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Plant–microbe interactions are ubiquitous. Plants are threatened by pathogens, but they
are even more commonly engaged in neutral or mutualistic interactions with microbes:
belowground microbial plant associates are mycorrhizal fungi, Rhizobia, and plant-growth
promoting rhizosphere bacteria, aboveground plant parts are colonized by internally liv-
ing bacteria and fungi (endophytes) and by microbes in the phyllosphere (epiphytes). We
emphasize here that a completely microbe-free plant is an exotic exception rather than the
biologically relevant rule. The complex interplay of such microbial communities with the
host–plant affects multiple vital parameters such as plant nutrition, growth rate, resistance
to biotic and abiotic stressors, and plant survival and distribution.The mechanisms involved
reach from direct ones such as nutrient acquisition, the production of plant hormones, or
direct antibiosis, to indirect ones that are mediated by effects on host resistance genes or
via interactions at higher trophic levels. Plant-associated microbes are heterotrophic and
cause costs to their host plant, whereas the benefits depend on the current environment.
Thus, the outcome of the interaction for the plant host is highly context dependent. We
argue that considering the microbe-free plant as the “normal” or control stage significantly
impairs research into important phenomena such as (1) phenotypic and epigenetic plas-
ticity, (2) the “normal” ecological outcome of a given interaction, and (3) the evolution of
plants. For the future, we suggest cultivation-independent screening methods using direct
PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true
microbial diversity in wild plants. The patterns found could be correlated to host species
and environmental conditions, in order to formulate testable hypotheses on the biological
roles of plant endophytes in nature. Experimental approaches should compare different
host–endophyte combinations under various relevant environmental conditions and study
at the genetic, epigenetic, transcriptional, and physiological level the parameters that cause
the interaction to shift along the mutualism–parasitism continuum.
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INTRODUCTION
Plants are full of microbes. The phenotype of most plants in
nature is the product of the concerted and highly co-regulated
expression of both plant and microbial genes. In fact, signifi-
cant parts of the plant phenotype represent the “extended phe-
notype” sensu Dawkins (1999) of one or several microorgan-
ism(s). Mutualistic plant–microbe interactions were originally
considered as interesting, but specific, cases, which are of rele-
vance only for some selected species or families. Likewise, most
plant-infecting microorganisms were considered pathogens with
detrimental effects on plant development, particularly in crop
plants and much less so in wild plants under natural condi-
tions. However, the presence of microorganisms in and on plants
must be considered to be the rule, rather than the exception.
Examples comprise pathogens, mutualistic fungal endophytes,
mycorrhiza, nodulating and other plant-associated N-fixing bac-
teria, as well as microorganisms in the rhizosphere and phyl-
losphere (see Glossary). Many of these microorganisms develop
within living plant tissue and therefore represent endophytes (see
below).

Fossil evidence indicates the existence of arbuscular mycor-
rhizal fungi (AMF) on the earliest land plants, as structures that
appear to be identical with modern mycorrhiza have been detected
in fossils from the early Devonian (>400 million years ago: Remy
et al., 1994) and from the Ordovician (ca. 460 million years ago:
Redecker et al., 2000). Mycorrhiza are likely to have played a cru-
cial role in the evolution of land plants (Brundrett, 2002; Bonfante
and Genre, 2008), especially as it has been demonstrated that sim-
ulated CO2 rich-environments (similar to conditions under the
Paleozoic) amplified net benefits for plants associated to AMF
(Humphreys et al., 2010) in terms of carbon gain and improved
growth. Considering the fact that nowadays more than 80% of
all terrestrial plants are associated with mycorrhizal fungi it is
tempting to state provocatively that an un-mycorrhized plant does
(almost) not exist, neither actually nor in the history of land plants.
This observation, together with studies that found leaf endophytes
in all plant species that have been investigated so far (Arnold et al.,
2003; Schulz and Boyle, 2005; Albrectsen et al., 2010; Gilbert et al.,
2010), leads us to formulate the central message that we aim to
emphasize here:
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A plant that is completely free of microorganisms repre-
sents an exotic exception, rather than the – biologically
relevant – rule

Endophytes have been defined by Wilson (1995) as “fungi that
are present in host plant tissues, during at least part of their life
cycle, without causing visible symptoms.” An increasing number
of research articles published over the last 10 years demonstrated,
however, that this definition suffers from three major drawbacks.
First, microorganisms that develop within living plant tissue with-
out causing visible symptoms are not restricted to fungi but also
comprise bacteria and viruses. Second, the net effects of infection
on the host are highly conditional and can shift from mutualism
to antagonism for virtually any type of plant–microbe interaction
(see The Conditional Outcomes of Plant–Microbe Interactions).
Third, although classical endophytes admittedly do not cause vis-
ible disease symptoms, they certainly affect the phenotype of a
plant: an endophyte-free plant looks and functions differently
from an endophyte-infected one under most natural growing
conditions (Figure 1).

