to two distinct methods. According to
Chen’s method,AREs are grouped into three different classes based
on the number and distribution of repeats of the core sequence
(Chen and Shyu, 1995). Class I is defined by a single AUUUA

motif dispersed along a U-rich region, such as in c-myc and p21
transcripts. Class II is defined by an overlapping pattern of two or
more motifs, such as WWAUUUAUUUAWW, like those in TNF-α
and interferon-α transcripts. Class III AREs are poorly defined
AREs in U-rich regions without the AUUUA motif, such as in
the c-jun transcript. On the other hand, according to Bakheet’s
method, AREs are classified into five groups based on the number
of continuous repeats of the core sequence of AUUUA. Groups 1,
2, 3, and 4 possess 5, 4, 3, and 2 continuous repeats of AUUUA,
respectively, whereas group 5 AREs possess only one core pattern
in the transcript (Bakheet et al., 2001). These AREs are functional
after interacting with AU-binding proteins (AUBPs), which fur-
ther recruit different enzymes responsible for mRNA degradation
in a process described as ARE-mediated decay (AMD; Figure 5;
Barreau et al., 2005). There are several different AUBPs, such as
AUF1, TTP, and HuR. Most of these destabilize, but some stabilize
the mRNA and also modulate translation efficiency (reviewed in
Barreau et al., 2005). For instance, binding of the protein TTP to
AREs decreases mRNA stability, while binding of HuR to AREs
increases mRNA stability. It has also been reported that different
ARE-binding proteins bind to the same mRNA molecule and their
relative levels may determine mRNA stability. However, the AMD
mechanism is still poorly understood (von Roretz and Gallouzi,
2008).

In order to understand the significance of AREs, a computa-
tional analysis was carried out to identify the prevalence of AREs
in human mRNAs (Bakheet et al., 2001). Fifty-seven experimen-
tally verified 3′-UTR ARE-containing transcript sequences were
extracted and revealed the conserved ARE motif “UAUUUAWW”
via the MEME tool (Bailey and Elkan, 1994). Considering the
flanking region around the motif, the authors identified a 13-
bp conserved string (WWWUAUUUAUWWW). Subsequently,
they searched for this 13-bp pattern in 3′-UTRs of 13057
human mRNAs using the program FindPatterns and reported
897 (∼8%) sequences that possess AREs. It was also revealed
that ARE-containing mRNAs encode functionally diverse proteins.
However, Gene Ontology (http://www.geneontology.org/)-based
analysis showed that most of them play important roles in regu-
latory processes, such as cell communication, nucleic acid metab-
olism, cell proliferation, signal transduction, and transcription
(Bakheet et al., 2006). A more recent study showed that the fre-
quency of AREs is high among the most unstable mRNAs (half-life
<2 h), while its presence decreases among mRNAs with increasing
half-life (>8 h; Lam et al., 2001). In a very recent work, eight differ-
ent consensus ARE motifs starting from AUUUA to WWWWAU-
UUAWWWW were scanned in human 3′-UTRs (Gruber et al.,
2011). The work also considered the probability of AREs being
unpaired in the sequence as well as conservation across differ-
ent species. It was estimated that ∼13% of protein-coding genes
in the human genome contain AREs (Gruber et al., 2011). How-
ever, conservation analysis of AREs in mRNA orthologs in human,
mouse, and rat showed that a significant number of genes (25%)
differ with respect to ARE patterns, indicating that species quickly
evolved different AREs according to their own gene regulation
requirements (Halees et al., 2008).

