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Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the sig-
naling network when plants are exposed to literally every known abiotic and biotic
stress.These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape,
depending on the severity of the stress as well the type of stress experienced.This creates
a unique stress-specific calcium “signature” that is then decoded by signal transduction
networks. While most published papers have been focused predominantly on the role of
Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt
levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mech-
anisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+
signaling.This is the topic of the current review.The molecular identity of two major types of
Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their
regulatory modes are analyzed in detail. The spatial and temporal organization of calcium
signaling networks is described, and the importance of existence of intracellular calcium
microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in
plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-
ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled
by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable
channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is con-
cluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and
Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence
and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli,
emphasizing the crucial role these active efflux systems play in plant adaptive responses
to environment.
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INTRODUCTION
CYTOSOLIC CALCIUM HOMEOSTASIS AND SIGNALING IN
PLANT–ENVIRONMENTAL INTERACTION
Calcium is an essential plant nutrient which plays a crucial struc-
tural role in cell walls and maintains membrane integrity. Calcium
can easily interact with proteins, membranes, and organic acids
through its ability to form different coordination bonds (from six
to nine) which results in a high-affinity for carboxylate oxygen,
rapid binding kinetics, and complex geometries (Medvedev, 2005;
Case et al., 2007). Because of this, calcium can be a toxic cellular
compound at higher concentrations as it would trigger aggrega-
tion of proteins and nucleic acids, precipitation of phosphates
(present in ATP), and affect the integrity of lipid membranes
(Case et al., 2007). As a result, plants have evolved efficient Ca2+
efflux mechanisms that can keep cytosolic free calcium, [Ca2+]cyt,
at a constant and very low (submicromolar) level by exporting
Ca2+ out of the cell or into the intracellular organelles (Dodd
et al., 2010). In a typical plant cell, free Ca2+ concentrations

are in the range of 1–10 mM in the apoplasm, 100–200 nM in
the cytoplasm, 0.2–10 mM in the vacuole, ∼1 mM in the endo-
plasmic reticulum (reviewed in Medvedev, 2005), and 2–6 μM
in chloroplast stroma (cf. Ettinger et al., 1999). Such extremely
low [Ca2+]cyt creates a unique cellular environment in which
[Ca2+]cyt concentration can be elevated by a factor of 10 or 20
rapidly (within seconds) upon sensing stress by using large electro-
chemical potentials either at the plasma or organelle membranes
(Sanders et al., 1999). Indeed, [Ca2+]cyt elevation is an ubiquitous
denominator of the signaling network when plants are exposed
to soil acidity, salinity, anoxia, ozone, drought, osmotic, oxidative,
heat and cold stresses, gaseous pollutants, mechanical cues, light,
plant hormones, pathogens, bacterial, and fungal signals (reviewed
in Sanders et al., 1999; McAinsh and Pittman, 2009). Resulting
[Ca2+]cyt elevations are decoded by Ca2+ sensor proteins (e.g.,
CaM, CMLs, CDPKs, CBL/CIPKs) which regulate downstream
targets leading to a stress-specific physiological response (DeFalco
et al., 2010).
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STRESS-SPECIFIC CALCIUM “SIGNATURES”
Stress or stimuli induced [Ca2+]cyt elevations vary in magnitude,
frequency, and shape. These depend on the severity of the stress as
well the type of stress experienced, thus creating a unique stress-
specific calcium “signature” that is then decoded by signal trans-
duction networks. An example of such stress-specific “signatures”
is shown in Figure 1, which depicts [Ca2+]cyt elevation in response
to abscisic acid (ABA), anoxia, and salt stresses. Very often, not
one but a series of repetitive spikes (oscillations) is observed in
response to environmental stimuli (e.g., for 10 nM ABA in guard
cells Figure 1A). In the case of anoxia, [Ca2+]cyt elevation showed
two distinctive peaks; one rapid (within a minute), and another
one that lasted for hours (Figure 1B), whereas [Ca2+]cyt responses
to salt stress did not have a second peak (Figure 1C).

The magnitude of [Ca2+]cyt elevations shows a clear dose-
dependency of external stimulus as was shown for salinity (Tracy
et al., 2008), ozone (Clayton et al., 1999), hypo-osmotic shock

FIGURE 1 |Typical [Ca2+]cyt “signatures” measured in plant cells in

response to a range of external stimuli. (A) Response to 10 nM ABA
treatment measured in guard cells of Commelina communis (Staxén et al.,
1999); (B) response to anoxia (Sedbrook et al., 1996); and (C) response to
salt (Tracy et al., 2008) treatments in Arabidopsis thaliana seedlings. For (B),
luminescence ratio values were converted to [Ca2+]cyt values by considering
peak [Ca2+]cyt value as 700 nM.

(Goddard et al., 2000), H2O2 (Price et al., 1994), high temperatures
(Gong et al., 1998), and apoplastic Ca2+ treatments (McAinsh
et al., 1995). In addition to the shape and magnitude of [Ca2+]cyt

elevation, repetition of [Ca2+]cyt elevations (spikes) could encode
stimuli specific information. A classical example comes from Miwa
et al. (2006) where Early Nodulation 11 (ENOD11) inductions
were observed only when the [Ca2+]cyt spikes lasted for at least
60 min. Jasmonic acid treatment lengthened the period between
spikes but did not alter the number of spikes required for ENOD11
expression,which suggests that indeed the number of spikes carries
information required for ENOD11 expression (Miwa et al., 2006).
More specific aspects of temporal encoding mechanisms and
the role of cytosolic calcium oscillations in plant–environmental
information are discussed in Section “Temporal Encoding Mech-
anisms: Cytosolic Calcium Oscillations.” Altogether, these results
demonstrate that information concerning the type and strength of
stress are encoded within the magnitude, shape, and frequency of
[Ca2+]cyt elevations. While most published papers have focused
predominantly on the role of Ca2+ influx mechanisms in shaping
[Ca2+]cyt signatures, the latter is impossible without involvement
of Ca2+ efflux mechanisms, removing excess of Ca2+ from the
cytosol. The purpose of the current review is to emphasize the role
of Ca2+ efflux systems in the cytosolic Ca2+ signaling and shaping
[Ca2+]cyt signatures.

ENCODING ENVIRONMENTAL INFORMATION BY CALCIUM
SPATIAL ENCODING: INTRACELLULAR CALCIUM MICRODOMAINS
Pleiotropic Ca2+ effects on cellular functions are due to a spatio-
temporal organization of Ca2+ signal, and it would be a gross
oversimplification to assume that [Ca2+]cyt is uniform across the
cell. Instead, localized [Ca2+]cyt increases take place. Several factors
make such localization possible. First, due to a presence of different
buffer components in the cytosol Ca2+ mobility is very low (e.g.,
diffusion coefficient value of 1 to 5 × 10−11 m2/s as compared to
8 × 10−10 m2/s for pure water; Allbritton et al., 1992; Hille, 2001).
The second contributing factor is a very specific configuration of
different intracellular Ca2+ stores and their non-random distrib-
ution within a cell. Third, as a result of heterogeneous distribution
and clustering of various Ca2+ transporters, the contact zones may
exist between different organelles and a plasma membrane (PM),
creating so-called“Ca2+ microdomains.”Such microdomains may
be only a few nanometers in size, as ones which occur at the imme-
diate vicinity of an open Ca2+-permeable channel (Rizzuto and
Pozzan, 2006).

There are numerous examples of a specific subcellular local-
ization of a Ca2+ signal for a variety of plant responses, with a
preferential involvement of the PM, vacuole, nucleus, mitochon-
dria, chloroplasts, or some combinations of the aforementioned
stores (Sanders et al., 1999). The shaping of Ca2+ response is very
likely dependent on the non-random distribution of Ca2+ pumps,
with the expression of ACA 2 in the ER, ACA 4 and 11 in the tono-
plast, and ACA 8–10 in the PM (Sze et al., 2000; Harper, 2001;
Boursiac and Harper, 2007; Kudla et al., 2010).