Therefore, in the present article we use the term “endophyte” to
denominate all microorganisms that develop within living plant
tissue as the etymology of the word suggests. Realizing that it is
impossible to assess the net balance of a certain host–microbe
interaction for all possible sets of environmental conditions, we
suggest that endophytes whose presence under the average con-
ditions causes negative effects on host fitness should be termed
“pathogens,”whereas endophytes with generally neutral or positive

effects on host fitness represent the “classical” endophytes. As we
explain below, these two terms must be considered operational
terms that represent the extremes of a continuum of possible
outcomes, rather than clearly separated groups of taxonomically
defined organisms.

Although non-pathogenic endophytes cause no disease symp-
toms, they influence the phenotype and epigenome of their host
plant (Gilbert et al., 2010). It is their omnipresence rather than
the lack of visible effects, which led earlier researchers to the
conclusion that endophytes do not cause visible symptoms (Wil-
son, 1995). The extended phenotype of the endophytes is easily
overseen because it represents an integrative, ubiquitous part of
the plant phenotype. Actually, Rosenberg et al. (2007) suggested
the term “Holobiont” to denominate the eukaryotic host and its
full symbiont population. Classical research takes the microbe-
free plant as the control (and somehow “normal”) stage, whereas
the plant that is interacting with a microbe is considered as the
“treatment” stage. This position is dangerous.

First, many endophytic fungi and at least some endophytic bac-
teria are transmitted via the seeds, that is, vertically to the own
offspring (Schardl et al., 2004; Ferreira et al., 2008; Rudgers et al.,
2009; Johnston-Monje and Raizada, 2011), and many others have
the ability to colonize plant tissues once the plant exists (dur-
ing germination as well as at later developmental stages), which
is referred as horizontal transmission. Thus, conclusions drawn
on the assumption that all control plants are free of microbes
because they have not been experimentally infected, are conse-
quently overestimating the contribution of the plant genotype to

FIGURE 1 |The plant as the extended phenotype of endophytes.

Endophytes including fungal leaf endophytes (A), bacterial leaf endophytes
(B), Rhizobia (C), and arbuscular mycorrhizal fungi (D), can infect all organs of
a plant, which in their presence exhibits what we usually know as its normal
phenotype (left panel). These endophytes contribute so strongly to vitally

important traits of the plant that a completely endophyte-free plant would
suffer from chlorosis and lowered photosynthetic rates due to nutritional
shortcomings, lowered resistance to abiotic stress and lowered resistance to
both pathogens and herbivores and, in consequence, lowered competitive
abilities and lower survival rates in nature (right panel).
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the observed phenomenon. Second, given all the fitness-relevant
plant traits affected by endophytic microbes it appears to be likely
that a microbe-free plant would hardly be capable of surviving
under natural conditions (Figure 1).

In this article, we aim at presenting a short and necessarily
incomplete overview on plant phenotypic traits that are altered
in the presence of endophytes, predominantly fungal ones as
they have been more frequently investigated, and discuss how the
above-described research strategy severely inhibits our progress
in at least three disciplines: (1) the study of phenotypic plasticity,
because many plastic responses of plants to changing environmen-
tal conditions are under control of microbial genes interacting
with plant genes, (2) plant ecology, because the net fitness effects
of multiple abiotic and biotic environmental factors are strongly
altered when plants are colonized by endophytes, and (3) the study
of plant evolution, because plant genomes are likely to co-evolve
with microbial genomes, particularly those of mycorrhiza and ver-
tically transmitted endophytes (see Glossary). We finish our article
with some concrete suggestions on how to use currently available
techniques to answer the most pertinent questions:“who is there?”,
“who is where?”, and “who does what?”, that is, how does the colo-
nization by endophytes affect plant ecology and physiology, plant
phenotypic plasticity, and – in the long run – plant evolution?