The association between turnover of defective mRNA and
diseases underscores the significance of a deep understanding
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FIGURE 5 | ARE-mediated decay of mRNA. In the cytoplasm, AUBPs (like TTP) bind to ARE (AUUUA) in the mRNA. The binding of AUBPs recruits either Dcp,
which promotes decapping of mRNA, or deadenylase, which removes the poly(A) tail. After exposure of terminal mRNA, exonucleases act to degrade the
mRNA in either the 5′–3′ direction using Xrn1 or in the 3′–5′ direction using the exosome. ARE, AU-rich element; AUBPs, AU-binding proteins.

of the AMD mechanism (Espel, 2005; Khabar, 2005; Eberhardt
et al., 2007). Yet, a compilation of mRNAs and their AREs along
with half-life is still missing in available databases. This might
open a new avenue to further establish the relationship between
ARE types and positions and the transcript half-life. Further-
more, inclusion of more experimentally verified AREs in the
training data should help uncover novel ARE motifs. Computa-
tional analysis has suggested that sequence features of the flanking
region around poly(A) signals helped to more accurately identify
poly(A) signals in the genome (Ahmed et al., 2009b). Therefore,
the analysis of ARE-flanking regions to discover motifs promises
to assist in the identification of weak and non-conserved AREs.
Furthermore, integrating sequence and structural features of ARE-
flanking regions should be adopted to develop a robust machine
learning-based model for genome annotation.

ZIPCODES
These are important elements generally present in the 3′-UTR of
some eukaryotic mRNAs but also reported in the 5′-UTR and
CDS region. Zipcodes are responsible for the delivery of mRNAs
to subcellular compartments, thus this element is also known as
the “localization element.” Restricting protein synthesis to a spe-
cialized compartment within polarized (e.g., Drosophila oocytes)
and asymmetric (e.g., neurons) cells is vital for normal func-
tion because it prevents the diffusion of the mRNA throughout
cytoplasm, provides protection against degradation, and trans-
lates the protein at the site at which it functions. Studies have
shown that zipcodes are highly variable in length, sequence, and
structure, which makes it difficult to define their exact character-
istics (Chartrand et al., 1999). Zipcodes can be a tandem repeat
of “ACACCC,” as found across a 54-nt region in β-actin mRNA
that is responsible for its localization to lamellipodia of chicken

embryo fibroblasts (Kislauskis et al., 1994). Alternatively, it can
be a complex secondary structure, such as the five stem–loops
found in bicoid mRNA spanning over a 625-nt segment in the
3′-UTR that is essential for its localization to the anterior pole of
Drosophila oocytes (Macdonald and Kerr, 1997; Weil et al., 2006).
Moreover, the existence of multiple localization elements of the
same or different types in an mRNA makes it challenging to define
its localization properties. In the case of Ash1 mRNA in budding
yeast, several localization elements were reported, including E1,
E2a, and E2b in the CDS region, and E3 in both the CDS region
and the 3′-UTR, all working synergistically to deliver mRNA to
the bud tip (Chartrand et al., 1999, 2002). During the processing
of pre-mRNA in the nucleus, RBPs bind to zipcodes, and form
a RNP complex. Several similar RNPs are assembled into a large
granule that transports mRNAs to their final destination via motor
proteins along the cytoskeleton (Figure 6; Knowles et al., 1996).
Staufen is a well-characterized RBP that interacts with zipcodes
within bicoid mRNAs and runs along myosin fibers to travel to
the anterior pole of Drosophila oocytes (Macdonald and Kerr,
1997; Weil et al., 2006).

Two commonly used experimental techniques for decipher-
ing zipcodes and their characteristics are in situ hybridization
and tagging mRNA with a fluorescently tagged RBP (Weil et al.,
2010). Employing fluorescent in situ hybridization has demon-
strated that 71% of 3370 mRNAs show subcellular localization
in the Drosophila embryo (Lecuyer et al., 2007). However, these
experimental methods are tedious, time-consuming, and imprac-
tical for deciphering zipcodes at a genome-wide level. Several
studies have shown that, by using bioinformatics methods, subcel-
lular localization of proteins can be successfully addressed (Garg
et al., 2005; Garg and Raghava, 2008; Kaundal and Raghava, 2009;
Kaundal et al., 2010). However, studies addressing zipcodes by
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FIGURE 6 | Localization of mRNA in budding yeast using

zipcodes. During maturation of mRNA (ASH1), RNA-binding proteins
bind to zipcodes and form ribonucleoprotein complexes. After export
to the cytoplasm, some proteins are added to form RNA granules,

which are transported to the daughter cell along the actin
cytoskeleton. After mRNA reaches the distal pole, it is translated into
Ash1p (a transcription factor), which enters the nucleus of the
daughter cell.

