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Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site
of photosynthesis and of a large number of other essential metabolic pathways, such
as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic
and terpenoid compound production, to mention only a few examples. The metabolism of
plastids is heavily intertwined and connected with that of the surrounding cytosol, thus
causing massive traffic of metabolic precursors, intermediates, and products. Two layers
of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope
membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the
osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent
an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the
discovery of small substrate specific pores in the OE, this view has come under scrutiny.
In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also
crucial for protein import into the chloroplast. It contains the receptors and translocation
channel of the TOC complex that is required for the canonical post-translational import of
nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active com-
partment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane
lipid production. Also, recent findings hint on the OE as a defense platform against sev-
eral biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and
phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and
the endomembrane system are thought to play important roles in lipid and non-canonical
protein trafficking between plastid and endoplasmic reticulum.While proteomics and bioin-
formatics has provided us with comprehensive but still incomplete information on proteins
localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein
composition of the plastid OE is far from complete. In this article, we report on the recent
progress in discovering novel OE proteins to draw a conclusive picture of the OE. A “parts
list” of the plastid OE will be presented, using data generated by proteomics of plastids
isolated from various plant sources.
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INTRODUCTION
Plastids are the eponymous cellular organelles of the Archae-
plastida (i.e., photosynthetic eukaryotes that contain plastids of
primary endosymbiotic origin, also known as the Plantae) and
they host the majority of anabolic pathways. Archaeplastida that
have lost the ability to photosynthesize, such as parasitic plants, still
contain plastids. De novo fatty acid synthesis is exclusively local-
ized in plastids. Fatty acid synthesis is based on the production
of acetyl-Coenzyme A (acetyl-CoA) by the pyruvate dehydroge-
nase complex in the plastids (Johnston et al., 1997). The plastidic
acetyl-CoA carboxylase drives the first reaction in the fatty acid
biosynthesis resulting in malonyl-CoA (Konishi et al., 1996). These
fatty acids are used for lipid biosynthesis in the plastid envelopes
and in the endoplasmic reticulum (ER).

Of the 20 proteinogenic amino acids, nine are synthesized
exclusively in plastids: the aspartate derived amino acids methio-
nine, threonine, and lysine (Mills and Wilson, 1978; Mills, 1980;

Wallsgrove and Mazelis, 1980; Curien et al., 2005, 2009), the aro-
matic amino acids phenylalanine, tryptophan, and tyrosine (Bickel
et al., 1978), and the threonine and pyruvate derived branched-
chain amino acids leucine, valine, and isoleucine (Singh and
Shaner, 1995; Binder et al., 2007).

Purines, the building blocks of RNA and DNA bases and of ATP
are also synthesized in plastids, as is the pyrimidine backbone. All
10 enzymatic steps of inosine monophosphate biosynthesis occur
in the plastids (Zrenner et al., 2006). Furthermore, five of the six
steps of pyrimidine synthesis are catalyzed by the plastidic enzymes
carbamoylphosphate synthase (Giermann et al., 2002), aspartate
transcarbamoylase, dihydroorotase, and uracil monophosphate
synthase (Doremus and Jagendorf, 1985).

The reduction of sulfate to sulfide is also confined to the plastid
(summarized in Takahashi et al., 2011) as well as the produc-
tion of sulfolipids (compare Okanenko, 2002). Chloroplasts fix
inorganic carbon in the form of CO2 in the Calvin–Benson cycle
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and incorporate nitrogen in the form of ammonia into gluta-
mate and glutamine. The chloroplasts provide energy in the form
of reducing equivalents through photosynthesis. Further chloro-
plast products, such as triose phosphates (TP), carbohydrates, and
amino acids are exported from the chloroplasts to feed processes
in the cell (Weber, 2004; Weber et al., 2004, 2006; Linka and Weber,
2009; Weber and Linka, 2011).

The anabolic versatility of chloroplasts traces back to their
prokaryotic ancestor. An ancestral cyanobacterium was engulfed
and stably integrated into the eukaryotic host during primary
endosymbiosis (for a recent review, see Weber and Osteryoung,
2010). Approximately 1, 6 billion years of co-evolution irreversibly
integrated the photoautotrophic prokaryote into the host cell, cre-
ating the plant cell as we know it (Figure 1; Yoon et al., 2004;
Reyes-Prieto et al., 2007; Tyra et al., 2007).

Plastids derived from this initial event, primary plastids, are
bound by two surrounding envelope membranes, the inner (IE)
and the outer (OE) envelope membrane. It is believed that
both envelope membranes are derived from cyanobacterial mem-
branes (Gould et al., 2008). The IE traces back to the plasma
membrane (PM) of the ancestral cyanobacteria. The OE traces
to the bacterial outer membrane since (i) it contains galac-
tolipids (Jarvis et al., 2000), (ii) β-barrel forming proteins are
in both envelope membranes and the bacterial outer enve-
lope (Schleiff et al., 2003a), and (iii) traces of peptidoglucan

biosynthesis are present in plastids of glaucophytes (Steiner et al.,
2005).

Although the plastid harbors the majority of anabolic pathways
and is well separated from the cytosol by two membranes, the
extant plastid is only semiautonomous (Gould et al., 2008). Dur-
ing domestication, the organelle lost almost its complete genome
to the nucleus. Only approximately 2% of the plastid proteome
are encoded on the plastom (Abdallah et al., 2000), and almost
all of the proteins the plastid needs to function are imported
from the cytosol (Schnell et al., 1994; Hinnah et al., 1997). It
also lost the ability to freely replicate, because the complete pro-
tein set for division is encoded in the nucleus (Hashimoto and
Possingham, 1989; Kuroiwa et al., 1998). Furthermore, cell- and
plastid-divisions are synchronized (El-Shami et al., 2002; Raynaud
et al., 2005), although it can be uncoupled to a certain degree, as
demonstrated by several mutant lines defective in plastid division
(Pyke and Leech, 1992; Osteryoung et al., 1998; Asano et al., 2004;
Raynaud et al., 2004).

Extant plastids are well integrated into their host cells, exchang-
ing metabolites, proteins, membrane lipids, and information. The
ultimate barriers between these compartments are the plastid
envelope membranes. For the IE the reader is directed to several
recent reviews about the function of the inner envelope membrane
(Linka and Weber, 2009; Kovacs-Bogdan et al., 2010; Facchinelli
and Weber, 2011; Fischer, 2011; Weber and Linka, 2011). In this

FIGURE 1 | From endosymbiont to plastid. Schematic representation of plastid origin and extant anabolic pathways in plastids; ER, endoplasmic reticulum;
Mito, mitochondrion; IE, inner envelope; IMS, intermembrane space; OE, outer envelope; FA, fatty acid; AS, amino acid (specific amino acids are denoted in one
letter code); TP, triosephosphate
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review, we will focus on the role of the outer envelope and we
provide a parts list of the OE proteome (Tables 1 and 2).

SOLUTE TRANSPORT ACROSS THE OUTER ENVELOPE
Since the plastid is the anabolic factory of the cell, substrates
that cannot be produced from intermediates of the Calvin–
Benson cycle need to be imported while many products need
to be exported. All substrates and products cross two enve-
lope membranes, the IE and the OE. The IE contains a diverse
set of substrate specific proteins processing and possibly con-
trolling export and import to the organelle (Linka and Weber,
2009; Bräutigam and Weber, 2011; Facchinelli and Weber, 2011;
Weber and Linka, 2011). Pores with broad substrate specificity
have not yet been described in the inner envelope. For a long
time the OE was considered as a molecular sieve for mole-
cules larger than 10 kDa not contributing to the barrier between
stroma and cytosol. This view has been disputed (Pohlmeyer et al.,
1997; Flügge, 2000; Soll et al., 2000). In the past 15 years, four
pore forming proteins of different selectivity have been charac-
terized and were named by their apparent molecular masses as
OEP16 (Pohlmeyer et al., 1997), OEP21, OEP24 (Pohlmeyer et al.,
1998), and OEP37 (Schleiff et al., 2003a; Table 1). They were
initially identified in Pisum sativum (pea) and later pursued in
Arabidopsis.

OEP24
OEP24 is a member of β-barrel forming proteins and is proposed
to consist of seven β-strands spanning through the membrane
(Pohlmeyer et al., 1998). OEP24 shows no similarity in its pri-
mary structure to mitochondrial and bacterial porins, and does
not show sensitivity to bacterial porin inhibitors (Pohlmeyer et al.,
1998). However, the high amounts of hydrophilic amino acids

(49%) reflect the properties of other pore forming proteins in
bacteria and mitochondria (Röhl et al., 1999).

When reconstituted in proteoliposomes in vitro, the channel is
slightly selective for cations and it is highly conductive. The 2.5-
to 3-nm wide pore is created by at least two OEP24 proteins. This
homodimer facilitates the transport of triose phosphates (TP),
hexose-phosphates, sugars, ATP, phosphates (Pi), dicarboxylates
like 2-oxoglutarate, and charged amino acids (Table 1; Pohlmeyer
et al., 1998). Hence, OEP24 carries the major fluxes across the enve-
lope membrane in the shape of TP, the product of photosynthesis
as well as dicarboxylates and amino acids needed for nitrogen
assimilation. The importance of OEP24 is underlined by its expres-
sion pattern. OEP24 pores exhibit equal distribution in plastids
of all kind and each tissue. Moreover, paralogs can be found in
monocotyledons and in dicotyledons (Pohlmeyer et al., 1998).