MAJOR ENDOPHYTE GROUPS AND THEIR POSITIVE EFFECTS
ON HOST PLANTS
Multiple reviews have been published on every group of microor-
ganisms that are regularly associated with plants. We refer to the
reviews on fungal endophytes (Muller and Krauss, 2005; Schulz
and Boyle, 2005; Hartley and Gange, 2009; Rodriguez et al., 2009;
Gao et al., 2010; Saikkonen et al., 2010; Eaton et al., 2011), fun-
gal entomopathogens (Vega et al., 2009), bacterial endosymbionts
(Weyens et al.,2009),mycorrhiza (Smith and Read,2008; Bonfante,
2010; Koltai and Kapulnik, 2010; Ercolin and Reinhardt, 2011), and
Rhizobia (Kiers and Denison, 2008; Oldroyd and Downie, 2008;
Markmann and Parniske, 2009; Brevin, 2010). Here, we only pro-
vide some short paragraphs mainly aimed at defining the various
terms and biological groups and highlighting the most important
resistance effects that form the focus of the present article.

GROUPS OF ENDOPHYTES
Mycorrhiza
Mycorrhizal fungi form virtually ubiquitous associations with
plant roots. Soil resources are accessed by fungi and exchanged
for plant-derived assimilates (Smith and Read, 2008; Gehring
and Bennett, 2009). Among the six major classes of mycorrhizas,
ectomycorrhizas (EM), and arbuscular mycorrhizas (AM) have
received most attention. EM occur in most woody plants and com-
prise a multitude of fungal species, whereas AM are formed by
mosses, ferns, gymnosperms, and angiosperms with fungi of the
division Glomeromycota (Bonfante and Genre, 2008; Smith and
Read, 2008; Gehring and Bennett, 2009; Ercolin and Reinhardt,
2011). Anatomically, AMF represent “semi-endophytes” because
one part of the fungus enters the intercellular space and forms
haustoria that enter the roots cells without penetrating the plasma
membrane, whereas the other part forms a dense mycelium that
spreads into the surrounding soil. In general, the large and very fine

mycelium dramatically increases the overall surface of the AMF-
root complex and thereby improves nutrient uptake, particularly
of phosphorous, from the soil (Bonfante, 2010; Koltai and Kapul-
nik, 2010). The level of host specificity of mycorrhizal fungi is low,
as one mycelium can infect numerous plants that might belong
to different species (Ercolin and Reinhardt, 2011). Interestingly,
some AMF host in their cytoplasm endobacteria called bacteria-
like-organisms (BLOs) related to the Mollicutes (Naumann et al.,
2010), whereas in the Gigasporaceae family another endosym-
biont named Candidatus Glomeribacter gigasporarum has been
confirmed (Bianciotto et al., 2003), extending the symbiosis to a
third partner. Besides their effects on nutrient uptake, mycorrhiza
also have multiple effects on plant resistance both in the infected
roots and in the aboveground compartment (Gehring and Ben-
nett, 2009; Hartley and Gange, 2009; Van Dam and Heil, 2011).
Because they connect different individual plants, AMF might even
represent a medium for “plant-plant signaling” (Song et al., 2010).

N-fixing, nodulating bacteria – the diazotrophs
The second classical and highly investigated textbook example
of a plant–microbe mutualism is formed by plants of the family
Fabaceae (“Legumes”) and bacteria (Rhizobium and related gen-
era, all belonging to the order Rhizobiales) that infect plant roots
where they induce typical morphological structures called “nod-
ules”(Kiers and Denison, 2008; Oldroyd and Downie, 2008; Mark-
mann and Parniske, 2009). Within these nodules, the formerly
mobile bacteria convert themselves into immobile bacteroids that
exclusively live on plant-derived assimilates and in turn provide
the plant with nitrogen that has been fixed from the atmosphere
(Oldroyd and Downie, 2008; Brevin, 2010).

Type I or clavicipitaceous fungal endophytes
The first fungal endophytes were discovered in certain cultivars of
tall fescue (Lolium arundinaceum) and of related grasses (mainly
of the genera Festuca and Lolium) that cause livestock disorders.
In these grasses, asexual, alkaloid-producing fungi of the genus
Neotyphodium could be identified as the causal agent of their neg-
ative effects on mammal and insect herbivores (Clay, 1990). These
“Type I fungal endophytes” sensu Yuan et al. (2010) are a taxo-
nomically well defined group of the family Clavicipitaceae that
are vertically transmitted via the seeds of their hosts and therefore
cause systemic infection of certain grasses. Due to the production
of alkaloids, these endophytes directly contribute to the resistance
of their host plants to herbivores, but numerous studies have also
reported effects on drought and flooding tolerance, biomass pro-
duction and – in consequence – the competitive ability of the host
grass (see Lehtonen et al., 2005 and Schulz and Boyle, 2005 for
references).