exploiting bioinformatics approaches are very limited, despite
promising results (Cohen et al., 2005; Hamilton et al., 2009; Hamil-
ton and Davis, 2011). Very recently, a computational method,
RNA2DSearch, was developed for discovering localization signals
in transposable elements (Hamilton et al., 2009). Two localization
signals were studied that are present in gurken and I factor retro-
transposon mRNA, GLS, and ILS, respectively. These signals target
the transcript to the dorso-anterior area of Drosophila oocytes.
The study found that despite sending both transcripts to the same
subcellular position, the signals only show 35% sequence similar-
ity. However, the signals are very similar at the secondary structure
level. In order to discover new transposons with similar character-
istics, they compiled transposable element and folding data with
RNALfold. Furthermore, the secondary structures were compared
with those of GLS and ILS by using RNAdistance and RNAforester,
resulting in 48 potential candidates. Among these, 22 were tested,
and only two transposons, G2 and Jockey, were experimentally
confirmed to localize to the predicted position. This finding indi-
cates that although bioinformatics might be a good alternative
approach to discover new candidate zipcodes, at least at this point
wet experiments are still needed to prove in silico results. Addi-
tionally, there is room for developing better prediction tools for
zipcodes with high accuracy using machine learning techniques.

Defective sequences in localization signals of mRNA in neu-
ronal cells have been reported as the etiology of several dis-
eases, demonstrating the importance of subcellular localization
of mRNAs (Jin and Warren, 2003; Mutsuddi et al., 2004). On the
other hand, it is still not clear how many mRNAs contain zipcodes
in animals and plants. Several studies have shown the existence of
multiple pathways for mRNA localization in plants and, among
these, some have zipcodes that are still largely unexplored (Bouget

et al., 1996; Vermerris et al., 2001; Okita and Choi, 2002; Crofts
et al., 2004). The field of mRNA subcellular localization is still
at a very early stage and requires more attention regarding the
prevalence and characteristic features of zipcodes in both the plant
and animal kingdoms. Developing a database of experimentally
verified zipcodes with their sequence and structural characteris-
tics with localization properties would be a very good initiative.
Furthermore, sequence and structural patterns could be extracted
for each zipcode using a computational approach (Hamilton and
Davis, 2007, 2011; Lan et al., 2010) and could be integrated to
develop algorithms for zipcode prediction and genome anno-
tation. Inclusion of RBP features associated with zipcodes may
further refine the confidence of zipcode identification. This will
not only help to understand gene regulation at the subcellular level
but it will also be useful in engineering an mRNA to be delivered
to a specific destination within the cell, which may have important
biotechnological and medical applications.

POLY(A) SIGNALS
Polyadenylation signals are very important functional elements
in all eukaryotic mRNAs at the 3′-end that are responsible for
transcript maturation. A PAS is composed of a hexamer with
a canonical signal (AAUAAA). This motif recruits several pro-
tein factors and determines the position of cleavage, which occurs
∼35 nt downstream of the PAS at the 3′-end of the nascent pre-
mRNA. This is also the position of the addition of a poly(A) tail of
∼200 adenine residues by the poly(A) polymerase (Danckwardt
et al., 2007). The importance of PAS’s has been revealed by several
studies showing that a mutation in PAS’s alters the cleavage site and
generates aberrant transcripts that lead to several diseases (Orkin
et al., 1985; Rund et al., 1992). A computational analysis extracted
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13 variants of PAS’s, covering 93% of the human transcriptome
(Tian et al., 2005). Among them, AAUAAA and AUUAAA are
highly prevalent in both animals and plants, but alternative PAS’s
(UAUAAA, AGUAAA, AAGAAA, AAUAUA, AAUACA, CAUAAA,
GAUAAA, AAUGAA, UUUAAA, ACUAAA, and AAUAGA) also
regulate a few mRNAs.