The pea protein PsOEP24 can functionally complement a yeast
mutant that lacks the mitochondrial voltage-dependent anion
channel (VDAC). Also, like VDAC proteins, PsOEP24 can induce
apoptosis in cancer cells (Liguori et al., 2010) indicating a role in
programmed cell death for PsOEP24. In both heterologous sys-
tems PsOEP24 is targeted to the mitochondrial outer membrane
(Röhl et al., 1999).

Most information on OEP24 is currently based on PsOEP24.
Two homologs of OEP24 are found in Arabidopsis (Duy et al.,
2007) and proteomic databases suggest that at least three homologs
exist (Sun et al., 2009; Ferro et al., 2010). The AtOEP24 encoded by
At1g45170 was predicted in silico to contain 12 β-strands (Schleiff
et al., 2003a), which may indicate functionality as monomer.
Unpublished data of Timper et al. mentioned in Duy et al.
(2007) describe defects during pollen germination in a so called
AtOEP24.1 mutant. It is hypothesized that this defect is due to
a lipid and energy deprivation during early pollen development

Table 1 |The known solute transport proteins of the outer envelope.

Name

(structure)

Transport Homologs (mentioned

in this review)

Publications

PLASTID OUTER ENVELOPE SOLUTETRANSPORTER

OEP16

(α-helix)

Export of amino acids and

amines

PsOEP16.1, PsOEP16.2 Pohlmeyer et al. (1997), Baldi et al. (1999), Rassow et al. (1999), Steinkamp

et al. (2000), Linke et al. (2004), Reinbothe et al. (2004), Drea et al. (2006),

Duy et al. (2007), Murcha et al. (2007), Philippar et al. (2007), Bräutigam

and Weber (2009), Pudelski et al. (2010)

AtOEP16.1 (At2g28900)

AtOEP16.2 (At4g16160)

AtOEP16.4 (At3g62880)

HvOEP16 (COR TMC-AP3)

ZmOEP16

OEP21

(β-barrel)

Phosphorylated

carboxylates, Pi

PsOEP21 Bolter et al. (1999), Hemmler et al. (2006), Bräutigam et al. (2008)
AtOEP21.1 (At1g20816)

Anion AtOEP21.2 (At1g76405)

Rectifying ZmOEP21

OEP24

(β-barrel)

TP, hexose-phosphates,

sugar, ATP, Pi,

dicarboxylates, charged

amino acids

PsOEP24 Pohlmeyer et al. (1998), Schleiff et al. (2003a), Duy et al. (2007), Sun et al.

(2009), Ferro et al. (2010)Putative AtOEP24

(At3g52230, At5g42960,

At1g45170)

ZmOEP24

OEP37

(β-barrel)

Peptides PsOEP37 Schleiff et al. (2003a), Goetze et al. (2006), Bräutigam et al. (2008)
Cations AtOEP37

Rectifying ZmOEP37
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Table 2 | Parts list of the proteome of the OE.

Name Function Isoforms and homologs

(locus on Arabidopsis

genome)

Publication

PROTEINTRANSLOCON COMPLEX

Toc34 family GTPase, protein import

receptor

AtToc33/PPI1 (At1g02280),

AtToc34/PPI2 (At5g05000),

PsToc34

Jarvis et al. (1998), Chen et al. (2000), Gutensohn et al. (2000), Schleiff

et al. (2003b), Ivanova et al. (2004), Andres et al. (2010), Dhanoa et al.

(2010), Huang et al. (2011)

Toc64 Protein import

co-receptor/co-chaperone

AtToc64-III (At3g17970),

AtToc64-I/Ami1

(At1g08980),

AtToc64-like/OEP61

(At5g21990)

Becker et al. (2004), Aronsson et al. (2007), Qbadou et al. (2007), Bae

et al. (2008), Barsan et al. (2010), Von Loeffelholz et al. (2011)

Toc75 Protein import

translocator pore

AtToc75-III/Mar1

(At3g46740), AtToc75-IV

(At4g09080),

AtToc75-V/AtOEP80

(At5g19620), PsOEP75

Perry and Keegstra (1994), Schnell et al. (1994),Tranel et al. (1995), Hinnah

et al. (1997), Sveshnikova et al. (2000), Jackson-Constan and Keegstra

(2001), Hinnah et al. (2002), Schleiff et al. (2003a), Wallas et al. (2003),

Gentle et al. (2004), Baldwin et al. (2005), Patel et al. (2008)

Toc159 family

(Toc86)

GTPase, protein import

receptor

AtToc159 (At4g02510),

AtToc132/Mar2

(At2g16640), AtToc120

(At3g16620), AtToc90

(At5g20300)

Bauer et al. (2000), Jackson-Constan and Keegstra (2001), Schleiff et al.

(2003b), Hiltbrunner et al. (2004), Ivanova et al. (2004), Kubis et al. (2004),

Stanga et al. (2009), Andres et al. (2010), Huang et al. (2011), Infanger et al.

(2011)

LIPID METABOLISM

LACS9 Long-chain acyl-CoA

synthase

AtLacs9 (At1g77590) Schnurr et al. (2002), Zhao et al. (2010)

DGD Digalactosyldiacylglycerol

(DGDG) synthase

AtDGD1 (At3g11670),

AtDGD2 (At4g00550)

Dörmann et al. (1995), Dörmann et al. (1999), Härtel et al. (2000), Froehlich

et al. (2001a), Kelly and Dörmann (2002), Xu et al. (2003)

MGD Monogalactosyldiacyl

glycerol (MGDG) synthase

AtMGD2 (At5g20410),

AtMGD3 (At2g11810)

Miege et al. (1999), Härtel et al. (2000), Awai et al. (2001)

GGGT/SFR2 Galactolipid:galactolipid

galactosyltransferase

AtGGGT/AtSFR2

(At3g06510)

Heemskerk et al. (1983), Heemskerk et al. (1986), Kelly and Dörmann

(2002), Xu et al. (2003), Thorlby et al. (2004), Fourrier et al. (2008),

Moellering et al. (2010)

PLASTID MOVEMENT AND DIVISION

CHUP1 Anchor protein for plastid

movement

AtCHUP1 (At3g25690) Oikawa et al. (2003), Oikawa et al. (2008), Von Braun and Schleiff (2008),

Kadota et al. (2009), Suetsugu et al. (2010), Whippo et al. (2011)

PDV Plastid division AtPDV1 (At5g53280),

AtPDV2 (At2g16070)

Gao et al. (2003), Miyagishima et al. (2006), Glynn et al. (2008), Glynn

et al. (2009)

CRL1 Unknown; mutant effect

on plastid number and size

AtCRL1 (At5g51020) Asano et al. (2004), Chen et al. (2009)

MOLECULAR AND BIOCHEMICALTOOLS OF UNKNOWN FUNCTION

OEP7 Unknown AtOEP7 (At3g52420),

PsOEP14, SoOEP7 (E6.7)

Salomon et al. (1990), Li et al. (1991), Tu and Li (2000), Lee et al. (2001),

Dyall et al. (2004), Bae et al. (2008), Oikawa et al. (2008), Kim et al. (2011)

OEP9 Unknown OEP9.1 (At1g16000),

Putative homolog OEP9.2

(At1g80890)

Dhanoa et al. (2010)

OTHERS

PTM Plant homeodomain

transcription factor with

transmembrane domains

PTM (At5g35210) Sun et al. (2011)

HPL Hydroxide lyase AtHPL/AtCYP74B

(At4g15440), LeHPL,

StHPL

Blee and Joyard (1996), Froehlich et al. (2001b), Vancanneyt et al. (2001),

Shiojiri et al. (2006), Kishimoto et al. (2008)

KO ent -kaurene oxidase/

gibberellin synthesis

AtKO1/GA3 (At5g25900) Helliwell et al. (2001)

(Continued)
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Table 2 | Continued

Name Function Isoforms and homologs

(locus on Arabidopsis

genome)

Publication

OMP24 Unknown; outer

membrane protein of

spinach chloroplasts

SoOMP24 Fischer et al. (1994)

WBC7 Unknown; transport of

hydrophobic compounds

AtWBC7 (At2g01320) Schleiff et al. (2003a), Zybailov et al. (2008)

OEP6 Unknown AtOEP6 (At3g3160) Ferro et al. (2010)

Putative OE

proteins in PPDB

database

Unknown OMP85-family proteins of

35 kDA (At3g48620) and

39 kDa (At3g44160)

Sun et al. (2009)

Putative GTPase of 15kDa

(At4g02482)

Putative p-loop containing

nucleoside triphosphate

hydrolase 100 kDa

(At4g15810)

This list contains the proteins discussed in this review with residence in the outer plastid envelope except proteins already listed inTable 1.

(Duy et al., 2007). In contrast, the expression of another homolog
(AtOEP24.2) is upregulated during late seed development (Duy
et al., 2007). At least the findings for AtOEP24.1 indicate that
the more selective transport pores of the OE (see below) can-
not compensate for the loss of OEP24. The question remains
whether, and if so how, OEP24 controls the metabolic flux. Pro-
teomics data indicates that protein abundance in different plastids
subtypes does reflect flux (Bräutigam et al., 2008; Bräutigam
and Weber, 2009; Bräutigam and Weber, 2011). For example,
OEP24 is more abundant in maize mesophyll chloroplasts com-
pared to pea chloroplasts. Since the required flux of TP is at
least three times higher in maize mesophyll chloroplasts com-
pared to pea chloroplasts (Bräutigam et al., 2008; Weber and Von
Caemmerer, 2010; Bräutigam and Weber, 2011), the increased
abundance of OEP24 in maize indicates that an outer enve-
lope porin might be limiting metabolite flux (Bräutigam et al.,
2008). Studies with altered levels of AtOEP24 either by knock-
outs or knock-downs may shed light on the flux control by
OEP24.