During polar growth, e.g., of root hairs or pollen tubes, Ca2+
increases occur exclusively in the apical zone, which can be
explained by a localized expression of some Ca2+ influx com-
ponents. CNGC18 encoding a putative Ca2+-permeable channel,
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whose expression is essential for tube growth, is predominantly
expressed in the tip of a pollen tube (Frietsch et al., 2007), whereas
ACA 9 Ca2+ pump is expressed uniformly over the tube (Schiøtt
et al., 2004). Despite this uniform distribution, ACA 9 is believed
to be active mainly in the high Ca2+ region in the tip, due to
Ca2+–CaM binding; on the contrary, CNGC18 is presumed to be
inactivated by Ca2+–CaM (Hepler and Winship, 2010). This pair
could obviously form a Ca2+ oscillator, where ACA 9 Ca2+ pump
may prevent long-lasting Ca2+ overloads. In addition, in the pollen
tube the stimulation of a hyperpolarization-activated Ca2+-influx
channel by external apoplastic CaM was demonstrated (Shang
et al., 2005). This may add an additional feed-forward loop via
Ca2+-activated exocytosis of CaM-containing vesicles (Hepler and
Winship, 2010). Another Ca2+ influx channel, a stretch-activated
one, was functionally characterized in patches derived from a tip
of pollen tube (Dutta and Robinson, 2004), whose activity may be
modulated by a periodic growth-related cell wall loosening.

Growth-related local Ca2+ rises are also mediated by PM ROS-
activated channels (Foreman et al., 2003), and the activation
of ROS-generating enzyme NADPH-oxidase by incoming Ca2+
tends to act as a positive feedback (Takeda et al., 2008). It is not
surprising then that local Ca2+ and ROS changes are often cou-
pled (Foreman et al., 2003; Terada, 2006; Cárdenas et al., 2008).
Moreover, integration of NADPH-oxidase in sterol-rich lipid rafts
in the tip of a pollen tube is very essential for generation of a tip-
focused cytosolic Ca2+ gradient, underlying the polarized growth
(Liu et al., 2009).

It is widely reported in animal literature that opening of a sin-
gle Ca2+ permeable channel is capable of generating very high (up
to 300 μM) local Ca2+ increases (Llinas et al., 1992; Naraghi and
Neher, 1997; Heidelberger, 1998). The peak amplitude and spa-
tial diffusion of the Ca2+ microdomain formed at the mouth of
a Ca2+ channel and its immediate neighborhood depends on the
conductance and Ca2+ selectivity of the channel, electrochemical
gradient for Ca2+ across the membrane, and local intracellular
Ca2+ buffering. To the best of our knowledge, no such work has
been performed on plant systems.

Multiple roles have been attributed to such Ca2+
microdomains. Presynaptic termini Ca2+ microdomains are
believed to control vesicles fusion and exocytosis (Llinas et al.,
1992; Heidelberger et al., 1994). In non-excitable cells subplasma
membrane Ca2+ microdomains control Ca2+-sensitive adeny-
late cyclases (Mons et al., 1998) and NO synthase (Lin et al.,
2000). Strikingly, a very local Ca2+ increase at the mouth of an
open PM channel may initiate the signaling sequence, leading
eventually to gene activation far away (for a review see Rizzuto
and Pozzan, 2006). Finally, Ca2+ channels themselves are targets
for ultra-local Ca2+ signaling. Several types of Ca2+ channels
such as L-type Ca2+-selective channels and CRAC have been
shown to be inactivated by incoming Ca2+ (Zweifach and Lewis,
1995; Soldatov, 2003). Conversely, opening of several clustered
RyR channels required a localized Ca2+ spark to be generated
(Franzini-Armstrong and Protasi, 1997). Tight contact zones exist-
ing between the PM, ER, and mitochondria are not only impor-
tant for creating local Ca2+ microdomains, but may result in
direct transport of Ca2+ from a translocator in one membrane
to its counterpart in another membrane, so-called “linked Ca2+

transport” (Poburko et al., 2004). As mitochondrial Ca2+ uptake
may eventually lead to Ca2+ overload followed by the activation
of the transition pore and release of apoptotic factors, location
of mitochondria in relation of a high Ca2+ microdomain may be
crucial for determining a cell’s fate (Spät et al., 2009).

The physical basis for a non-random distribution of membrane
elements is due to the existence of lipid rafts, well established for
animal cells and becoming more evident also for plants (Zap-
pel and Panstruga, 2008). In animal cells, recruitment of Ca2+
channels, pumps, exchangers into lipids rafts, and their functional
consequences are known (Balijepalli and Kamp, 2008). In plants
such evidence so far exists only for KAT1 channels (Sutter et al.,
2006; Homann et al., 2007), but there is no reason to exclude such
possibility also for plant Ca2+ permeable channels. Recently, we
obtained some indirect evidence that double-pore Ca2+ (TPC)
channels tend to cluster and communicate via local Ca2+ changes,
as closed–open transitions of individual channels demonstrated
interdependency (Pottosin, unpublished). Such an arrangement
seems logical in light of a very high threshold for the TPC channel
activation by intracellular Ca2+ (several tens of micromolar for the
physiological voltage range (Schulz-Lessdorf and Hedrich, 1995;
Pottosin et al., 1997; Pérez et al., 2008). Such high free Ca2+ con-
centrations occur only in close proximity of the mouth of an open
Ca2+-permeable channel. A high threshold protects the cell from
a global Ca2+ release from the non-exhaustible store, the central
vacuole, which would be fatal. This consideration was obviously
overlooked the when original hypothesis for the Ca2+-induced
Ca2+ release based on the Ca2+ activation and Ca2+ permeabil-
ity of vacuolar TPC was formulated (Ward and Schroeder, 1994).
Recent studies with tpc-mutants show that TPC channels do not
significantly contribute to any type of global Ca2+ response in
plants (Ranf et al., 2008). On the other hand, clustering of the
tonoplast TPC channels and/or their contacts with PM Ca2+-
permeable channels of other organelles and PM would tend to
split the large vacuole into multiple local Ca2+ circuits, where
local feed-forward-looped Ca2+ rises could take place (Pérez et al.,
2008). The fact that the tonoplast Ca2+/H+ (CAX) exchanger also
has a relatively low (K d ∼10–15 μM) affinity for Ca2+ (Hirschi,
2001) indirectly indicates that it may encounter very high local
Ca2+ rises.

TEMPORAL ENCODING MECHANISMS: CYTOSOLIC CALCIUM
OSCILLATIONS
Advantages of oscillatory strategy
most other biological systems, cellular metabolism in general, and
membrane transporters in particular, are governed by non-liner
mechanisms and include a large number of positive and negative
feedback loops (Hansen, 1978; Feijo et al., 2001; Shabala et al.,
2006). It is not surprising, therefore, that such systems exhibit
oscillatory behavior. Moreover, transient oscillatory responses are
the most typical response of every feedback-controlled system to
step-wise changes in external parameters. It is hardly surprising,
therefore, that [Ca2+]cyt oscillations are widely reported in a range
of plant systems (see below). Such a periodic behavior confers
several functional advantages for the organism (Rapp, 1987), with
precision of control and discrimination of true signals from envi-
ronmental noise being the most important. Theoretical findings by
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Rapp et al. (1981) suggest that many biological oscillations reflect
the biochemical implementation of analog-digital-analog control
strategy; a strategy that provides significant functional advantages
for living cells.

Oscillations may also facilitate synchronization of events widely
separated in space between subcellular compartments (Lloyd and
Stupfel, 1991), and it has been suggested that Ca2+ oscillations can
act as cellular timekeepers to coordinate related biochemical reac-
tions and enhance their overall efficiency (Izu and Spangler, 1993).
Another advantage of oscillatory strategy is that oscillations may
enhance signal efficiency specifically at low levels of stimulation.
Experiments carried out on lymphocytes T cells revealed that oscil-
lations in cytosolic free Ca2+ increase the efficiency and specificity
of gene expression (Dolmetsch et al., 1998). The authors showed
that this effect arises from the highly non-linear dependence of
transcription on [Ca2+]cyt, so that oscillations periodically exceed
the threshold for activation whereas a small constant [Ca2+]cyt

rise of the same average magnitude does not. In other words,
oscillatory control optimized sensitivity to weak external stimuli.