Type II fungal endophytes
Type II fungal endophytes sensu Yuan et al. (2010) called class 3
endophytes by Rodriguez et al. (2009) are non-systemic, horizon-
tally transmitted fungi that are just now being discovered. Numer-
ous studies reported surprisingly high taxa numbers and infec-
tion rates by non-clavicipitaceous fungal endophytes. However,
species saturation curves usually demonstrate that these studies
were unlikely to discover all endophytes present in the investi-
gated host plants (Arnold et al., 2000; Frohlich et al., 2000; Higgins
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et al., 2011). Thus, we must assume that we significantly under-
estimate the diversity of type II fungal endophytes and, hence,
their potential importance in natural ecosystems. Type II fungal
endophytes comprise species from both Ascomycota and Basid-
iomycota, although Ascomycota are usually dominating (Fisher,
1992; Frohlich et al., 2000; Arnold and Herre, 2003; Albrectsen
et al., 2010).

These endophytes have been isolated from all plant organs, are
usually found in 80–100% of the investigated samples, and multi-
ple taxa can commonly be isolated from a single host species, or
even a single surface-sterilized and symptomless leaf. For exam-
ple, fungal species representing 18 taxonomic orders were reported
from switchgrass (Panicum virgatum L.; Ghimire et al., 2011),
33 taxa of endophytic fungi were discovered in leaves of Euro-
pean aspen (Populus tremula; Albrectsen et al., 2010), 60 taxa
were reported from leaves and twigs of Quercus ilex (Fisher
et al., 1994), 58 operational taxonomic units were isolated from
leaves of wild rubber trees (Hevea brasiliensis) in Peru (Gazis
and Chaverri, 2010), more than 100 morphospecies of endophytes
were found to be associated with tropical palms (Frohlich et al.,
2000), and 418 fungal morphospecies could be isolated from 83
leaves from different tropical tree species (Arnold et al., 2000).
Interestingly, type II endophytes can co-occur with type I endo-
phytes in the same host species (Ghimire et al., 2011) although
other authors found only numerous type II endophytes, but no
clavicipitaceous species, in tropical grasses (Higgins et al., 2011).
Information on the co-occurrence of endophytic fungi in the same
host is just emerging. In Hevea spp., ca. 60–200 species of fun-
gal endophytes were found in wild trees and 50–150 in planted
ones, respectively, depending on sample size (P. Chaverri, pers.
comm). On average 5.73 ± 1.94 species were found to co-occur
in leaf disks of ca. 3 cm2. The most common genera/groups in
wild rubber trees were Trichoderma, Penicillium, Paecilomyces,
Pestalotiopsis, and Basidiomycota, whereas Trichoderma, Pestalo-
tiopsis, Colletotrichum, Xylariales, and Basidiomycota were most
common in planted trees. The most common combinations were
Pestalotiopsis + Trichoderma (present in ca. 75% of the trees sam-
pled), followed by Colletotrichum + Phomopsis (50%), Pestalo-
tiopsis + Penicillium (45%), Pestalotiopsis + Colletotrichum (30%),
and Pestalotiopsis + Trichoderma + Penicillium (20%). Pestalotiop-
sis or Trichoderma alone were only found in ca. 10–15% of the
trees sampled, whereas Fusarium was always found associated
with either Trichoderma or Penicillium (all data: pers. comm. by P.
Chaverri and R. O. Gazis). Many more datasets of this type will be
required to obtain insights into the general association patterns
among endophytic fungi and to formulate testable hypotheses
concerning the underlying mechanisms.