OEP16
The first described and best-investigated outer envelope solute
channel is OEP16. Like OEP24, OEP16 lacks sequence and struc-
tural homology to known porins, which classifies it as a non-
classical porin (Pohlmeyer et al., 1997). The OEP16 channel is
slightly cation selective and is a high-conductance solute channel
(Pohlmeyer et al., 1997) that selectively transports amino acids
and amines. Although the pore is principally large enough, OEP16
excludes carbonates such as TP or sugars (Table 1; Pohlmeyer et al.,
1997).

The structure of OEP16 was controversially discussed. It was
assumed to consist of four β-sheets and three alpha-helices
(Pohlmeyer et al., 1997). Based on other porin structures and the
transport properties of the channel, it was concluded, that the

protein is a β-barrel forming pore (Steinkamp et al., 2000). How-
ever, structural analysis and enhanced prediction algorithms later
revealed a purely alpha-helical structure (Linke et al., 2004). These
findings were supported by the sequence similarity of OEP16 to
other alpha-helical transport proteins. The similarity to members
of the mitochondrial protein translocon family of the inner mem-
brane (TIM proteins), and to the bacterial amino acid permease
LivH led to the classification of OEP16 as preprotein and amino
acid transporter (PRAT) relatives (Rassow et al., 1999; Murcha
et al., 2007; Pudelski et al., 2010). The similarity to preprotein
transporters was also the cause for one group claiming OEP16 to be
a protein importer. This claim was recently conclusively disproved
(summarized in Pudelski et al., 2010).

The high selectivity for amino acids is achieved via a loop
between the pore forming helix1 and helix2 (Linke et al., 2004).
Whether this loop is facing the intermembrane space (IMS) or the
cytosol is not known (Linke et al., 2004). The model described by
Pudelski et al. (2010) puts the loop into the IMS (Pudelski et al.,
2010). The location of the regulatory element to the IMS points
to a function of OEP16 as amino acid exporter. In addition to
this transport regulation, the channel is also redox-regulated by
cysteine residues in the first helix (Steinkamp et al., 2000)

Recently a second homolog of PsOEP16 was found and named
PsOEP16.2 (Pudelski et al., 2010). Yet, Arabidopsis contains three
homologs of OEP16 (Philippar et al., 2007). The protein most
similar to PsOEP16.1 is AtOEP16.1 (63%), also called AtOEP16-
L (Drea et al., 2006), due to its highest expression levels in
leaves. AtOEP16.2/AtOEP16-S is exclusively expressed in mature
seeds, cotyledons, and early pollen stages (Drea et al., 2006;
Philippar et al., 2007). It contains additional amino acids in the
loop responsible for substrate selectivity of the channel (Drea
et al., 2006; Philippar et al., 2007). AtOEP16.2 is hypothesized
to be involved in seed development, dormancy, and/or desiccation
tolerance. Binding elements of the phytohormone abcisic acid in
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the promoter region of AtOEP16.2 support this hypothesis (Drea
et al., 2006).

A third homolog, AtOEP16.4, with a similarity of 20% to
PsOEP16 is expressed at low levels throughout all stages of devel-
opment. It shows higher expression during seed maturation and
in pollen, indicating a function as backup for AtOEP16.2 (Pudel-
ski et al., 2010). PsOEP16 also shares slight similarity (comparable
with the similarity to AtOEP16.4) to another PRAT protein earlier
described as the third homolog of AtOEP16, AtOEP16.3 (Rein-
bothe et al., 2004; Drea et al., 2006). This protein is localized to
the mitochondrial outer membrane and is now labeled PRAT3
(Murcha et al., 2007; Philippar et al., 2007).

A cold regulated protein (COR) TMC-AP3 in barley (Hordeum
vulgaris) is also a paralog of OEP16. It was investigated due to
its upregulation during cold stress (Baldi et al., 1999). The role
in cold acclimation of OEP16 is supported by a recent study on
Arabidopsis (Kaplan et al., 2007). Here, increased levels of amino
acids were found during cold stress. This indicates that the amino
acids are needed as signal substance in cold acclimation and points
on OEP16 as necessary transporter in this process. Proteomics
also indicates that the OEP16 content is dynamically adjusted
between plastid types. Proplastids contain large amounts of OEP16
reflecting the active amino acid synthesis during differentiation
(Bräutigam and Weber, 2009).

OEP37
The most recently described member of the transmembrane chan-
nels for solutes in the OE is PsOEP37 and its Arabidopsis paralog
AtOEP37. It was found in a combined in silico and proteomics
study on β-barrel proteins in the OE of pea and Arabidopsis
(Schleiff et al., 2003a). Its functional characterization revealed a
rectifying, cation selective, high-conductance channel, selective for
peptides. It is hypothesized to form a β-barrel with 12 β-strands
(Schleiff et al., 2003a). It forms an hourglass shaped pore with a
size of 3 nm narrowing to 1.5 nm in the restriction zone (Goetze
et al., 2006). A long negatively charged loop responsible for the
selectivity is facing the IMS and is regulated by the pH values of
the surrounding area (Schleiff et al., 2003a; Goetze et al., 2006).
OEP37 is likely regulated by the redox state of the environment
due to the oxidation of two neighboring cysteine residues similar
to OEP16.

Its expression levels are fairly low but it is ubiquitously dis-
tributed in all developmental stages and organs in Arabidopsis. It
was observed that during germination the mRNA levels increased
indicating a role during early plant development (Goetze et al.,
2006).

OEP37 displays binding affinity to the precursor of the inner
envelope translocon compound 32 (Tic32), which is imported
non-canonically (Nada and Soll, 2004). Consequently, it was
assumed to be transported by OEP37 (Goetze et al., 2006). How-
ever, reverse genetic analysis of AtOEP37 disproved this hypoth-
esis, since AtOEP37 knock out plants were not lethal while Tic32
mutants are. In addition, the transport of Tic32 into the IE was
not impaired in the oep37-1 knock out plants (Goetze et al., 2006).

The in vivo role of OEP37 in plants is unknown. The Arabidop-
sis oep37-1 mutant has no obvious phenotype although OEP37 is
a single copy gene albeit expressed at low levels. OEP37 function

may overlap with or is partially redundant in function with OEP16
and/or OEP24. High expression levels during early seedling ger-
mination and late embryogenesis indicate a function in early
development of the plant (Goetze et al., 2006). It may also become
important during stress conditions where higher metabolite fluxes
are needed. Similar to OEP24,chloroplast envelopes of the C4 plant
maize contain a higher amount of OEP37, which might reflect the
higher metabolite flux across this membrane (Bräutigam et al.,
2008).

OEP21
The fourth solute pore protein of the OE is OEP21 (Pohlmeyer
et al., 1998). Like for the other three OEPs, OEP21 is distributed
through all plastid types in varying abundance (Bräutigam et al.,
2008). Also, OEP21 is present in both mono- and dicotyledons
(Pohlmeyer et al., 1998). It is a rectifying, anion selective channel
for phosphorylated carbohydrates and TP (Table 1; Bolter et al.,
1999). Like OEP24 and OEP37, OEP21 is a β-barrel forming pro-
tein. Its secondary structure displays eight β-strands but just seven
are hypothesized to be pore forming. Since this seven β-strands are
not enough to form a fully hourglass shaped 2.4 nm pore, OEP21
was proposed to acts at least as dimer. The N- and C-terminus
of the protein face the cytosol (Hemmler et al., 2006). The trans-
port through OEP21 is regulated by a substrate gradient and most
likely exports TP and phosphorylated carbohydrates during light
periods in green tissue. In contrast, import of these compounds
would occur during darkness and in non-green tissue (Bolter et al.,
1999). Additional regulation OEP21 obtains by two highly affine
ATP binding sites (Bolter et al., 1999). The internal ATP bind-
ing site is proposed to provide major regulation by blocking the
channel. The IMS orientated FX4K motive only provides regula-
tory function in transport processes, and is 100-fold less affine to
ATP. The competitive binding of substrates like TP is initiating the
release of ATP from the internal ATP binding side. This leads to
the opening of the pore and to reduction of the anion selectivity
(Bolter et al., 1999; Hemmler et al., 2006). One of the two Ara-
bidopsis OEP21 homologs, AtOEP21.1, lacks the FX4K motive and
has a 50% reduced ability for modulating the ion selectivity of the
channel (Hemmler et al., 2006).

In summary, the import and export of cations (e.g., potas-
sium, calcium, iron), anions (e.g., nitrite, sulfate, phosphate), and
metabolites across the OE is driven by the set of known solute
channels OEP16,OEP21,OEP24,and OEP37. Their ability to shut-
tle photosynthetic products, amino acids, and nitrogen assimilates
likely accounts for the bulk of the metabolic exchange between
plastid and cytosol. However, the high and low specificity channel
proteins are most likely not the only metabolic shuttling systems
of the OE.