Theoretical studies also show that such systems will possess
complex dynamics leading to “strange” behavior such as bifur-
cation and chaos (May, 1989), and both theoretical (Rand et al.,
1981) and experimental (Shabala et al., 1997) evidence for the
chaotic stomatal behavior were presented. Given the fact that
the stomata aperture is controlled by [Ca2+]cyt modulation, evi-
dence for deterministic chaos in [Ca2+]cyt kinetics is waiting to be
revealed.

Ca2+ oscillations in plant cells
Two major types of [Ca2+]cyt oscillations are known: (i) a baseline
spiking, in which the magnitude of the spike remains the same but
the frequency of the spiking is affected by environmental stim-
ulus, and (ii) sinusoidal [Ca2+]cyt oscillations, in which agonist
dose regulates the amplitude but has no effect on oscillation fre-
quency. In technical terms this is equivalent to the frequency and
amplitude modulation (Berridge, 1997).

Over the last decade, calcium oscillations have been a popu-
lar subject of numerous reviews (e.g., McAinsh and Hetherington,
1998; Ng and McAinsh, 2003; McAinsh and Pittman, 2009; Roelf-
sema and Hedrich, 2010) and, thus, are only briefly covered here.
Such oscillations have been found in various plant systems such as
guard cells (McAinsh et al., 1995, 1997), pollen tubes (Holdaway-
Clarke et al., 1997; Feijo et al., 2001), roots (Kiegle et al., 2000),
root hairs (Ehrhardt et al., 1996; Monshausen et al., 2008), and
some other systems (Bauer et al., 1998; Schonknecht et al., 1998).
Oscillations in [Ca2+]cyt result from a dynamic balance of fluxes
of Ca2+ into and out of the cytosol and include release and
uptake from both intracellular stores and external media (Ng and
McAinsh, 2003). The frequency of [Ca2+]cyt oscillations ranges
typically from ca 20 s (Bauer et al., 1998) to 10–15 min (McAinsh
et al., 1995) and shows a clear dependence on the magnitude
of external stimulus (discussed in the next section). The latter
findings lead to the concept of the existence of a frequency encod-
ing mechanism, which conveys information about the severity of
environmental fluctuation (e.g., temperature; heavy metal toxicity;
hormonal level) by means of [Ca2+]cyt spikes. The functional role
of [Ca2+]cyt oscillations was shown in nodulation experiments
with alfalfa. The pronounced [Ca2+]cyt spikes were observed only

in nodulating wild type plants, but not in non-nodulating alfalfa
mutant (Ehrhardt et al., 1996); they were also absent in roots of
tomato plants which are not capable of nodulating.

Both plasma and endomembrane Ca2+ channels are con-
sidered to be essential for generation of stimulus-induced
[Ca2+]cyt oscillations (McAinsh et al., 1995, 1997). Involvement
of hyperpolarization-dependent PM Ca2+ channels (HACC) has
been shown (Pei et al., 2000), and oscillatory coupling between
MP and [Ca2+]cyt has been suggested (Grabov and Blatt, 1998;
Blatt, 1999). Indirect control via ABA-induced H2O2 production
and a subsequent activation of Ca2+ influx through HACC has
also been demonstrated (Pei et al., 2000).

Repetitive transient [Ca2+]cyt spikes were observed in uni-
cellular green alga Eremosphaera viridis upon stimulation with
Sr2+ (Bauer et al., 1998). These spikes were inhibited in cells pre-
treated with either ruthenium red or ryanodine, two known agents
affecting activity of ryanodine/cyclic ADP-ribose type of Ca2+
channel, indicating the involvement of ER channels in genera-
tion of [Ca2+]cyt oscillations. InsP3-gated Ca2+-release channels
have also been implicated (McAinsh and Hetherington, 1998). It
was suggested that these channels may form a part of the signal
transduction pathway of different stimuli based on difference in
distribution, gating properties, and sensitivity.

Ca2+ as a component of encoding/decoding mechanism
Increases in [Ca2+]cyt have been observed in several cell types
in response to a number of stimuli (see Stress-Specific Calcium
“Signatures”). Most of these treatments resulted in long-lasting
[Ca2+]cyt oscillations and showed all signs of frequency encoding.
As such, a strong correlation between mechanical signal strength
and an amplitude of the resulting [Ca2+]cyt spike has been shown
in Nicotiana cotyledons (Knight et al., 1991, 1992). Sr2+-induced
[Ca2+]cyt oscillations in Eremosphaera showed an increase in fre-
quency and decrease in amplitude at increasing agonist concen-
trations (Bauer et al., 1998). In stomata guard cells, the period of
[Ca2+]cyt oscillations increased from T = 8.3–13.6 min as external
Ca2+ rose from 0.1 to 1.0 mM (McAinsh et al., 1995). This is con-
sistent with animal models (Tang and Othmer, 1995) and points
out that the signal specificity may be encoded by the amplitude
and frequency of oscillations.

At the other end of the equation is a decoding mechanism. It
was suggested that the Ca2+ signature may be decoded by the dif-
ferential effects of Ca2+ on various downstream Ca2+-regulated
proteins, such as calmodulin, phosphoinositide-specific phospho-
lipase C, and Ca2+-dependent phosphatases and kinases (Tang
and Othmer, 1995; Leckie et al., 1998; McAinsh and Hethering-
ton, 1998). Direct evidence that calmodulin-dependent protein
kinase II can decode the frequency of [Ca2+]cyt spikes into dis-
tinct amounts of kinase activity was given by De Koninck and
Schulman (1998).

Dolmetsch et al. (1997) demonstrated that differential gene
transcription in B lymphocytes is achieved through amplitude
modulation of the [Ca2+]cyt signaling system. Low [Ca2+]cyt

concentrations activate the nuclear factor of activated T cells
(NF-AT), whereas much larger elevations stimulate a different
set of transcriptional regulators. In their model, mechanisms of
AM-modulation are based on the recruitment of a variable num-
ber of elementary events, resulting from the opening of either
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individual or small group of channels located in the internal stores
(organized as a hierarchy). The same group has also shown that
[Ca2+]cyt oscillation frequency can discriminate among different
transcriptional pathways (Dolmetsch et al., 1998). While low fre-
quency spikes recruited NF-kB alone, higher frequency oscillations
(T < 6 min) activated NF-AT, Oct/OAP, and NF-kB, resulting in a
differential gene expression. Another work used caged InsP3 to
induce forced [Ca2+]cyt oscillations in T lymphocytes (Li et al.,
1998). It was shown that [Ca2+]cyt oscillations were more effective
in activation of the NF-AT gene expression than a single, prolonged
[Ca2+]cyt increase, provided that the period was roughly 1 min;
slower (T = 2 min) and faster (T = 0.5 min) oscillations were less
efficient (Li et al., 1998).

It was also shown in animal systems that [Ca2+]cyt oscillations
were more effective in Ca2+-sensitive mitochondrial dehydroge-
nase (CSMDH) activation than a sustained [Ca2+]cyt increase of
similar amplitude (Hajnoczky et al., 1995). In this work, sustained
NADPH elevation was achieved when the [Ca2+]cyt oscillation
frequency was 0.5–1/min, while sustained increase in [Ca2+]cyt

caused only a transient elevation of NADPH. These results sug-
gest that the pulsating organization and frequency modulation
of [Ca2+]cyt signaling are superior to amplitude modulation of
[Ca2+]cyt responses in controlling mitochondrial metabolism.
Thus, it appears that mitochondria are tuned to the oscillating
[Ca2+]cyt signal.

SHAPING CYTOSOLIC CALCIUM SIGNALS
As prolonged [Ca2+]cyt elevation is detrimental to normal cell
metabolism, the basal [Ca2+]cyt levels must be restored after the
signaling process has been completed. This may be achieved by
orchestrated action of the cytosolic buffering system, and by
the action of Ca2+ efflux mechanisms present in the PM and
endomembranes. As argued below, the buffering capacity of Ca2+-
binding proteins inside the cytosol is rather limited, making the
Ca2+ efflux system absolutely essential in the above process of
restoration of basal [Ca2+]cyt levels.