Bacterial endophytes
Bacterial endophytes represent a taxonomically and functionally
highly diverse group that include non-nodulating nitrogen-fixing
bacteria that infect shoots as well as other bacteria that exert
multiple beneficial effects on the metabolism of their host plant
(Weyens et al., 2009). Together with rhizosphere bacteria, these
bacteria form the large functional group of “plant-growth pro-
moting bacteria” (PGPB). Their growth promoting effects result
from multiple mechanisms such as (1) the direct acquisition of

mineral nutrients (via N-fixation, the solubilization of inorganic
phosphates, the production of siderophores that facilitate iron
uptake etc.), (2) the production of plant hormones, (3) the induc-
tion of resistance-related plant genes, and (4) direct antibiosis
against pathogens (Weyens et al., 2009). Taxa that are frequently
reported in this context belong to the genera Pseudomonas (in par-
ticular multiple strains of Pseudomonas fluorescens), Bradyrhizo-
bium, Azorhizobium, Azospirillum, and Bacillus (commonly Bacil-
lus thuringiensis). However, screening studies usually searched
specifically for certain functional groups or were optimized for
specific bacterial taxa. We therefore must assume that the true bio-
diversity of endophytic bacteria that infect wild plants in nature is
as severely underestimated as is the biodiversity of type II fungal
endophytes.

POSITIVE EFFECTS ON PLANT RESISTANCE TO BIOTIC STRESS
Microbial endophytes affect the physiology and ecology of their
host plants in multiple ways. The underlying mechanisms can
significantly differ among endophytes that belong to the same
taxonomic group, whereas taxonomically different endophytes
can act through similar or even identical molecular mechanisms.
Therefore, we structure our – again necessarily highly incom-
plete – overview on beneficial effects of endophyte colonization of
plants according to the major phenotypic outcomes, rather than
on taxonomically defined groups of endophytes.

Resistance to pathogens
An increased resistance to pathogens appears to be a common
consequence of plant infection or association with PGPB (Pieterse
et al., 2001; Pieterse and Dicke, 2007) but is also commonly
reported for plants that are infected with Rhizobia or AMF
(Borowicz, 2001; Pozo and Azcón-Aguilar, 2007; Hartley and
Gange, 2009; Pineda et al., 2010) and – less commonly – for plants
that harbor fungal endophytes in their leaves (Weyens et al., 2009;
Gao et al., 2010; Ownley et al., 2010). Although being phenotyp-
ically often similar, the enhanced resistance can be achieved by
numerous direct and indirect mechanisms.

Direct effects are particularly likely to exist when the resis-
tance effect is locally restricted to the infected tissue. For example,
Theobroma cacao leaves that were infected with type I fungal endo-
phytes showed a locally enhanced resistance to pathogens only in
the infected areas, and direct in vitro confrontation assays demon-
strated strong antagonisms between certain strains of endophytes
and pathogens (Arnold et al., 2003). Direct effects of endophytes
on the phenotypic resistance of their host can result from the
production of antibiotics, of extracellular lytic enzymes such as
chitinases, cellulases, proteases, and β-1,3-glucanases, of secondary
compounds, when endophytes act as mycoparasites and directly
parasitize plant pathogenic fungi, or when non-symptomatic
endophytes outcompete the pathogens (Weyens et al., 2009; Gao
et al., 2010; Ownley et al., 2010). Most of these traits have
likely evolved in the context of antagonistic interactions among
fungi. However, they will benefit any plant host that is infected
by a competitively dominant fungus with low virulence. Below-
ground microorganisms are also very commonly reported to
locally enhance the resistance of the roots (Borowicz, 2001; Pozo
and Azcón-Aguilar, 2007; Elsen et al., 2008; Pineda et al., 2010),

Frontiers in Plant Science | Plant-Microbe Interaction December 2011 | Volume 2 | Article 100 | 4

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Partida-Martínez and Heil The microbe-free plant: an artifact

which makes it likely that similar mechanisms are involved. How-
ever, the molecular mechanism(s) that lead(s) to the enhanced
resistance phenotype remain to be unraveled for most cases.

As a second mechanism, the infection of plants with endophytes
that enhance the nutritional status of their host (MF, Rhizobia,
and other PGPB) usually decreases the plant-internal competition
among different traits for limited nutrients (Herms and Mattson,
1992). This effect alone might allow for systemically enhanced
resistance levels (Van Dam and Heil, 2011). As a consequence, myc-
orrhiza can improve resistance to leaf pathogens (Fritz et al., 2006;
Pozo and Azcón-Aguilar, 2007; Alejo-Iturvide et al., 2008) and also
plants whose roots are infected with Rhizobia commonly show
enhanced resistance levels in their aboveground parts (for a short
overview on ecologically relevant resistance-enhancing effects of
mycorrhiza and nodulation on aboveground communities see Van
Dam and Heil, 2011).