PUTATIVE METABOLITE SHUTTLES AND OE PROTEINS OF
UNKNOWN FUNCTION
THE ABC TRANSPORTER OF UNKNOWN TRANSPORT FUNCTION WBC7
An ABC transporter of unknown function, white–brown-complex
protein 7 (WBC7), was localized to the outer envelope of pea
chloroplasts (Schleiff et al., 2003a) and to Arabidopsis chloroplast
envelope fractions (Zybailov et al., 2008; Ferro et al., 2010; Joyard
et al., 2010) by proteomics. AtWBC7 is a member of the G family
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of ABC transporters with a single ABC cassette and six trans-
membrane domains (TMD). The G family contains half size ABC
transporters, which form homo- or heterodimers (Kusuhara and
Sugiyama, 2007). Two proteins of this family have been investi-
gated in Arabidopsis. AtWBC11 and AtWBC12 reside in the PM
and are involved in the export of cuticular lipids in epidermal cells
(Mcfarlane et al., 2010). No experimental evidence is available
on the function of AtWBC7 although it is tempting to speculate
about a role in transport of hydrophobic or partially hydrophobic
substances (Figure 2J).

THE PUTATIVE PORPHYRIN SCAVENGER OR TRANSPORTER TSPO
TSPO is at most a temporary resident in the OE of plastids
(Balsemao-Pires et al., 2011). Expression in Arabidopsis thaliana
is induced by salt stress (Balsemao-Pires et al., 2011) or ABA
treatment (Vanhee et al., 2011). A Physcomitrella TSPO mutant
is hypersensitive to oxidative stress (Frank et al., 2007). The pro-
tein is conserved throughout eukaryotes including yeast (Vanhee
et al., 2011) in which it is degraded by autophagy upon heme bind-
ing. AtTSPO co-localizes with autophagy markers (Vanhee et al.,
2011). AtTSPO is a membrane protein, which has been localized to
the ER and Golgi (Balsemao-Pires et al., 2011; Vanhee et al., 2011)
and to the outer envelope of plastids (Balsemao-Pires et al., 2011)
where it only appears after salt treatment. The precise function
of TSPO is unknown but it is targeted for autophagy after treat-
ments which presumably increase free porphyrins (Guillaumot
et al., 2009; Vanhee et al., 2011). TSPO is hypothesized to protect
plant cells against oxidative stress by binding and thus detoxifying
free porphyrins (Figure 2F; Vanhee et al., 2011).

TRANSPORT OF GIBBERELLIN PRECURSORS FROM THE PLASTID
Gibberellins are produced from geranyl–geranyl-diphosphate gen-
erated by the isoprenoid pathway in plastids. The first two biosyn-
thetic enzymes, copalyl diphosphate synthase and ent -kaurene
synthase, are soluble stromal proteins (Helliwell et al., 2001). They
produce a lipophilic intermediate, ent -kaurene, which likely par-
titions to the membranes (Helliwell et al., 2001). The next step,
the production of the less lipophilic intermediate ent -kaurenoic
acid, occurs at the outer envelope of the plastid since ent -kaurene
oxidase localizes to the OE of the plastids judged by GFP fusion
proteins and in vitro import assays (Helliwell et al., 2001). Whether
passage through the IMS requires a dedicated transporter or occurs
in conjunction with lipid transfer or spontaneously has not been
addressed. Further oxidation of ent -kaurenoic acid occurs in the
ER (Figure 2G).

The transfer of the gibberellin precursor presents a model by
which lipophilic plastid produced precursors may cross the enve-
lope membranes to their destination in the cytosol without the
need of dedicated transporters.

UNUSUAL PROTEIN OF UNKNOWN FUNCTION
In 1994 a small OE protein from spinach chloroplasts was cloned
and biochemically investigated (Fischer et al., 1994). While its cal-
culated weight is approximately 16 kDa, its abnormal amino acid
composition led to an apparent molecular weight of approximately
24 kDa on SDS gel for which the protein was named OMP24. The
insertion of OMP24 into the membrane is independent of surface

receptors and target peptides. ATP has been shown to stimulate the
insertion of the protein into the membrane (Fischer et al., 1994).
The function of this integral protein is unknown.

THE ROLE OF THE OUTER ENVELOPE IN LIPID SYNTHESIS
Unlike small hydrophilic compounds, fatty acids or lipids cannot
easily be transported through the aqueous phase. Yet the interplay
between the plastid and the cytosol, especially the ER is extensive.

TRANSPORT OF FATTY ACIDS
Fatty acids are amphipatic: a small hydrophilic head group caps a
highly hydrophobic long hydrocarbon tail. Several studies revealed
that from 62% (Arabidopsis green tissue, represents “16:3”-plants)
up to 90% (non-green tissue and green tissue of “18:3”-plants, see
below) of fatty acids are exported from the plastid and transferred
to the ER. The major and likely only transport direction is from
plastids to the remainder of the cell (Browse et al., 1986, 1993;
Somerville and Browse, 1991). The transport of these metabolites
across two envelopes has not yet been resolved. However, long-
chain-fatty-acid-Coenzyme-A synthetases (LACSs) are expected
to play a prominent role in this process since they can catalyze
a vectorial reaction in bacteria (Benning, 2009). Nine isoforms of
this protein family are distributed to all sub cellular compartments
of in Arabidopsis and can be found in peroxisomes, mitochon-
dria, and the plastid (Schnurr et al., 2002; Shockey et al., 2002).
Already in the late 1970s LACS activity in spinach chloroplast was
shown to localize to the outer envelope membrane (Roughan and
Slack, 1977). More than 20 years later, AtLACS9 was located to the
envelope membranes by proteomics (Sun et al., 2009; Ferro et al.,
2010; Joyard et al., 2010) and is most likely located to the OE (com-
pare Koo et al., 2004; Sun et al., 2009). AtLACS9 is the only known
exclusively plastid localized LACS and catalyzes 90% of the acety-
lation reactions. Its V max is higher than needed for complete fatty
acid export. However, a knockout mutant shows no apparent phe-
notype (Schnurr et al., 2002). Possibly, the ER localized AtLACS1
can take over at least part of its function at least in triacylglyc-
erol (TAG) biosynthesis (Zhao et al., 2010), which would require
very close contact between the OE and the ER. Proteomics studies
suggest three additional proteins with LACS activity in the plastid
envelopes, AAE15 and AAE15-like as well as AtLACS8 of which the
majority is localized to the ER or peroxisomes (Koo et al., 2004;
Ferro et al., 2010; Joyard et al., 2010).

Fatty acid transport via LACS through the OE still leaves the
inner envelope to be crossed. Extrapolating from the function of
a known fatty acid transporter, peroxisome ABC transporter 1
(PXA1), which is localized to the peroxisomal membrane, the fol-
lowing model is proposed: The inner envelope contains an ABC
transporter of the same class as PXA1, transporter associated
with antigen processing protein 1 (TAP1), which has been con-
sistently detected in all envelope proteome projects to date (Koo
and Ohlrogge, 2002; Garcia et al., 2004; Sugiyama et al., 2006;
Bräutigam et al., 2008; Bräutigam and Weber, 2009; Kunz et al.,
2009; Ferro et al., 2010; Joyard et al., 2010) and whose function is
unknown.

TAP1 or possibly another ABC transporter transports ester-
ified fatty acids across the inner envelope where they are taken
over by LACS9 and de-esterified in the process of transport out of
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FIGURE 2 | Continued

FIGURE 2 | Continued

Processes in the outer plastid envelope. (A) Galactosyl diacylglycerol
biosynthesis under normal growth conditions. MGD1 produces MGDG from
DAG. MGDG is either used in plastid membranes or is further processed by
the OE resident DGD1 to produce DGDG for plastidic membrane use. Gray
arrows label transport processes. (B) DGDG production under phosphate
deprivation occurs via the OE resident MGD2/3 and DGD2. DGDG is
transported to non-plastidic membranes, such as the tonoplast,
mitochondrial membranes, and plasma membrane, possibly via the ER. Red
arrows label transport processes. (C) GGGT produces TGDG and TeGDG
during freezing stress to provide dehydration by thickening hydrophilic parts
of the membrane. This process is labeled by blue arrows. (D) TGD1–3
complex disrupts the OE to mediate lipid exchange from ER to the IE. ER
resident TGD4 may provide membrane lipid precursors directly to the OE.
This process most likely involves further proteins in the OE and/or IE. (E)

Free fatty acids are processed by LACS proteins resident in the OE and may
IE. An ABC transporter Tap1 putatively involved in esterified fatty acids
(CoA-FA) mediates the transport through the IE. At the OE LACS9 takes
over the CoA-FA and de-esterifies these during transport across the OE. ER
resident LACS further process FA. An alternative pathway involves putative
IE resident proteins with LACS activity (AAE15). (F) Transfer of TPSO during
salt and osmotic stress from ER to OE. (G) Transfer of ent -kauren across
the OE during oxidation to ent -kaurenoic acid by OE resident ent -kauren
oxidase. (H) OE resident HPL is integrated into pathogen defense via C6

aldehyde production when wounding occurs. (I) OE resident THF1 interacts
with plasma membrane (PM) resident GPA1 in sugar signaling. Stromule
bridge the process. (J) The G family ABC transporter WBC7 mediate
transport of unknown compounds through the OE.

the plastid. The free fatty acid is immediately bound by different
LACS localized to one of the extraplastidial compartments and
esterified again. This modus operandi would limit the exposure of
the plastid to free fatty acids, which can act as detergents (Shine
et al., 1976; Koo and Ohlrogge, 2002; Koo et al., 2004). However, it
requires physically close association of the plastid to the ER to pre-
vent the escape of free fatty acids. 18O labeling indeed showed that
the transport involves a free fatty acid stage (Pollard and Ohlrogge,
1999). The reverse pathway of transport is impossible in this model
since the ABC transporter is not reversible (Higgins, 1992). Alter-
natively, if an IE transporter transports free fatty acids, AtLACS9
could transfer the fatty acid by esterification thus leading to the
release of CoA-fatty acid esters to the cytosol. Fatty acids are incor-
porated into lipids in chloroplasts and the ER (Figure 2E; compare
Koo et al., 2004).