CYTOSOLIC BUFFERING
Intracellular Ca2+ buffering is an important determinant of the
Ca2+ signal specificity, as both the magnitude and kinetics of Ca2+
signatures are critically dependent on Ca2+ buffering (Lew et al.,
1984; Koopman et al., 2001). At the same time, there appears to
be no correlation between cytosol buffering capacity and steady-
state free Ca2+ level (Rizzuto and Pozzan, 2006). In animal cells
cytosolic Ca2+ buffering may be described by a simple Michaelis–
Menten formalism, with apparent dissociation constant (K app)
ranging from 0.4 to 0.7 μM and maximal capacity (Bmax) of 0.15–
0.3 mM. Assuming for simplicity one (high-affinity)-site binding,
the total-to-free Ca2+ ratio in cytosol could be expressed as

Ca(tot)/Cafree = 1 + Bmax/(Cafree + K app)

Assuming basal [Ca2+]cyt levels = 0.1 μM, one may calculate
that only one of 200–600 Ca2+ ions in cytosol is free while all
others are bound.

In plants, a very high (15–45 mM) cytosolic buffering capac-
ity for Ca2+ was estimated by some authors (Plieth et al., 1997).
This estimate, however, included vacuolar Ca2+ sequestration,

and, more importantly, was made under the assumption that Ca2+
and H+ always bind to the same sites; the assumption was later
challenged by other authors (Schönknecht and Bethmann, 1998).
Thus, it is generally accepted that the cytosolic buffering capacity
in plants is not different from their animal counterparts, and is in
a range of Bmax = 0.2–0.5 mM (Trewavas, 1999).

Cytosolic Ca2+-buffering is achieved mainly by Ca2+ bind-
ing proteins. Most of these proteins also act as Ca2+-sensors
(Schwaller, 2009). Arabidopsis genome alone harbors 7 calmodulin
(CaM) and 50 calmodulin-like genes (McCormack et al., 2005).
The estimated CaM concentration in the cytosol is between 5 and
40 μM (Zielinski, 1998). These and some other proteins contain
at least one (and up to six) specific helix–loop–helix structural
motifs termed as EF-hand, which can interact each with other and
bind Ca2+ in a co-operative manner, resulting in a protein acti-
vation due to a relatively small Ca2+ change. Another large group
of Ca2+ sensor proteins are calcineurin B-like proteins, bearing
three EF hands (10 CBL genes in Arabidopsis, Luan et al., 2002) and
Ca2+-dependents protein kinases (CDPKs) with four EF hands (34
genes for CDPK in Arabidopsis, Cheng et al., 2002b). In Ca2+ sen-
sors Ca2+ binding within EF-hand results in a relatively large scale
conformational change, more pronounced than in a few “pure”
Ca2+ buffering proteins such as calbindin and parvalbumin in
animal cells.

The affinity and co-operativity of Ca2+ binding could vary
greatly in different EF-proteins, and there are at least two classes
of binding sites: one highly selective for Ca2+ against Mg2+, and
another with a lower and comparable affinity for Ca2+ and Mg2+
(Gifford et al., 2007). In plants, besides EF-hand proteins, there
are several other cytosolic Ca2+ binding (and normally, also Ca2+-
regulated) proteins like phospholipase D and annexins (White and
Broadley, 2003; Tuteja and Mahajan, 2007). Other Ca2+-binding
proteins have been recently discovered (Ide et al., 2007).

CALCIUM EFFLUX SYSTEMS
The most potent factor in shaping [Ca2+]cyt signatures is the
activity of Ca2+ efflux systems. These are of utmost impor-
tance in both keeping [Ca2+]cyt at submicromolar level and in
replenishing Ca2+ stores after [Ca2+]cyt signaling is completed.
There are two groups of Ca2+ efflux mechanisms, Ca2+-ATPases
and Ca2+ exchangers (CAX), both of which operate at the PM
and endomembranes (Figure 2). Ca2+-ATPases are high-affinity
(K m = 0.1–2 μM) but low-capacity transporters whereas Ca2+
exchangers are low-affinity (K m = 10–15 μM) but high-capacity
transporters. This suggest that (i) Ca2+-ATPases may be primarily
involved in termination of [Ca2+]cyt signaling, whereas (ii) Ca2+
exchangers may be primarily involved in removal of [Ca2+]cyt

when [Ca2+]cyt elevations are higher than normal (Sze et al., 2000).
As a result, both Ca2+-ATPases and CAX transporters contribute
to shaping the [Ca2+]cyt signal. Ca2+-efflux transport mechanisms
originated early on in biological evolution, and there is significant
sequence conservation of these transporters in all forms of life
(McAinsh and Pittman, 2009). This has facilitated the work to
reveal the molecular identity of these systems. Significant knowl-
edge exists about Ca2+-ATPases and CAX transporters in terms
of activation kinetics and regulation, expression pattern, cellular
locations, and physiological functions (Sze et al., 2000; Pittman
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FIGURE 2 | Schematic diagram of Ca2+ transporters involved in Ca2+

homeostasis maintenance inside the plant cell. ACA, autoinhibited
calcium ATPase; CAX, calcium exchanger; CNGC, cyclic nucleotide gated
channel; DACC, depolarization activated cation channel; ECA, ER-type
calcium ATPase; FACC, fast-activating cation channel; GLR, glutamate
receptor-like channel; ACC, hyperpolarization activated cation channel;
InsP3R, inositol 1,4,5-trisphosphate receptor-like channel; MCC,
mechanosensitive cation channel; NSC, non-selective cation channel; RyR,
cyclic ADP-ribose (cADPR)-activator ryanodine receptor-like channel; SV,
slow-activating vacuolar channel.

and Hirschi, 2003; Shigaki and Hirschi, 2006; Boursiac and Harper,
2007). Despite this fact, the role of specific Ca2+ efflux systems has
never been included in any [Ca2+]cyt signaling model.

MOLECULAR IDENTITY OF CALCIUM EFFLUX SYSTEMS
CA2+-ATPASES
Ca2+-ATPases are energized directly by ATP and belong the super
family of P-type ATPases, ion pumps that are ubiquitous in all life
forms. A hallmark of P-type ATPases is that they form a phospho-
rylated reaction cycle intermediate during catalysis. Two types of
Ca2+-ATPases are known in plants: P2A-ATPase [or ER-type Ca2+-
ATPase (ECA)] and P2B-ATPase [or autoinhibited Ca2+-ATPase
(ACA); Geisler et al., 2000; Sze et al., 2000]. The structurally most
distinctive difference between plant P2A- and P2B-ATPases is the
extended N-terminus of P2B-ATPases, which serves a role as an
autoinhibitor of pump activity and binds calmodulin. Four mem-
bers of ECA (ECA 1–4) and 10 members of ACA (ACA1–10) have
been identified in Arabidopsis (Sze et al., 2000).

ACAs can be present in the PM as well as in endomembranes
whereas ECAs are exclusively localized to endomembranes. The
cellular locations of ACAs and ECAs in Arabidopsis are depicted

in Figure 2. (i) ACA8 (Bonza et al., 2000), ACA9 (Schiøtt et al.,
2004) and ACA10 (George et al., 2008) reside at the PM, (ii) ACA4
(Geisler et al., 2000) and ACA11(Lee et al., 2007) at the tonoplast,
(iii) ECA 1 (Liang et al., 1997) and ACA2 (Harper et al., 1998) at
the ER, (iv) ECA 3 at the Golgi (Mills et al., 2008) and endosomes
(Li et al., 2008), and (v) ACA1 at the plastid envelope (Huang
et al., 1993). Apart from ACAs and ECAs, a P1-ATPase (HMA1)
has been implicated in acting as a Ca2+/heavy metal pump at the
chloroplast envelope (Moreno et al., 2008).

CA2+ EXCHANGERS
Ca2+ exchangers are energized by the counter transport of another
cation, usually H+ or Na+. In Arabidopsis, six CAX genes (AtCAX1
to AtCAX6) that encode H+/Ca2+ exchangers plus five CCX
(cation/Ca2+ exchangers, previously described as AtCAX7 to
AtCAX11) that encode K+-dependent Na+/Ca2+ exchangers, have
been identified to date (Mäser et al., 2001; Shigaki et al., 2006). The
function of CAX (CAX1 to CAX4) in the tonoplast is widely stud-
ied (Hirschi, 1999; Hirschi et al., 2000; Cheng et al., 2002a, 2003,
2005); CAX activity at the PM is also reported (Kasai and Muto,
1990; Luo et al., 2005).