Studies have shown that the PAS sequence is surrounded by
other cis-elements and works cooperatively in 3′-end processing
(Hu et al., 2005; Salisbury et al., 2006). In order to gain more
insight, several investigations have been carried out to detect hid-
den cis-elements around poly(A) sites in animals and plants using
computational methods (Beaudoing et al., 2000; Hu et al., 2005;
Loke et al., 2005; Dong et al., 2007; Shen et al., 2008). These analyses
involved the use of sequence data from authentic polyadenylation
sites by retrieving EST sequences with oligo(A) stretches and com-
paring these to their genomic DNA sequences to ensure that the
oligo(A) stretches were added post-transcriptionally, keeping in
mind that the first adenine of the poly(A) tail is present in the
gene. After this filter, the genomic region containing the poly(A)
site was extracted (≥100 nt upstream and ≥100 nt downstream).
Computational methods were applied to extract statistically signif-
icant cis-elements (PAS’s or other hexamers) and the distribution
patterns of nucleotides around the poly(A) site were calculated.
In mammals, it was found that the PAS signal, AAUAAA, is highly
conserved and located about 10–30 nt upstream of the cleavage
site (Figure 7A; Zhao et al., 1999; Hu et al., 2005; Tian et al., 2005;
Salisbury et al., 2006). Another study identified 15 cis-elements in
four regions surrounding human poly(A) sites using a hexamer
enrichment method with the PROBE tool (Hu et al., 2005). Fur-
thermore, several other statistically significant mononucleotide
and dinucleotide patterns were observed adjacent to PAS elements
(Ahmed et al., 2009b). In contrast, plants lack highly conserved
PAS sequences in near upstream elements (NUEs; Figure 7B;
Graber et al., 1999; Loke et al., 2005). Other elements were also
observed, such as a far upstream element (FUE) that enhances
processing efficiency, and a cleavage element (CE) that consists
of a cleavage site flanked by U-rich regions at both sides (Zhao

et al., 1999; Loke et al., 2005; Shen et al., 2008). NUEs and cleav-
age site signals are more conserved in plants. One study identified
12 hexameric patterns of these three elements (NUE, FUE, and
CE) in rice (Shen et al., 2008). It has been observed that in spite
of the similarity in pattern distribution of poly(A) sites in closely
related organisms, some differences exist (Tian et al., 2005). Sig-
nificantly, the AAUAAA string was found in only 7 and 10% of
NUEs in the rice and Arabidopsis transcriptomes, respectively
(Loke et al., 2005; Shen et al., 2008). Transcripts may also undergo
alternative polyadenylation resulting in distinct 3′-UTRs, which
leads to the expression of protein isoforms. In the physiological
conditions of the cell, expression of trans-factors and the pres-
ence of cis-elements on pre-mRNA are primarily responsible for
alternative polyadenylation. Studies have shown that alternative
polyadenylation is highly prevalent in plants and animals, includ-
ing humans (Meyers et al., 2004; Tian et al., 2005; Shen et al., 2008,
2011; Shepard et al., 2011; Wu et al., 2011). Interestingly, proxi-
mal poly(A) sites tend to produce mRNAs with shorter 3′-UTRs,
whereas distal poly(A) sites generate mRNAs with longer 3′-UTRs
(Sandberg et al., 2008; Ji and Tian, 2009). Thus, in addition to pro-
tein isoforms, alternative polyadenylation may also have an impact
on miRNA regulation due to changes in 3′-UTR target sites. An
investigation showed that oncogenes in cancer cell lines undergo
more frequent alternative polyadenylation to produce shorter 3′-
UTRs, resulting in higher protein expression due to loss of miRNA
target sites in the mRNA (Mayr and Bartel, 2009). Several studies
analyzed and experimentally identified the global pattern of alter-
native polyadenylation in various cells using microarrays (Flavell
et al., 2008; Sandberg et al., 2008) and most recently by using
PAS-Seq, a high-throughput next-generation sequencing method
(Shepard et al., 2011).