OXYLIPIN SYNTHESIS AT THE OE
Oxylipins have prominent roles in plant development and
pathogen defense. They are produced from alpha linoleic
acid liberated from lipids of the chloroplast. At least one
branch of oxylipin synthesis can involve the OE, since the
OE localized hydroperoxide lyase (HPL) catalyzes the first
step toward C12 omega-keto-fatty acid and C6 aldehydes (Blee
and Joyard, 1996; Froehlich et al., 2001b). The C12 omega-
keto-fatty acid is the precursor for traumatin while the C6

aldehydes are directly involved in pathogen defense (summa-
rized in Howe and Schilmiller, 2002; Arimura et al., 2009).
It has been shown, that during fungal attack AtHPL expres-
sion is upregulated and leads to an increase of C6 aldehyde
concentration at wound sites (Shiojiri et al., 2006). Defense
against the pathogen is directly provided by the toxicity of the
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HPL metabolized compound (Figure 2H; Kishimoto et al., 2008).
Studies on potato HPL also suggest a role for HPL in
defense against sucking insects. However, the potato isoforms
of the HPL are not localized to the OE (Vancanneyt et al.,
2001).

GALACTOGLYCEROLIPID SYNTHESIS IN PLANTS
Galactoglycerolipids (GGL) are essential to photosynthetic func-
tion (Reifarth et al., 1997; Guo et al., 2005; Hölzl et al., 2006) but
can be found throughout the cell depending on the environmental
conditions (Härtel et al., 2000; Kelly and Dörmann, 2002). They
represent the main membrane lipids in green tissue of land plants
and are in majority localized to the thylakoids. Each GGL carries
two fatty acids in the sn-1 and sn-2 position which show where the
precursor came from before the head groups were attached at the
envelopes. Lipid backbones produced by the eukaryotic pathway
carry 18:3 fatty acids at positions sn-1 and sn-2 (Browse et al.,
1986). In contrast, lipid backbones produced in the plastid carry a
16:3 fatty acid at position sn-2 (Browse et al., 1986).

In the green algae Chlamydomonas reinhardtii the precursors of
GGL biosynthesis are exclusively provided by the chloroplast itself
since only the sn-2 position carries a 16:3 fatty acid (Giroud et al.,
1988). Plants like spinach and Arabidopsis belong to the group of
“16:3”-plants. In 16:3 plants the use of ER derived and plastid-
derived precursors in GGL biosynthesis is about equal (Browse
et al., 1986). Plants like pea use only ER derived precursors for
GGL production (Heemskerk et al., 1990) and are called 18:3
plants. It has been shown that “16:3”-plants can be forced to use
only ER derived precursors. The knock out of the major enzyme
in the prokaryotic diacylglycerol (DAG) production, the plastidic
glycerol-3-phosphate acyltransferase (ACT1) leads to a complete
shift to ER derived precursor use in Arabidopsis (Kunst et al., 1988).
In summary, in all land plants, a high volume of traffic is necessary
to supply between 50 and 100% of lipid precursors for GGL syn-
thesis, which is envelope bound, from the ER. The major GGLs are
monogalactosyldiacylglycerol (MGDG), synthesized at the IE in
Arabidopsis and digalactosyldiacylglycerol (DGDG), synthesized
at the OE. MGDG and DGDG represent approximately 50 and
20% of the plastidic membrane lipids, respectively (Block et al.,
1983).

The production of MGDG in Arabidopsis is mainly processed by
the inner membrane bound protein MGDG synthase 1 (AtMGD1;
Figure 2A; Marechal et al., 1994; Jarvis et al., 2000). In pea, the
MGD activity is divided equally between the IE and the OE (Cline
and Keegstra, 1983; Tietje and Heinz, 1998). This distribution pos-
sibly reflects the precursor supply by only the eukaryotic pathway
in the ER. Consistent with these findings, OE membranes do con-
tain additional enzymes with MGD activity in Arabidopsis and also
soybean and corn. They are classified as type B MGDs, whereas
the major MGDs like AtMGD1 and its paralogs are classified as
type A proteins (Miege et al., 1999). Arabidopsis contains two
type B MGDs, AtMGD2 and AtMGD3 (Figures 2A,B). Compared
to MGD1, these enzymes show higher selectivity for eukaryotic
pathway derived DAG. In photosynthetic active tissue they are
underrepresented compared to AtMGD1, while non-green tissues
display equal expression patterns for all three MGDs (Awai et al.,
2001). These findings are consistent with the importance of type

A MGDs for thylakoid lipid assembly. Knock down mutants of
AtMGD1 show that the type B MGDs cannot compensate the
complete loss of the type A enzyme (Jarvis et al., 2000).

In contrast to MGDG, DGDG is exclusively synthesized at the
OE. The predominant enzyme in DGDG biosynthesis is the OE
bound DGDG synthase 1 (AtDGD1; Figure 2A; Froehlich et al.,
2001a). This enzyme drives the UDP-galactose dependent glyco-
sylation of MGDG and produces αβDGDG. Knock out mutant
analysis in Arabidopsis revealed that AtDGD1 catalyzes 90% of
DGDG biosynthesis (Dörmann et al., 1999). The massive decrease
in DGDG in mutant plants lead to a strong morphological and
developmental defect, which reflects the deficiency in the pho-
tosynthetic apparatus (Dörmann et al., 1995). DGD activity in
Arabidopsis is also not limited to one enzyme. AtDGD2 is an
UDP-galactose dependent galactosyl transferase. It localizes to the
OE and similar to alternative MGDs, AtDGD2 also shows far less
activity and also lower expression levels than the major enzyme
(Figure 2B; Dörmann et al., 1995; Härtel et al., 2000; Kelly and
Dörmann, 2002). AtDGD2 can produce trigalactosyldiacylglyc-
erol (TGDG) in vitro (Kelly and Dörmann, 2002), but there is no
evidence for the production of TGDG by AtDGD2 in vivo.

An additional enzyme involved in GGL biosynthesis and local-
ized to the OE is the galactolipid:galactolipid galactosyltransferase
(GGGT) which uses MGDG as the galactosyl donor (Heemskerk
et al., 1983, 1986). Its activity was already described in the 1970s
when galactosyltransferase activity was analyzed in spinach (Van
Besouw and Wintermans, 1978). GGGT catalyzes the synthesis
of TGDG or even tetragalactosyldiacylglycerols (TeGDG), while
DAG is released (Benning and Ohta, 2005). All galactosyl groups
in GGGT produced GGLs are in β-configuration, while DGDs
produce DGDGs with alpha-configuration in the second position
(Kelly and Dörmann, 2002; Xu et al., 2003). GGGT is equiva-
lent to sensitive to freezing 2 (SFR2; Moellering et al., 2010), a
mutant identified earlier as freezing sensitive (Thorlby et al., 2004;
Fourrier et al., 2008). Freezing damage is represented by rupture
and fusion of membrane bilayers and non-bilayer structures can
provide stability to lamellar membrane structures. The change in
the membrane lipid composition affected by oligo GGLs leads to
the formation of hexagonal-II-type structures at least in the OE,
creating a non-bilayer shape of the membrane. Oligo GGLs medi-
ate protection against the dehydration effect by providing a higher
thickness of the hydrophilic part of the OE (Figure 2C; Moellering
et al., 2010).

TRANSPORT OF LIPID PRECURSORS FROM THE ER TO THE PLASTID
Massive lipid traffic occurs between the chloroplast and the ER.
Precursors for the galactolipid biosynthesis have to be transported
from the ER to the plastid and therefore through the envelopes. The
magnitude of lipid flux is increased in “18:3”-plants. While lipid
transfer is only partially understood, some proteins involved in ER
to plastid transfer have been investigated in detail (summarized in
Benning, 2009).

At least four proteins are involved in the transfer of lipids
between ER and chloroplast. They are named after the unusual
abundance of TGDG in mutant lines, and are called TGD1, 2,
3, and 4 (Xu et al., 2003). TGD1–3 likely form a high molecular
weight complex and reside in the IE. While TGD1 is assumed to
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channel the lipid, TGD3 was demonstrated to be the ATP hydrolyz-
ing component in the super complex, providing the energy for this
process (Lu et al., 2007). TGD2 is hypothesized to be anchored in
the IE and interact via its C-terminus with the OE. TGD2 is pos-
tulated to disrupt or destabilize the OE to form a conduit for lipid
transport from the outer envelope across the IMS (Roston et al.,
2011). TGD2’s binding affinity to phosphatidic acid (PA) lead to
the assumption, that the TGD1–2–3-complex drives the transport
of PA from the OE to the IE where it is dephosphorylated to DAG
(Figure 2D; Awai et al., 2006; Benning, 2009; Lu and Benning,
2009).

A fourth protein in the lipid shuffling process is TGD4. TGD4
is located to the ER and/or the OE and is assumed to transfer
eukaryotic lipid precursors to the plastid together with the TGD1–
3 machinery (Xu et al., 2008; Benning, 2009). TGD mutants show
that TGD proteins are exclusively involved in the lipid transport to
the chloroplast (Xu et al., 2010). It is currently not known which, if
any, proteins act between the TDG1–3 complex and TGD4 (Ben-
ning, 2009). However, the TGD mutant screens include two more
complementation groups with the potential to fill the remaining
gaps (Figure 2D; Xu et al., 2003).