REGULATION OF CALCIUM EFFLUX SYSTEMS ACTIVITY
CA2+-ATPASE REGULATION
Ca2+-ATPases are activated by submicromolar concentrations of
Ca2+. For this reason they are defined as high-affinity pumps
(Møller et al., 2010). Due to tight coupling between ion bind-
ing and ATP hydrolysis, ATP hydrolysis will never take place if
Ca2+ has not been bound in the membranous region of the Ca2+-
ATPase (Morth et al., 2011). Likewise, hydrolysis of ATP is always
associated with transport of Ca2+.

As [Ca2+]cyt increases in response to environmental stress,
Ca2+-ATPases are immediately activated as a result of Ca2+ bind-
ing to their transport sites. P2A-ATPases have two Ca2+ binding
sites in their membrane domain both of which have to be occupied
before ATP hydrolysis can occur (Møller et al., 2010). In contrast,
P2B-ATPases have a single membranous Ca2+ binding site (Brini
and Carafoli, 2009) and therefore can proceed to ATP hydrolysis
directly after Ca2+ binding. Further, in contrast to P2A Ca2+-
ATPases, P2B-ATPases are equipped with a Ca2+ sensor that allows
the pump to change its activation state depending on [Ca2+]cyt

(see below). These combined features make P2B-ATPases optimal
for responding to increased [Ca2+]cyt.

The sensor function of P2B Ca2+-ATPases is achieved by the
ability of a terminal autoinhibitory domain to bind calmodulin.
A calmodulin binding site was first identified in the C-terminal
domain of an animal P2B Ca2+-ATPase (James et al., 1988) and
later found in the N-terminal domain of a plant P2B Ca2+-ATPase
(Malmström et al., 1997). We now know that the N-terminal
localization of an autoinhibitory calmodulin binding domain is
a distinctive feature of plant P2B Ca2+-ATPases (Geisler et al.,
2000; Boursiac and Harper, 2007). The calmodulin protein binds
four Ca2+ ions cooperatively and as a result changes from a loose
to a compact conformation when binding to the Ca2+ pump
(Ishida and Vogel, 2010). The calmodulin binding site of the
N-terminus of P2B Ca2+-ATPases is thought to interact with a
cytoplasmic domain of the pump in this way restricting domain
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movements and pump function (Luoni et al., 2004). The sequence
of amino acid residues that serves as a calmodulin binding site
also functions as a pump autoinhibitor (Baekgaard et al., 2006).
This suggests that, as calmodulin binds Ca2+, its affinity for the N-
terminal calmodulin binding site increases and, when fully loaded
with Ca2+, calmodulin competes favorably with the intramolec-
ular binding site for the autoinhibitor and, as the autoinhibitory
sequence becomes neutralized by calmodulin with bound Ca2+,
the N-terminal autoinhibition is relieved. In addition to calmod-
ulin,other cellular components such as acidic phospholipids might
influence the autoinhibitory effect of the N-terminal domain
(Bonza and De Michelis, 2011).

The presence of a regulatory terminal domain in P2B Ca2+-
ATPases is not a unique feature of these pumps. The plant PM
H+-ATPase has an extended C-terminal domain with two autoin-
hibitory sequences (Axelsen et al., 1999) and the PM heavy metal
pump HMA4 has an extended C-terminal domain that serves as a
Zn2+ and Cd2+ sensor (Baekgaard et al., 2010). Both these pumps
belong to the P-type ATPase superfamily. How are P2A Ca2+-
ATPases with very short terminal domains then regulated? At least
in animal cells, they interact with inhibitory subunits that are small
membrane proteins (Palmgren and Nissen, 2011). Whether in a
similar way plant P2A-ATPases are post-translationally regulated
by associated subunits remains to be shown.

CAX REGULATION
Plant cation/H+ exchangers, like plant Ca2+-ATPases, appear to be
primarily regulated at the post-translational level, although some
form of transcriptional regulation may occur (Shigaki et al., 2010;
Manohar et al., 2011). CAX1 may be regulated via an N-terminal
autoinhibitory domain, which binds to an adjacent region within
the N-terminus (Pittman et al., 2002; Mei et al., 2007). Other
forms of regulation via (i) formation of a “hetero-CAX” com-
plex through interaction between CAX1 and CAX3 (Zhao et al.,
2009); (ii) phosphorylation (Pittman et al., 2002), or (iii) various
CAX interacting proteins (CXIP) including CXIP4 and the Ser/Thr
Kinase SOS2 (Cheng and Hirschi, 2003; Cheng et al., 2004a,b)
and/or (iv) pH homeostasis (Zhao et al., 2008) have also been
observed.

CONTROL OF CA2+ATPASES BY POLYAMINES AND ROS
Our recent findings also suggest that PM Ca2+-efflux systems
may be regulated by synergistic effects of polyamines (PAs) and
hydroxyl-radicals (OH•). The levels of both PA and OH• are
known to increase dramatically under stress conditions. Also,
PAs block a variety of K+ and non-selective cation channels in
plants (Dobrovinskaya et al., 1999; Liu et al., 2000; Shabala et al.,
2007; Zhao et al., 2007), whereas OH• and H2O2 activate differ-
ent PM Ca2+ influx channels (Pei et al., 2000; Demidchik et al.,
2003, 2007), thus affecting cytosolic ionic homeostasis. There is
also a cross-talk between ROS and PAs, as several types of plant
responses to environmental clues such as salt or drought involve
PAs export to apoplast and further oxidation by available diamine-
or polyamine-oxidase, resulting in H2O2 and OH• formation and
activation of the Ca2+ influx across the PM (An et al., 2008;
Moschou et al., 2008).

In our work, OH• (1 mM Cu/ascorbate) treatment evoked a
long-lasting Ca2+ influx into pea roots due to OH• -induced non-
selective passive conductance. However, at shorter times, transient
Ca2+ efflux was measured to be sensitive to eosine yellow, a spe-
cific Ca2+ pump inhibitor (data not shown). Lowering the amount
of OH• (0.1 mM Cu/ascorbate) shifted the balance between Ca2+
uptake and efflux toward net efflux (Figure 3), implying a lower
threshold for the OH• -inducible Ca2+ efflux system as compared
to the Ca2+ influx one. Addition of either 1 mM Spm4+ or Put2+
provoked a massive net Ca2+ efflux with very similar kinetics and
magnitude (Figure 3). Integrating this flux over the period of
30 min and taking into account the root geometry and dimensions,
we estimated that the total intracellular Ca2+ loss was equivalent
to 0.2 mM for OH• treatment, and ∼0.6 mM for PAs. The latter
value may be even in excess of the total cytosolic Ca2+, implying
the mobilization of the vacuolar pool.

To the best of our knowledge, PAs effects on Ca2+ pumps have
never been reported. However, PAs are known to stimulate another
P-type pump, H+-ATPase, presumably via interaction of autoin-
hibitory domain protein with 14-3-3 proteins (Garufi et al., 2007).
PAs may also activate the H+-pump via an NO-dependent path-
way (Tun et al., 2006; Arasimowicz-Jelonek et al., 2009; Zandonadi
et al., 2010). Another interesting possibility is that this comes
about due to formation of a complex of Mg2+-ATP-spermine,
which seems to present an increased rate for catalysis by ATPases
as compared to Mg2+-ATP (Meksuriyen et al., 1998). It may also
be possible that PAs stimulate the PM H+ pump, which indirectly
affects/stimulates the Ca2+ pump in an H+-coupled mechanism.