The characteristics of PASs and their adjacent patterns facilitate
the development of several computational methods for predicting
poly(A) signals for gene annotation in animals, plants, and yeast.
A support vector machine (SVM)-based method, polya_svm, was
developed for predicting poly(A) sites in human mRNA by using
position-specific scoring matrices of 15 cis-regulatory signals

FIGURE 7 | Schematic diagram of poly(A) signals in the 3’-end of

pre-mRNA in (A) human and (B) Arabidopsis. Several proteins recognize
and bind to poly(A) signals and other cis-elements to facilitate proper cleavage
at the CS and subsequent polyadenylation. Transcripts are cleaved at the

poly(A) site and poly(A) polymerase carries out polymerization at the newly
formed 3′-end to generate the mature mRNA. USE, upstream element; PAS,
poly(A) signal; CS, cleavage site; DSE, downstream element; FUE, far
upstream element; NUE, near upstream element; CE, cleavage element.
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(Cheng et al., 2006). Recently, a more accurate method, PolyApred,
was developed for analyzing poly(A) signals in the human genome
(Ahmed et al., 2009b). It exploits nucleotide frequencies in four
sub-regions upstream and downstream of PAS’s and employs
SVMs for modeling and prediction. PolyApred achieved a pre-
cision of 75.8–95.7% with a sensitivity of 57% evaluated on
independent data that were not used during model development.
SVM methods are a set of related, supervised learning methods
used for classification and regression problems, such as the pre-
diction of functional sites in DNA sequences (Vapnik, 1995). It is
based on statistical and optimization theories that handle complex
high-dimensional features. The main concept underlying the SVM
method is the generation of a hyperplane that separates the posi-
tive and negative examples within the multidimensional data space
while maximizing the differences between them. Other methods
developed for predicting PAS elements in plants are PASS for pre-
diction in Arabidopsis (Ji et al., 2007), and PASS-Rice for rice (Shen
et al., 2008). Both of these models are based on generalized hidden
Markov models (GHMM), which recognize nucleotide signals in
one direction from left to right. Performances of these models were
tested on various datasets with a reported sensitivity of ∼90%, and
specificity ranging from 60 to 100%.

Despite recent advances in high-throughput DNA sequenc-
ing and data collection, the mechanisms underlying 3′-end
maturation of mRNA during different physiological conditions are
still poorly understood. Furthermore, several challenges remain to
be addressed to develop more reliable algorithms for PAS predic-
tion such as: (1) improvement in prediction accuracy, (2) devel-
opment of models that can predict the transition of functional
to non-functional PAS elements or vice-versa, upon nucleotide
mutation in functional elements, and (3) the development of
models for predicting alternative polyadenylation sites and relative
amounts of mRNA isoforms.

These challenges could be addressed by collecting the lat-
est experimentally annotated transcriptome data from several
species and extracting new features with advanced bioinformatics
approaches. The genomes of many organisms have been sequenced
recently, opening an avenue to explore characteristic features of
PAS’s (Sato et al., 2007; Xu et al., 2011). This will not only enhance
our understanding about phylogenetically conserved sequence
motifs and species-specific motifs around PAS sites but it will
also help to develop a robust model for improved gene annota-
tion. For the prediction of PAS’s and cleavage sites, studies carried
out so far have been mainly focused on sequence patterns in pre-
mRNAs (Liu et al., 2005; Cheng et al., 2006; Ji et al., 2007; Shen
et al., 2008; Ahmed et al., 2009b). However, new insights into the
role of secondary RNA structures at PAS’s and their influence on
cleavage site selection in some genes are emerging (Loke et al.,
2005). There is a great need to explore more deeply the forma-
tion of these secondary structure patterns and their role in 3′-end
maturation at the genome-wide level. It is clear from several stud-
ies that integrating secondary structure features of mRNA during
siRNA design generates more functionally potent siRNA (Tafer
et al., 2008; Ahmed and Raghava, 2011). Therefore, new algo-
rithms integrating both sequence and structural features may be
helpful for predicting more accurate PAS’s.