TRANSPORT OF LIPIDS FROM THE PLASTID TO THE ER
During phosphate deprivation plant cells reclaim phosphate from
phospholipids. Phospholipids in the PM (Andersson et al., 2003,
2005), mitochondrial membranes (Jouhet et al., 2004), and the
tonoplast (Andersson et al., 2005) are replaced by GGLs. Under
such stress conditions the underrepresented isoforms AtMGD2,
AtMGD3, and AtDGD2, all localized to the outer envelope, are
highly expressed. The main surrogate for phospholipids during
phosphate deprivation is DGDG that can represent more than 30%
of extraplastidial membrane lipids in Arabidopsis. The DGDG pro-
duced during phosphate limitation is independent of DGD1 since
DGD1 knock out plants increase their DGDG content under phos-
phate starvation (Härtel et al., 2000). These enzymes preferably
use precursors of the eukaryotic pathway to provide extraplastidic
DGDG. It is currently not known how GGLs produced in the outer
envelope reach their destination membranes during phosphate
starvation. Although the envelopes can form vesicles toward the
stroma (Hatta et al., 1973) as well as to the IMS (Park et al., 1999),
no vesicular transfer directed from the plastid to the cytosol has
been demonstrated. Possibly, the transport is driven by extensive
formation of contact sides by the plastid and the ER (Figure 2B).

PROTEIN TURNOVER ACROSS AND INTO THE OUTER
ENVELOPE
PROTEIN IMPORT THROUGH THE ENVELOPES
The massive gene transfer from the cyanobacterial endosymbiont
to the host nucleus necessitated a protein distribution system for
the chloroplast. Most chloroplast-bound preproteins in the cytosol
contain an N-terminal amino acid sequence, a transit peptide, to
address it for import into the chloroplast through the TIC/TOC
Complex (Bionda et al., 2010). This complex is abundant in
chloroplasts as well as in non-green plastids, such as proplastids
(Bräutigam and Weber, 2009) and etioplasts (Von Zychlinski et al.,
2005; Reiland et al., 2011). We briefly summarize the knowledge
about import with special focus on the outer envelope. The reader

is referred to several excellent recent reviews for more details (Soll
and Schleiff, 2004; Inaba and Schnell, 2008; Andres et al., 2010;
Schwenkert et al., 2010)

The first recognition of the preprotein occurs by cytosolic
chaperones HSP90 and HSP70 as well as by 14-3-3-proteins
(Schwenkert et al., 2010). These proteins facilitate the transfer of
the preproteins to the different receptors in the OE, proteins of
the Toc159- and Toc34-family (Gutensohn et al., 2000; Ivanova
et al., 2004). In Arabidopsis the Toc159 family (earlier known as
Toc86-family) consists of four known members in Arabidopsis,
AtToc90, AtToc120, AtToc132, and AtToc159, named by their dif-
ferent molecular weight. This difference is due to variation in the
length of the acidic domain, while they share high sequence simi-
larity in the GTPase-domain and the membrane binding domain
(Bauer et al., 2000; Jackson-Constan and Keegstra, 2001; Hiltbrun-
ner et al., 2004; Agne et al., 2010). Since Toc90 can only partially
restore the Arabidopsis mutant ppi2, a plant deficient in AtToc159,
it can be assumed that the different acidic domains of the proteins
lead to specialization of the receptors (Bauer et al., 2000; Hiltbrun-
ner et al., 2004; Ivanova et al., 2004; Kubis et al., 2004; Agne et al.,
2010; Infanger et al., 2011).

The smaller GTPases AtToc33 and AtToc34 represent the Toc34-
family in Arabidopsis (Jarvis et al., 1998; Chen et al., 2000;
Gutensohn et al., 2000). The receptors also partially provide the
energy for the protein translocation process by GTP hydrolysis
(Figure 3B; Schleiff et al., 2003b; Andres et al., 2010). AtToc159
and AtToc33 facilitate the transport of proteins involved in pho-
tosynthesis related processes while AtToc120 and AtToc132 are

FIGURE 3 | Protein transfer through and into the outer envelope (OE).

(A) Akr2a pathway for the insertion of OE proteins into the membrane,
enhanced by HSP17.8; (B) Toc Complex mediated protein translocation via
Toc75 and GTPase receptor proteins of the Toc159- and Toc34- family.
Translocation is supported by cytosolic HSPs and transmembrane
co-chaperones and co-receptors Toc64/OEP61; (C) Non-canonical protein
translocation through the OE. Pathways are unclear and diverse. Protein
internal signals might support the translocation; (D) Transfer of proteins
through the OE via vesicle fusion. Complete proteins are synthesized in the
cytosol, transferred to the ER and transported to the OE via vesicle
transport; The transport from the inter membrane space (IMS) into the inner
Envelope (IE) or stroma is mainly processed by the translocon complex of
the IE (TIC) but other mechanisms have been postulated, too.
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more associated to Toc34 and seem to process house-keeping pro-
teins (Ivanova et al., 2004; Huang et al., 2011). These roles are
supported by proteomic comparisons between proplastids and
chloroplasts, since AtToc120 and AtToc132 can be identified from
proplastids but not chloroplasts (Bräutigam and Weber, 2009).
AtToc159 can be identified from plastids, etioplasts, and chloro-
plasts (Von Zychlinski et al., 2005; Bräutigam and Weber, 2009;
Reiland et al., 2011). Receptors of the TOC complex have not
been identified from chromoplasts (Siddique et al., 2006; Barsan
et al., 2010), which may either reflect their absence or technical
limitations.

In addition to their function in protein translocation, some
Toc components display also other less investigated features. For
example, AtToc159 has binding affinity to actin filaments in vitro
(Jouhet and Gray, 2009). The import receptor for house-keeping
proteins, AtToc132, and the pore AtToc75-III are involved in root
gravitropism (Stanga et al., 2009). Mutations in AtToc132 or in
AtToc75-III, called mar2 (modifier of arg 1 2) and mar1, modu-
late the gravitropism defects in altered response to gravity 1 (arg 1)
mutants. The modulation is not dependent on defects in starch
orientation. Since the mutants do not show defects in gravitro-
pism on their own, the molecular connection between the import
complex components and gravitropism remains unresolved.

The channel protein AtToc75-III facilitates actual transport of
the preprotein across the membrane (Perry and Keegstra, 1994;
Schnell et al., 1994; Tranel et al., 1995; Hinnah et al., 1997, 2002;
Sveshnikova et al., 2000; Jackson-Constan and Keegstra, 2001). As
a member of the Omp85-family it contains a N-terminal POTRA
(polypeptide-transport-associated) domain. The 16–18 in silico
predicted β-strands at the C-terminus form the β-barrel domain,
the pore (Sveshnikova et al., 2000; Hinnah et al., 2002; Schleiff
et al., 2003a; Gentle et al., 2004; Baldwin et al., 2005). It has been
shown, that AtToc75-III is not selective for a specific form of pro-
tein precursors (Baldwin et al., 2005) and this protein can be found
in all plastid types investigated by proteomics (e.g., Bräutigam and
Weber, 2009; Barsan et al., 2010; Reiland et al., 2011). A protein
similar to AtToc75-III, AtToc75-V/OEP80, is required for accu-
mulation of AtToc75-III in the membrane (Wallas et al., 2003).
AtToc75-III in turn is required for the TOC-receptor compounds
(Wallas et al., 2003).

Several proteins are reportedly associated with the import com-
plex, however their precise function remains elusive. Toc64 and
AtOEP61 likely interact with cytosolic chaperones and function
as co-chaperone and co-receptor for the TOC complex (Qbadou
et al., 2007;Von Loeffelholz et al., 2011). Another protein is the IMS
localized Toc12, which interacts with Toc64 (Becker et al., 2004)
and the inner membrane space proteins Tic22 and a chaperone
(Figure 3B; Becker et al., 2004).

Virtually all known inner envelope, stromal, and thylakoid
proteins are imported through the import complex. However, a
subset of proteins identified during proteomic analysis of chloro-
plasts lacks a recognizable transit peptide (Baginsky and Gruissem,
2004). These proteins may either be contaminations or they may
enter the plastid through a different pathway. The majority of
outer envelope proteins also lacks a recognizable target peptide
and enters the outer envelope without the benefit of the TOC
Complex.

TOC COMPLEX INDEPENDENT PROTEIN IMPORT
One possible alternative route for proteins into the chloroplast
has been shown for the a-type family carbonic anhydrase CAH1
in A. thaliana (Villarejo et al., 2005) and ADP-glucose hydrolytic
nucleotide pyrophosphatase/phosphodiesterase (NPP) 1 in rice
(Nanjo et al., 2006). CAH1 as well as NPP1 have an N-terminal
signal peptide for the secretory pathway, which targets the proteins
to the ER. In vivo localization studies with GFP fusion revealed
CAH1 and NPP1 localization in the stroma. The localization in
both studies was altered by the Golgi vesicle transport inhibitor
brefeldin A, and CAH1–GFP as well as NPP1–GFP accumulated
in ER and golgi (Villarejo et al., 2005; Nanjo et al., 2006). Based
on these results CAH1 and NPP1 are transported from the cytosol
into the ER and on to the chloroplast by Golgi-mediated vesicle
transport. At the OE it is assumed that Golgi vesicles fuse with the
envelope and release the fully folded protein into the IMS between
IE and OE (Figure 3D; Villarejo et al., 2005; Nanjo et al., 2006).
How the transport from the IMS into the stroma is accomplished
is speculative.