There is a large body of data on animal PM Ca2+-pumps
(PMCA), showing their inhibition by ROS resulting from pro-
tein cross-linking, lipid peroxidation, and concurrent inhibition
by an oxidized form of calmodulin (Waring, 2005). However, these
effects develop slowly (time scale of hours) and, thus, could not
be responsible for the rapid induction of net Ca2+ efflux in our

FIGURE 3 | Polyamines and ROS induce Ca2+ efflux in the mature zone

of pea roots. Polyamines (1 mM of putrescine, Put, or spermine, Spm) and
copper-ascorbate mixture to generate OH• (Cu/A, 0.1 mM) were added
externally at the moment indicated by the arrow. Negative flux corresponds
to Ca2+ efflux from the root to the bath. Data are mean ± SE, with a number
of individual roots used as specified (n).
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experiments. On the contrary, for plants a rapid activation of
Ca2+-ATPase by ROS via the CaM–Ca2+ binding complex, has
been described (Romani et al., 2004). However, the observation
of a net Ca2+ efflux at lower ROS generated levels (0.1 mM Cu/A;
Figure 3) implies that the activation of Ca2+ pumping in this case
is an early event, independent on the Ca2+-pump activation via
Ca2+–CaM.

It should be also mentioned that PAs are readily catabolized in
the apoplast, releasing H2O2, which could be further converted
to OH• by apoplastic peroxidases iron and/or diamine oxidases
copper (Liszkay et al., 2004; Kukavica et al., 2009). A possible
contribution of this mechanism should be validated in direct
experiments.

INCORPORATING CALCIUM EFFLUX SYSTEMS INTO
EXISTING SIGNALING MODELS
EXPERIMENTAL EVIDENCE
Although transient increases in [Ca2+]cyt are essential for plant
responses to a variety of environmental stimuli, long-lasting eleva-
tions in [Ca2+]cyt are harmful for cells. Hence, the basal conditions
must be restored back to resting level after the signal is com-
pleted, enabling cells to react to further signals (Sanders et al.,
1999; Beffagna et al., 2005). In animal systems, active Ca2+ efflux
systems have been widely implicated in a wide range of stress
responses (e.g., Jornot et al., 1999; Zaidi and Michaelis, 1999).
Much less is known about the involvement of Ca2+ efflux systems
in stress responses in plant cells. We believe this is wrong, and
argue that active Ca2+ efflux systems must be incorporated in all
stress signaling models.

Biotic stresses
Intracellular calcium signaling is universally accepted as a key com-
ponent of plant biotic stress defense mechanisms (Grant et al.,
2000; Lam et al., 2001, Pike et al., 2005). Elicitor-induced ele-
vations in [Ca2+]cyt were reported during hypersensitive (HR)
plant–pathogen interactions (Nurnberger et al., 1994; Blume et al.,
2000; Lecourieux et al., 2002); these are believed to be essential for
the development of the oxidative burst needed to trigger the acti-
vation of several plant defense reactions (Blumwald et al., 1998;
Lecourieux et al., 2002). It was shown that Ca2+ channel blockers
inhibit HR in many species (Atkinson et al., 1990; Levine et al.,
1996), suggesting that PM-mediated calcium influx is required for
HR initiation. As a result, most preceding reports were focused
on the role of calcium cannels in HR induction (Atkinson et al.,
1990; Levine et al., 1996, Jabs et al., 1997; Grant et al., 2000, Lam
et al., 2001; Balagué et al., 2003, Pike et al., 2005; Hann and Rath-
jen, 2007). However, recent experiments in our laboratory have
suggested that pathogen-induced Ca2+ influx occurs only at the
first stages of pathogen–host interaction, during 0–7 h after the
challenge (Nemchinov et al., 2008). Using P. syringae-inoculated
tobacco plants we have shown that the initial calcium uptake is
subsequently followed by the net calcium efflux initiated between
10 and 12 h and continued up to 48 h after the pathogen challenge.
This efflux was inhibited by cyclopiazonic acid, a known inhibitor
of Ca2+-ATPase, suggesting that active Ca2+ efflux systems play
an important role in HR. A new model of a multi-step HR process
has been put forward (Nemchinov et al., 2008). According to this

model, prolonged Ca2+ uptake, which continues to occur 1–7 h
after the challenge, reflects the pathogen’s successful overcom-
ing the initial PAMP-triggered defense reaction, and sustained
increases in [Ca2+]cyt at this stage are necessary for generation
of ROS, oxidative burst, and induction of HR (Atkinson et al.,
1990; Grant et al., 2000). After HR transduction pathway has been
initiated with the help of Ca2+ uptake, [Ca2+]cyt levels sharply
decline to mediate the last HR phase – an expanded cell death.

We have also recently demonstrated that Ca2+ efflux sys-
tems play a crucial role in the phenomenon of acquired cross-
tolerance to oxidative stress in plants. Nicotiana benthamiana
plants were infected with Potato virus X (PVX) and exposed
to oxidative (either UV-C or H2O2) stress. It was shown that
virus-infected plants had a better ability to control UV-induced
elevations in [Ca2+]cyt free Ca2+ and prevent structural and func-
tional damage of chloroplasts (Shabala et al., 2011a), and that PM
Ca2+ efflux systems play a critical role in this process. Several
major lines of evidence support this conclusion: (1) significant
net Ca2+ efflux was measured from UV-treated leaves 2 h after
stress exposure. As passive Ca2+ leak from the cytosol is ther-
modynamically impossible, such efflux cannot be attributed to
the general change in PM permeability and may be explained
only by the activation of some Ca2+ efflux (active) system at
the PM (e.g., either Ca2+-ATPases or Ca2+/H+ exchanger); (2)
PVX-inoculated leaves were actively pumping Ca2+ out (net
efflux) while mock controls were still taking up Ca2+; (3) PVX-
inoculated cells have a much better capacity to activate PM Ca2+
efflux systems to deal with UV-induced elevation in [Ca2+]cyt

thereby preventing damage to chloroplast structure (Shabala et al.,
2011a).

To separate the different types of active Ca2+ transport systems,
a series of pharmacological experiments was conducted. Neither
erythrosine B nor eosin yellow (EY), two known inhibitors of P2B-
type Ca2+-ATPases, had a significant impact on the magnitude
of net Ca2+ fluxes from tobacco mesophyll segments (Shabala
et al., 2011a). Also unaffected was Ca2+-ATPase activity in puri-
fied PM vesicles from tobacco leaves. This suggested that the PM
Ca2+-ATPases play a limited (if any) role in mediating Ca2+ efflux
under oxidative stress conditions and suggested that the latter is
mediated by PM Ca2+/H+ exchangers.

Not only plasma but also endomembrane Ca2+ efflux systems
mediate the phenomenon of cross-protection in plants. Using bio-
chemical and electrophysiological approaches, it was revealed that
both endomembrane P2A and P2B Ca2+-ATPases play significant
roles in adaptive responses to oxidative stress by removing exces-
sive Ca2+ from the cytosol, and that their functional expression
is significantly altered in PVX-inoculated plants (Shabala et al.,
2011b). Taken together, these findings highlight the crucial role of
Ca2+ efflux systems in acquired tolerance to oxidative stress and
open up prospects for practical applications in agriculture.

Abiotic stresses
The evidence for the importance of Ca2+-ATPase in shaping
[Ca2+]cyt signatures came from two independent salinity studies.
First, knocking out both AtACA4 and AtACA2 in Saccharomyces
cerevisiae can increase NaCl sensitivity, but expression of AtACA4
or AtACA2 can provide tolerance to NaCl. Moreover, [Ca2+]cyt
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elevations upon salinity stress are brought back to resting levels
quickly, by expression of AtACA2 in this yeast mutant (Anil et al.,
2008). Secondly, in moss (Physcomitrella patens), salinity stress to
a loss-of-function mutant of ACA type ATPase (PCA1), resulted in
sustained [Ca2+]cyt elevation and never returned to resting level
(Qudeimat et al., 2008). ACAs may also e involved in [Ca2+]cyt

signal shaping in response to other stresses. For example, AtACA8
was found to be unregulated, whereas AtACA10 was found be
down regulated in response to cold stress (Schiøtt and Palmgren,
2005).