CONCLUSION, CURRENT CHALLENGES, AND PERSPECTIVES
Technical advances in high-throughput sequencing methods are
producing vast amounts of genomics, transcriptomics, and pro-
teomics data. Furthermore, the continuous improvement of com-
putational resources enables the better management and analysis
of these data. To gain a deeper understanding of patterns of
gene expression and regulation, it is necessary to decipher every
component involved in the protein-coding messenger molecule,
including its synthesis (transcription), usage (translation), and
turnover (decay). It is well-known that mRNA and its precursor
possess several cis-elements that interact with trans-acting factors
at various steps during gene expression, which raises a number
of interesting questions regarding the regulation of gene expres-
sion. However, discovering and characterizing mRNA functional
elements, especially in recently sequenced or non-model organ-
isms, still poses great challenges for bioinformaticians as well as
experimental biologists.

Bioinformatics plays a vital role in addressing some of these
challenges, especially regarding the discovery of evolutionarily
conserved elements and the correlation of these elements with
gene expression mechanisms. Several functional elements and the
RBPs with which they interact have been reported, but only a
few are functionally characterized. Table 1 shows a list of pub-
licly available databases of different functional mRNA elements.
However, it is important to integrate additional information into
these databases in order to make them more applicable. For exam-
ple, information about half-life of mRNAs and their associated
AREs may enable the correlation of half-life of specific transcripts
with their AREs. A recent study on mRNA and protein turnover
may prove to be very helpful (Schwanhausser et al., 2011). Addi-
tionally, most of these databases focus on animal species, largely
neglecting plant and yeast systems. Comparative analysis of the
genomes of different species has been demonstrated as a better
approach to discover regulatory elements (Xie et al., 2005). Fur-
thermore, the sequence polymorphisms have also been reported
to assist in the identification of functional elements in humans.
Indeed, by analyzing genetic variation in intronic regions across
different human populations, SREs were found to be very well pre-
served across populations, which allowed using genetic diversity
features to develop an algorithm for predicting splicing enhancers
in intronic regions (Lomelin et al., 2010). It would also be interest-
ing to extract sequence and structure patterns in subsets of gene
expression data at specific stages or in specific tissues, in order to
understand the motifs involved in gene regulation.

In order to discover functional elements in new sequences, a
number of freely accessible computational tools have been devel-
oped (Table 2). However, it remains crucial to improve the speci-
ficity and sensitivity of these tools. In model development, one
of the main challenges is to reduce the high rates of false positive
and false negative predictions. This could be addressed by using
non-redundant sequence data and defining precise sequence and
structural features of functional elements. There are several tools
available for deciphering sequence motifs (Bailey, 2008) and struc-
tural patterns in functional elements (Hamilton and Davis, 2007,
2011). The sequence and structure patterns could also be imple-
mented with machine learning techniques for the development of
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highly accurate methods for the prediction of functional elements.
Since mutations and sequence variations in regulatory elements
have been associated with the etiology of several diseases (Cazzola
and Skoda, 2000; Chen et al., 2006), the analysis of SNPs within
functional elements should also enhance our understanding of the
role of these motifs in disease.

Furthermore, the selection of the most suitable bioinformatics
analysis tools to uncover regulatory elements of mRNAs should
be based on the specific datasets used and the questions to be
addressed. Despite recent advances in our understanding of tran-
scriptional and post-transcriptional regulation of gene expression
dictated by cis-regulatory elements and trans-regulatory factors,

much is still unknown, especially in non-model organisms and
non-metazoan systems. Continuously advancing bioinformat-
ics techniques certainly will play a major role in the discovery
of regulatory sequence patterns present in mRNAs and extend
our understanding of the evolution of these patterns across
species.
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