An internal signal sequence is important for the transfer of
NPP1 to the chloroplast (Kaneko et al., 2010). The requirement
of an internal signal sequence was also shown for the TOC-
independent insertion of the IE proteins chloroplast envelope
quinone oxidoreductase (ceQORH; Miras et al., 2002, 2007), and
the inner envelope protein (IEP) 32 (Figure 3C; Nada and Soll,
2004). While the presence of internal sequence motives important
for transport appears to be a general theme, ceQORH, IEP32, and
the protein Tic22 (Kouranov et al., 1998, 1999) were shown to be
transferred to their destinations by different pathways (Figure 3C;
Kouranov et al., 1999; Nada and Soll, 2004; Miras et al., 2007).

The study of early branching Archaeplastida provides further
insights into the transport independent of the TOC complex.
Recent studies on the amoeboid Paulinella chromatophora and
its photosynthetic endosymbiont revealed an involvement of the
ER in protein sorting to the plastid in earlier evolutionary stages
(Mackiewicz and Bodyl, 2010).

PROTEIN INSERTION INTO THE OE
Unlike TOC based transport, the insertion of OE proteins into
the membrane is mostly independent of energy equivalents. Many
proteins can insert in thermolysin-treated plastids. This was taken
as evidence for protein independent insertion, however, since
OEP7 (called OEP14 in pea) insertion is inhibited by trypsin and
N -ethylmaleimide but not thermolysin, it is more likely that the
proteins involved are not affected by thermolysin treatment. Pro-
tein insertion has been studied with several model proteins: OEP7
(Arabidopsis), OEP14 (pea), and E6.7 (spinach) although their
function is still not determined, Toc64, (Salomon et al., 1990; Li
et al., 1991; Tu and Li, 2000; Lee et al., 2001; Dyall et al., 2004;
Nada and Soll, 2004; Bae et al., 2008; Oikawa et al., 2008), the
tail-anchored proteins OEP9 and Toc33 and Toc34 (Dhanoa et al.,
2010) and the major import pore Toc75-III.

The ankyrin repeat proteins 2A and 2B (Akr2A and Akr2B)
are involved in protein trafficking to the OE based on OEP7 and
cOEP64/AtToc64 import experiments. The recognition and inser-
tion of OEPs into the membrane requires a single C-terminal TMD
and an upstream target signal. This signal is part of the functional
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protein and not cleaved off after translocation into the membrane
(Tu and Li, 2000; Lee et al., 2001; Tu et al., 2004; Bae et al., 2008).
The Akr2A protein mediates recognition of the preprotein. Akr2A
binds with its N-terminal region to the target signals of the OE pro-
tein while the C-terminal region is required for binding to the OE.
Akr2A also provides chaperone activity to OEPs (Figure 3A; Bae
et al., 2008). Akr2B functions similarly to Akr2A (Bae et al., 2008)

Akr2a mediated import is also required to target tail-anchored
proteins to the chloroplast (Dhanoa et al., 2010). Tail-anchored
protein import can be divided into delivery of the protein to the
appropriate organelle and insertion into the target membrane.
While Akr2A mediates targeting to the appropriate organelle,
insertion pathways diverge. The insertion of newly synthesized
Toc33/34 depends on the presence of Toc33 in the membrane and
is thus dependent on proteins and not or not only on the compo-
sition of the lipid bilayer. While insertion of OEP9 is also protein
dependent, it does not require Toc33 or Toc34 for insertion and
may be dependent on Toc75 (Dhanoa et al., 2010).

A second cytosolic factor is required for at least OEP7 inser-
tion. A small cytosolic class 1 heat shock protein, Hsp17.8 which
can dimerize or assemble into a temperature induced oligomeric
complex, interacts with the C-terminal ankyrin repeat domain of
Akr2A and, as a dimer, binds with high affinity to the OE. This
mediates an enhanced binding affinity of Akr2A to the OE. Knock
down lines of class1 HSPs including HSP17.8 exhibit reduced tar-
geting efficiency for OEP7 and overexpression lines enhance OE
targeting (Figure 3A; Kim et al., 2011). At least four other small
cytosolic heat shock proteins can also interact with AKR2A to
varying degrees (Kim et al., 2011).

Targeting of one of the major outer envelope proteins,AtToc75-
III, remains enigmatic. Unlike all other outer envelope proteins
tested, AtToc75-III carries a bipartite targeting signal, which con-
sists of a cleavable targeting signal to the chloroplast stroma
and a polyglycine stretch required for insertion into the outer
envelope (Tranel et al., 1995; Tranel and Keegstra, 1996; Inoue
and Keegstra, 2003). The exact mechanism for Toc75 insertion
is currently unknown but other OMP85 related proteins like
AtTOC75-V/OEP80 (Patel et al., 2008; Huang et al., 2011) and
the N-terminal truncated Toc75 homolog, AtToc75-IV, which is
inserted into the membrane without any cleavable target pep-
tide (Baldwin et al., 2005), may help to understand the insertion
process of AtToc75-III.

The rapid progress in dissecting the import pathways into the
outer envelope in recent years (Bae et al., 2008; Dhanoa et al.,
2010; Kim et al., 2011) since the focus was shifted from the well
understood TIC–TOC Pathway (Soll and Schleiff, 2004; Inaba and
Schnell, 2008; Andres et al., 2010; Schwenkert et al., 2010) to other
import pathways may indicate that a systematic picture of targeting
machinery and signals may soon arise from additional studies.

PROTEIN REPAIR AND DEGRADATION
The interior of the chloroplast is a hazardously oxidizing envi-
ronment with multiple protection systems (Baier and Dietz, 2005;
Oelze et al., 2008). Yet, no protein repair or turnover mechanism
is known in addition to those of cyanobacterial origin affecting
the thylakoid membranes themselves (Nixon et al., 2010). Mito-
chondria can be turned over entirely by autophagy. The complete

organelle is engulfed, digested, and its parts recycled (Mijaljica
et al., 2007). However, plastids are too big to fit into the autophagy
machinery (Ishida and Yoshimoto, 2008; Izumi et al., 2010). There
are organisms containing only a single plastid such as C. rein-
hardtii. Turning over the complete plastid is not a viable route
in these organisms. Cytosolic proteins can also be recycled by
autophagy or they are targeted for degradation through the protea-
some by ubiquitination (Van Doorn and Woltering, 2005; Reape
et al., 2008; Uchiyama et al., 2008). Unlike the IE and the proteins
within the plastids, the OE is exposed to the cytosol and hence
to the protein degradation machinery. However, ubiquitination of
any plastid protein has not yet been reported from any of the pro-
teome studies, likely because these studies were not designed to
identify such post-translational modifications (e.g., Rolland et al.,
2003; Bräutigam et al., 2008; Bräutigam and Weber, 2009; Ferro
et al., 2010). Since it is highly unlikely that all plastid proteins sur-
vive intact for the duration of plant life (some plants can reach
several thousand years in age), one or several methods for protein
turnover at the plastid must exist. During plastid differentiation
from proplastids to chloroplasts, the protein complement of the
stroma (compare Sun et al., 2009; Ferro et al., 2010), the IE, and
the OE (e.g., Bräutigam and Weber, 2009) is changed in quality
and quantity again necessitating protein degradation. Although it
is tempting to speculate about vesicular transport out of the plas-
tids of envelope proteins especially in light of the unresolved lipid
transfer from plastids to the remainder of the cell, the question
of protein turnover in the plastids envelopes remains completely
unresolved.

INTERACTION OF THE OUTER ENVELOPE WITH THE CYTOSOL
SITES MEDIATING THE CONTACT BETWEEN THE PLASTID AND THE ER
Fatty acid and lipid metabolism require close physical contact of
the ER and the plastids. Yet, the structural components mediating
the interaction have not been identified to date. Plastid associated
membranes (PLAMs) are a vesicular structure attached to the plas-
tids from the cytosolic side (Andersson et al., 2007a,b). They were
identified by GFP labeling the ER and isolating plastids, which
were then decorated with fluorescing vesicles. Optical tweezers
needed a force of 400 pN to overcome the attachment, which is a
force equivalent to that of a protein–protein interactions (Florin
et al., 1994). The vesicles can also be removed by a low pH/low salt
wash in MES buffer (pH 6.0) supplemented with sucrose (details in
Andersson et al., 2007a,b). Their lipid composition is intermediate
between the composition of the outer envelope and the ER.