Earlier Romani et al. (2004) showed that submicromolar con-
centrations of EY (a P2B-type Ca2+-ATPase inhibitor) prevented
both the increase in Ca2+ efflux and the transient ROS accumu-
lation in Egeria densa in response to ABA treatment. This result
was explained by assuming an important role of PM Ca2+-ATPase
in switching off the signal triggering ROS production. Another
report from the same group implicated PM Ca2+-ATPase activa-
tion in plant adaptation to osmotic stress (Beffagna et al., 2005).
Interestingly, knocking out cax1 resulted in increased freezing
tolerance (Catalá et al., 2003) but knocking out cax3 resulted
in an increased sensitivity to salinity (Zhao et al., 2008), sug-
gesting that each stress targets a particular CAX transporter
within the CAX family. Stress-induced [Ca2+]cyt measurements
involving cax knock out mutants may provide more insight into
the specific role of each CAX transporter in shaping [Ca2+]cyt

signals.

THEORETICAL CONSIDERATIONS AND MODELING
The importance of Ca2+ efflux systems in shaping Ca2+ signatures
is further investigated by modeling stimulus-induced changes in
[Ca2+]cyt. As a starting point, we use the model of Stucki and Som-
ogyi (1994), as adopted by Bauer et al. (1998). This model includes
four major components: two Ca2+-permeable channels (A and
C), located respectively at the plasma – and endomembranes, and
two active Ca2+ efflux systems: PM-based Ca2+-ATPase pump
(B) and endomembrane-based Ca2+/H+ exchanger (D; Figure 4).
Unlike the Bauer et al. (1998) model, we assume no leakage from
the cytosol. We also assume that activity of endomembrane Ca2+
channel is dependent on ROS accumulation in the cytosol; this is
parametrized by factor R.

The amount y of Ca2+ in the cytosol, and x in the intracellular
store is then given by (cf. Stucki and Somogyi, 1994):

dytotal

dt
= A − (B + D) yfree +

(
C

(
yfree + R

)n

K + (
yfree + R

)n

) (
x − yfree

)
dx

dt
= Dyfree −

(
C

(
yfree + R

)n

K + (
yfree + R

)n

) (
x − yfree

)
(1)

Here y total denotes the total Ca2+ in the cytosol. This includes both
bound and free calcium.

The mechanistic (biological) meaning of these equations is
as follows. In Eq.(1), the rate of change of Ca2+ in the cytosol
dy total/dt is affected by both channels (A and C) and both active
Ca2+-efflux systems (B and D). The latter drive an efflux of Ca2+
from the cytosol (hence the minus sign), and this efflux is pro-
portional to the concentration y free of free cytosolic Ca2+. Influx

FIGURE 4 | A four-component model illustrating the role of Ca2+ efflux

systems in shaping up Ca2+ signatures (based on Stucki and Somogyi,

1994; Bauer et al., 1998). See text for explanations.

of Ca2+ into the cytosol is driven by a concentration gradient
between external calcium and the cytosol (assumed to be a con-
stant A, since the external calcium is typically plentiful); and an
efflux from the intracellular store, driven by the concentration
gradient (x−y free). The functional form for the multiplicative fac-
tor for C is given by the Hill equation, modified to include ROS
accumulation (parametrized by R). Physically it corresponds to
buffering-type kinetics.

In Eq.(2), the rate of change of intracellular store Ca2+ con-
centration, dx/dt, is then governed by an efflux due to channel C
that is equal in magnitude but opposite in sign to the influx into
the cytosol as described in Eq.(1); and an influx proportional to
the free cytosolic Ca2+ concentration due to pump D.

The buffering capacity of the cytosol is described by Michaelis–
Menten kinetics as

ytotal

yfree
= 1 +

(
Bmax

yfree + Kd

)
(2)

The left-hand side of Eq.(1) can then be expressed in terms of
y free,

dyfree

dt

(
1 + BmaxKd(

yfree + Kd
)2

)

= A − (B + D) yfree +
(

C

(
yfree + R

)n

K + (
yfree + R

)n

) (
x − yfree

)
(3)

and the expression for amount x in the intracellular store remains
unchanged.

Model parameters
The equations above are scalable. A has dimensions of
(amount/time); B, C, and D have dimension (1/time); K is in
[amount(1/n)]; Bmax, K d and R are in (amount), just as x and y.
This means that the scaled quantities can be related to physical

www.frontiersin.org December 2011 | Volume 2 | Article 85 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Bose et al. Calcium efflux systems and plant adaptation

ones via the initial conditions, x(t = 0) and y(t = 0) which are
given in moles.

The scaling comes from available experimental data for Ca2+
flux into the cell. Assuming net Ca2+ influx (through A) into
the cell being ∼60 nmol/m2/s (e.g., as in response to ROS treat-
ment; Demidchik et al., 2002, 2007) and cell diameter of 30 μm,
then the total amount of Ca2+ influx will be 10−6 mol/L, giving
a physical flux Aphys = 2 μM/s. Hence, measuring concentrations
in micrometer and time in seconds, we set for our default model
A = 2. Assuming [Ca2+]cyt equal 100 nM and Ca2+ concentra-
tion inside the internal organelles within 100–1000 μM range
(Medvedev, 2005), we adopt y(t = 0) = 0.1 and x(t = 0) = 160.

As in Bauer et al. (1998) we assume n = 4, K = 1. To set the
buffering parameters we use the physical values of Bmax,phys = 0.2–
0.5 mM (Trewavas, 1999) and K d,phys = 0.15–0.6 μM (Martinez-
Serrano et al., 1992; Kuratomi et al., 2003). This translates to
adopted scaled quantities of Bmax = 200–500 and K d = 0.15–0.6.
For the default model, we adopt Bmax = 250 and K d = 0.6.

The time scaling relates to constants A, B, C, and D. A is simply
the uptake rate of Ca2+ from external media, and has dimensions
of (amount/time); and units of [μM/s]. B, C, and D are essentially
the inverse of decay-like constants, with dimensions of (1/time).
This is easy to see from a simplified version of Equation 1, where
each of these variables is described by a term like (dy/dt ) ∝ By,
etc. The solution to such a differential equation is an exponential,
y ∝ eBt, and so 1/B is the time it takes for the amount of “stuff” to
drop/increase by a factor of e (=2.718).

As discussed above, the time scaling of A is set by the physical
parameter describing the influx into the cell (provided no other
mechanisms were operating). In our default model A = 2, which
corresponds to a flux of 2 μM/s. Setting A in this way means the
values of B, C, and D are fixed by what “decay” constants are
biologically meaningful.

Qualitative behavior
We explore the qualitative behavior of the model and con-
tribution of activities of Ca2+-ATPase pump and Ca2+/H+
exchanger to the kinetics of [Ca2+]cyt. This is done using
larger timescales to reflect the oscillatory behavior of [Ca2+]cyt

changes. In doing this, we loosely follow the ratios between
values adopted by Bauer et al. (1998) and assume the fol-
lowing set parameters: A = 2; B = 20; C = 60; D = 36; R = 0.05;
Bmax = 250; K d = 0.6. We also give the initial conditions
y(t = 0) = 0.1; x(t = 0) = 160. As explained below, this set of
parameters is motivated by experimental results. We then
vary each of the parameters B and D in turn, typically
through a dynamic range of a few, around the “default” value.
Table 1 summarizes the various parameters and their typ-
ical values. Results are shown in Figure 5 and described
below.

Looking at timescales of a few minutes, increase in the
activity of either the PM Ca2+-ATPase pump B or the
Ca2+/H+ exchanger D, results in a longer oscillation timescale,
and sharper peaks in cytosol concentration (Figures 5A,C).
Importantly, as one can see, the physiologically relevant set
of parameters in our model reproduces oscillation timescales
of a few minutes as reported by many experimental studies
(reviewed in McAinsh and Hetherington, 1998; Ng and McAinsh,
2003; McAinsh and Pittman, 2009; Roelfsema and Hedrich,
2010).

Shorter-term behavior allows us to decouple the pump/exchanger
contributions. The exchanger D only shifts the location of the first
peak (Figure 5D), while the pump B both shifts the peak and
changes the speed with which the cytosol concentration drops
(Figure 5B) – the “decay constant” discussed in the previous
section. Thus, pumps and exchangers appear to have a different
role in shaping [Ca2+]cyt signatures.

Table 1 | Model parameters.