A second structure has been implicated in mediating interac-
tion between the plastid and the cytosol, especially the ER: the
stromules (Köhler and Hanson, 2000). Stromules are defined as
stroma-filled tubules jutting out from plastids. They were observed
in many tissues and different species, so they are likely a gen-
eral feature of at least moss and higher plant plastids (Gray
et al., 2001; Pyke and Howells, 2002; Waters et al., 2004; Gun-
ning, 2005; Hanson and Sattarzadeh, 2008; Holzinger et al., 2008;
Reski, 2009; Shaw and Gray, 2011). Stromules are hypothesized
to be built by the joint action of internal pressure and external
draw. Filament forming proteins, such as the plastid division pro-
tein FtsZ are under debate to be involved in the formation of
stromules since they are abundant in tomato chromoplasts where
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plastid division is unlikely to occur (Reski, 2009; Barsan et al.,
2010; Hanson and Sattarzadeh, 2011). The cytosolic compounds
in the stromule formation process are most probably the actin
cytoskeleton (Kwok and Hanson, 2004) in combination with spe-
cific myosin proteins. Stromule formation is decreased by actin
inhibitors and by gene silencing of myosin class XI motor pro-
teins (Kwok and Hanson, 2003; Sattarzadeh et al., 2009). Actin
inhibitors lead to collapse of existing stromules, which remain
tubular but collapse onto the plastid surface (Kwok and Han-
son, 2003). Since the material does not spontaneously reinsert,
the formation and reinsertion of stromules is probably an active
process. In addition to the involvement of actin in stromule move-
ment, motor proteins like myosin XI of the F-class are assumed
to drive the chloroplast dynamics (Sattarzadeh et al., 2009). The
best evidence for a direct interaction of myosin with the stro-
mule and plastidic OE was described for a myosinXI-2 relative of
Arabidopsis in N. benthamiana. This has been shown to interact
with its cargo-binding domain at the C-terminus directly with the
OE (Natesan et al., 2009). Therefore, one or more myosins of the
XI-F-family are proposed to be anchors in the OE, building con-
nection between actin skeleton and stromules (Sattarzadeh et al.,
2009).

Similar to PLAMs the functional significance of stromules
has not been experimentally tested. Direct substance transport
between connected plastids is possible, yet likely slow since dense
stroma fills the connecting tubules (Köhler et al., 2000; Hanson and
Sattarzadeh, 2011). Plastids have almost perfect lens-shape, which
limits the surface to volume ratio. Stromules massively increase
the surface area (compare Hanson and Sattarzadeh, 2011) and
provide space for proteins such as transporters. If this hypothe-
sis was true, stromules should be present in cells and tissues with
increased import or export requirements for metabolites across the
envelope membranes. Remarkably, stromules are barely detectable
in mature leaf chloroplasts, which actively photosynthesize but
frequently observed in other tissues, which rather have sink char-
acteristics (Köhler and Hanson, 2000; Pyke and Howells, 2002;
Waters et al., 2004). Apparently, the high flux of photosynthates in
leaf chloroplasts does not require surface area increases as is also
evident by the absence of stromules in algal chloroplasts. Stromules
may also bridge the distance between plastids and other organelles
or maintain connections while allowing movement of chloro-
plasts. Plastids can “hug” or surround completely other organelles
via stromules (e.g., Sage and Sage, 2009). Dynamics of stromules
and of the cortical ER correlate with each other, mediated either
by shared cytoskeletal interaction or by direct interaction (Schat-
tat et al., 2011) possibly through PLAMs. The ER and the plastids
use different myosins but a common actin backbone to mediate
their individual movements (Sattarzadeh et al., 2009; Ueda et al.,
2010). Stromules may mediate signaling between plastids and the
PM. The protein thylakoid formation 1 (THF1) is localized to the
stroma and to the OE of plastids (Wang et al., 2004; Huang et al.,
2006; Joyard et al., 2010). It is also distributed to stromules. While
deletion of the THF1 gene leads to defects in thylakoid forma-
tion (Wang et al., 2004), it is detectable in chromoplasts (Siddique
et al., 2006), a plastid type with frequent stromule sightings (Pyke
and Howells, 2002; Waters et al., 2004) but without photosynthe-
sis. Recent findings revealed, that THF1 physically interacts with

the plasma membrane G-protein GPA1 (Huang et al., 2006). This
interaction requires proximity of the plastid or its stromule with
the plasma membrane. Stromules may also play a role in stress
response (Holzinger et al., 2007; Gray et al., 2011)

The evidence for stromules interacting with other cellular
compartments is circumstantial hence the function of stromules
remains as unknown as the mechanism that builds them.

MOVEMENT OF CHLOROPLAST
One of the adaptations of the plant to different light dosage is
the dynamic positioning of the chloroplasts inside the cell (Trojan
and Gabrys, 1996). On the one hand, the position change increases
the light-use-efficiency during low light conditions. On the other
hand, it reduces photo-damage during high light conditions. The
OE is the interface for the moving devices of the cell. Mutants
deficient in chloroplast unusual positioning 1 (CHUP1) display
defects in the distribution and positioning of chloroplasts in the
cell. CHUP1 is N-terminal anchored in the OE membrane by a
single TMD representing also the targeting signal for its insertion.
Its C-terminus is facing the cytosol and contains an actin bind-
ing motif. CHUP1 directly interacts with the PM via a C-terminal
coiled coil domain (Oikawa et al., 2003, 2008; Von Braun and
Schleiff, 2008). Two kinesin-like proteins (KAC1 and KAC2) are
CHUP1 interaction partners at the PM (Suetsugu et al., 2010). The
interaction between CHUP1 and KAC1/2 is mediated by a specific
type of chloroplast associated actin filaments (cp-actin). The accu-
mulation of cp-actin at the actin binding domain of CHUP 1 and
their connection to the PM are regulated by two blue light recep-
tor phototropins, Phot1 and Phot2 (Kadota et al., 2009). The PM
protein THRUMIN1 has also been postulated to be a link for plas-
tidial movement. The study suggests F-actin as the moving devise
for plastid movement (Whippo et al., 2011) as described earlier
(Oikawa et al., 2003).

While several extra plastidic factors are involved in the chloro-
plast movement, CHUP1 is the only detected plastidic factor
involved in this process so far (Kadota et al., 2009; Whippo et al.,
2011).

THE ROLE OF OE IN PLASTID–NUCLEUS INTERACTION
Retrograde signaling from the plastid to the nucleus is a neces-
sity. However, retrograde signals remain unknown. A recent study
describes a protein possibly involved in the retrograde signaling
from the plastid outer envelope to the nucleus (Sun et al., 2011).
The protein contains a plant homeodomain (PHD) and is bona
fide a transcription factor since it can activate transcription. It
is bound to the OE via TMDs, hence its name PTM (PHD type
transcription factor with TMDs). Immunoblot analysis revealed
re-localization of the soluble N-terminal part of PTM to the
nucleus upon signal dependent cleavage (Sun et al., 2011). PTM
was shown to be involved in the expression of ABI4, which in turn
regulates light harvesting complex associated chlorophyll binding
proteins (Sun et al., 2011). Ptm knock out plants did not show any
phenotype, indicating compensation of the loss of function by
other factors. How signals are related from the inside of the plastid
to the outer envelope remains unknown. The identification of a
chloroplast derived transmitter, the cleavable PTM, holds promise
for identification of additional parts in the signaling cascade.
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DIVISION OF THE CHLOROPLAST
Two systems in concerted action, one on the stromal side of the
envelopes and a second one on the cytosolic side of the OE accom-
plish plastid division. The stromal machinery originated from
cyanobacteria (summarized in Yang et al., 2008) while the OE
machinery was evolved from host proteins (summarized in Miyag-
ishima, 2005) Both machineries are coordinated through ARC6
(accumulation and replication of chloroplast; Glynn et al., 2008)
and PARC6 (paralog of ARC; Glynn et al., 2009) two IEPs that con-
nect the inner machinery to the outer envelope through recruiting
PDV1 (plastid division) and PDV2 (Miyagishima et al., 2006;
Glynn et al., 2008, 2009). PDV1 and PDV2 in turn recruit ARC5, a
dynamin-like protein (Gao et al., 2003), which forms a constriction
force on the outside. They can mediate interactions between the
plastid and the cytosol since their C-terminus faces the IMS where
it can interact with IEPs. Their N-terminus faces the cytosolic site
where it can interact with host proteins (Miyagishima et al., 2006).
However, PDVs do not control plastid volume per cell; chloroplast
number correlates negatively with chloroplast volume, the smaller
they are, the more of them are present (Okazaki et al., 2009).
The intriguing double mutant in IE mechano-sensitive (MS) ion
channels also changes the plastid number per cell but not plastid
volume (Haswell and Meyerowitz, 2006; Wilson et al., 2011) as do
all known division machinery mutants (summarized in Yang et al.,
2008). Pleiotropic effects of the MSL (MS-like) mutant include
fewer cells, thicker leaves, and empty leaves. The CRL1 (crumbled
leaf) mutants defective in an OE protein of unknown function
as well as ARC6 mutants also show developmental abnormalities
(Asano et al., 2004; Chen et al., 2009).

All mutants in the division machinery affect the plastid number
and size, which are inversely correlated. If the number of plastids

is reduced the remaining plastids increase in size and vice versa.
Hence it is unlikely that the division machinery, which is localized
to the envelopes controls plastid volume. The mechanism by which
the cell determines how much of its volume it devotes to plastids
is unknown but clearly, different cell types in plants devote differ-
ent amounts of volume to plastids indicating that plastid volume
is developmentally controlled. Recently it was discovered that ER
tubules mark the site of mitochondrial division in yeast (Fried-
man et al., 2011). It is thus tempting to speculate that interactions
between chloroplast and ER, such as PLAMs, might be involved in
governing or coordinating plastid division.

CONCLUSION
In this review we described the multitude of functions associated
with the outer plastid envelope. The opinions about its rele-
vance for the function of the plant cell have changed over the
past decades. Study of the plastids has mostly focused on protein
rich, abundant subcompartments, such as the thylakoids. How-
ever, a detailed understanding of how the plastids integrate into
the cytosol can only be achieved through understanding of the
barrier between the compartments, the outer envelope. Metabolite
transfer through the outer envelope is reasonably well understood,
as are lipid synthesis and the division machinery. Progress has been
made in studying ER to chloroplast transfer of lipids and protein
targeting. However, transfer of lipids out of the plastids, protein
turnover, and signal transduction remain mostly unknown.
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