Parameter Description Units Default Min Max Touch Anoxia Osmotic Cold

x Amount of Ca2+ in cytosol μM

y Amount of Ca2+ in intracellular store μM

B Plasma membrane-based Ca2+ pump μM/s 20 10 30 20 2.5 8 13

D Endomembrane-based Ca2+/H+ exchanger μM/s 36 18 54 36 34 58 50

σB SD in B for cell population μM/s 0 0 5 0.1 1.7 1 3

σD SD in D for cell population μM/s 0 0 5 0.1 5 4 3

A Ca2+ permeable channel (external → cytosol) μM/s 2 Fixed

C Ca2+ permeable channel (intracellular store → cytosol) μM/s 60 Fixed

x (0) Initial amount of Ca2+ in cytosol μM 160 Fixed

y (0) Initial amount of Ca2+ in intracellular store μM 0.1 Fixed

R ROS concentration μM 0.05 Fixed

K d Buffering parameter μM 0.6 Fixed

Bmax Buffering parameter μM 250 Fixed

K Half maximal saturating Ca2+ concentration μM1/n 1 Fixed

n Hill coefficient – 4 Fixed

The “default” model is the reference model. Parameters B, D, σB, and σD are changed in the range minimum – maximum and plotted in Figures 5 and 6. Best fit

parameters for touch, cold, anoxia, and osmotic stress correspond to curves in Figure 7. All other model parameters are held constant in this work.

Frontiers in Plant Science | Plant Biophysics and Modeling December 2011 | Volume 2 | Article 85 | 10

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Biophysics_and_Modeling
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Bose et al. Calcium efflux systems and plant adaptation

FIGURE 5 | Qualitative behavior of the model and contribution of activities of Ca2+-ATPase pump and Ca2+/H+ exchanger to the kinetics of [Ca2+]cyt.

The exchanger D [shown in panel (C) and zoomed in panel (D)] shifts the location of the first peak, while the pump B [shown in panel (A) and zoomed in panel
(B)] alters both the peak location and the speed with which [Ca2+]cyt drops.

Accounting for spatial heterogeneity
Stimulus-induced elevations in [Ca2+]cyt usually show marked
spatial heterogeneities, displaying both “hot-spots” and Ca2+-
quiescent regions (Gilroy et al., 1991; McAinsh et al., 1995; Ng and
McAinsh, 2003). It was suggested that such spatial heterogene-
ity could result from either different accessibility of the primary
stimulus to only a subset of the signaling machinery, or the non-
uniform distribution of the intracellular signaling machinery (Ng
and McAinsh, 2003). Regardless of the reason, the kinetics of
[Ca2+]cyt reported in the literature reflect a result of integration of
these non-uniform [Ca2+]cyt domains within the cell. Moreover,
quite often the measured signal reflects the integrated response of
many cells and, thus, may combine responses from several pop-
ulations of cell types (e.g., epidermal and cortical cells in plant
roots). It is logical to expect that these cells may have rather dif-
ferent activities of Ca2+ pumps and exchangers and, as a result,
display different [Ca2+]cyt kinetics in response to the same stim-
ulus. As a result, the overall measured [Ca2+]cyt signal may be
quite different from the response of each individual cell. This is
further illustrated in Figure 6, which depicts [Ca2+]cyt kinetics
from a population of n = 100 cells having a normal (Gaussian)
distribution of parameters B and D.

Unsurprisingly, both lowering of the amplitude and broaden-
ing of the oscillations are observed. Moreover, the phase coherence
between cells degrades with time, resulting in oscillations becom-
ing more and more “smeared out.” This is qualitatively consistent
with results from the literature.

Fitting experimental data
As a final illustration of our model, we consider experimental
data reporting changes in [Ca2+]cyt in response to cold, osmotic

stress, touch, and H2O2 in Arabidopsis seedlings, as per Logan
and Knight (2003). In brief, changes in [Ca2+]cyt were observed
in planta using recombinant aequorin Arabidopsis plants. Cold,
mannitol, or H2O2 treatments were effected by slowly (to pre-
vent a touch response) injecting 0.5 mL of ice-cold water, 0.7 M
mannitol, or 20 mM H2O2, respectively, into a cuvette containing
an Arabidopsis seedling floating in 0.5 mL of water at room tem-
perature. Touch treatment was effected by the rapid injection of
0.5 mL of room temperature water into the cuvette. The original
data reported in that paper was digitized and is shown in respective
panels in Figure 7.

As one can see, experimental data (unconnected symbols)
can be adequately approximated by the model fits (continu-
ous lines; Figure 7; also summarized in Table 1). Importantly,
this is achieved by using a realistic (i.e., physiologically relevant)
set of initial characteristics (see above), validating the adequacy
of the model. Even more importantly, it appears that specific
[Ca2+]cyt signatures observed in response to four different types
of stress (cold, osmotic stress, touch, and H2O2 treatments)
can be adequately achieved by modifying just the distributions
of parameters B and D, i.e., properties of PM-based Ca2+-
ATPase pump and endomembrane-based Ca2+/H+ exchanger,
respectively.

As such, we use the best fit to touch stress as the reference
model. The difference between plant responses to cold and touch
may be explained by a 1.5-fold increase in parameter D, a similar
decrease in B, and a broadening of their distributions (compared
to single-cell responses) by 23 and 6% of the mean, respectively.
Much slower rise in [Ca2+]cyt in response to osmotic stress may
be explained by still lower values of B (with only a minimal
change in D), while both sustained elevation and reduced peak
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FIGURE 6 | Kinetics of [Ca2+]cyt measured from a population of n = 100

cells having a Gaussian (normal) distribution of parameters B panel

(A) and D panel (B), as compared with individual cell responses.

Distributions in these parameters broaden the first [Ca2+]cyt peak, and result
in substantial decorrelation at subsequent maxima.

[Ca2+]cyt values in response to H2O2 treatment are given by a
further decrease in B and (slightly) higher D values.

The dynamic range spanned by D in these models is only 0.3
dex (i.e., a factor of 2); and the width of the normal distribu-
tion relative to the mean is σD/D = 0–0.07. The dynamic range
for B is 0.9 dex (factor of 8), and σD/D = 0–0.65. Both these
changes are within the physiological range of changes expected
under stress conditions. Indeed, the efficiency of ATP produc-
tion drops 19-fold (from 38 to only two ATP molecules; Gibbs
and Greenway, 2003) under anoxic conditions; this is twice as
wide as the dynamic range for B in the models. Importantly, oxy-
gen profiles in the root differ dramatically between epidermal,
cortical, and stellar tissues (Armstrong et al., 1994), even under

FIGURE 7 | A qualitative comparison between stress-induced [Ca2+]cyt

signatures and model simulation. Unconnected symbols are
experimental observations (as per Logan and Knight, 2003); lines are model
fits. The basic parameters in all models are: A = 2; C = 60; R = 0.05;
Bmax = 250; K d = 0.6; y (t = 0) = 0.1; x (t = 0) = 160. Only distributions in B
and D are varied between treatments. The remaining parameters are: for
cold panel (D), B = 13, σB = 3, D = 50, σD = 3; for osmotic panel (C), B = 8,
σB = 1, D = 58, σD = 4; for touch panel (A), B = 20, σB = 0.1, D = 36, σD = 0.1;
for H2O2 panel (B), B = 2.5, σB = 1.7, D = 74, σD = 5.

normoxic conditions. Thus, differential Ca2+-ATPase activity is
expected between these tissues. This special heterogeneity will con-
fer a broad dynamic range for B and may explain the presence of
the second peak in [Ca2+]cyt observed 30–40 min after anoxia
onset (Figure 1C).

CONCLUSION AND PROSPECTS
Restoration of the basal [Ca2+]cyt levels is essential for removing
excess Ca2+ from the cytosol, to reload Ca2+ stores and to termi-
nate Ca2+ signaling. (As shown in this paper, it is impossible to
achieve this without having efficient Ca2+ efflux mechanisms in
place). It also appears that physiologically relevant variations in
the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are
sufficient to fully describe all the reported experimental evidence
and determine the shape of [Ca2+]cyt signatures in response to
environmental stimuli. This emphases the crucial role these active
efflux systems play in plant adaptive responses to environment and
suggests that more attention has to be given to elucidation of the
spatio-temporal properties and control modes of Ca2+-ATPase
pumps and Ca2+/H+ exchangers in plants.
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