A further group of mechanisms by which endophytes affect
the resistance of their host to pathogens should be termed “indi-
rect” mechanisms, because they act via interactions with the host’s
own resistance system or via effects at higher trophic levels. Rhi-
zobia and mycorrhizal or leaf endophytic fungi are well-known
to induce host resistance responses. It appears to be likely that a
significant part of the resistance effects to pathogens is caused by
the enhanced expression of host resistance genes in endophyte-
infected plants (Mithöfer, 2002; Pozo and Azcón-Aguilar, 2007;
Ownley et al., 2010). For example, AMF colonization of roots
commonly enhances resistance to necrotrophic leaf pathogens,
whereas the resistance to biotrophic pathogens is often impaired,
with the most likely reason being AMF-induced shifts between the
different signaling pathways that control plant resistance to these
functional groups of pathogens (Pozo and Azcón-Aguilar, 2007).
Similarly, many endophytic fungi induce important resistance-
related genes of their host (Ownley et al., 2010) and also most
studies on PGPB that infect the aerial parts of plants report an
induction or priming of resistance-related genes (Pieterse et al.,
2001; Pineda et al., 2010), as it is well-known for PGPB in the
rhizosphere (van Wees, 1999; Verhagen et al., 2004). For example,
treating harvested papaya fruits with the endophytic bacterium
Pseudomonas putida MGY2 enhanced their resistance to anthrac-
nose caused by Colletotrichum gloeosporioides (Shi et al., 2011),
whereas a Pseudomonas strain enhanced resistance of potato to
soft rot disease caused by the necrotrophic pathogen Pectobac-
terium atrospeticum (Pavlo et al., 2011). In the first case, the
authors suggested effects of endophyte treatment on ethylene
production and reported an enhanced gene expression (and also
activity at the enzymatic level) of phenylalanine ammonia-lyase,
catalase, and peroxidase. In the second case, an induction of both
basal resistance and of induced resistance dependent on SA- and
JA/ethylene-signaling was found. We propose that due to the
systemic nature of most resistance responses, it does not mat-
ter too much whether the resistance-inducing agent is infecting
belowground or aboveground tissues. Most importantly, all these
phenomena are mediated by effects of the endophytes on host
gene expression patterns and therefore represent the “extended
phenotype” of the microorganisms.

An even “more indirect” mechanism has been reported by
Lehtonen et al. (2006), who found lower virus infection rates

in Neotyphodium-infected meadow ryegrass (Lolium pratense). In
this case, the underlying mechanism was a lowered preference of
aphids for endophyte-infected plants. Because these aphids rep-
resent the most important vector for the virus, their behavior
dramatically affected virus transmission rate in nature (Lehtonen
et al., 2006). This example nicely demonstrates the complexity
of interactions at multiple trophic levels and – in consequence –
the complexity of the “extended phenotype” of endophytes which
cause “symptomless” infections of their host plants.

Resistance to herbivores
As explained for pathogen resistance, the enhanced resistance of
host plants to herbivores can also result from direct and indirect
mechanisms. In fact, indirect mechanisms are likely to cause a
large part of the enhanced resistance to herbivores that is caused
by endophytes. Although one might expect a positive effect due to
the enhanced nutrient contents of mycorrhized plants, the perfor-
mance of herbivorous insects on AMF-inoculated plants is often
lower than on un-mycorrhized plants (Hartley and Gange, 2009;
Kempel et al., 2010; Pineda et al., 2010). Similarly, the colonization
of roots by Rhizobia can increase resistance in the aboveground
parts of soybean to aphids (Dean et al., 2009). For mycorrhizal
fungi, effects in both directions have been reported, that is, above-
ground herbivory can affect the mycorrhization of plant roots
and mycorrhization can affect the aboveground resistance and
tolerance to herbivory (Gehring and Bennett, 2009). Effects were,
however, quite mixed, and future studies will need to consider
detailed combinations of plant species with fungal species and the
community context in order to identify general patterns (Gehring
and Bennett, 2009).

Fungal endophytes are likely to enhance the resistance to her-
bivores of their host plant via four distinct mechanisms: (1) via
the production of alkaloids and other toxic compounds, (2) due to
their function as entomopathogens, (3) via the induction or prim-
ing of resistance-related genes, and (4) by enhancing the genetic
and biochemical diversity of their host. These modes of action
are not necessarily exclusive, as, for example, entomopathogenic
fungal endophytes can also associate with the rhizosphere, act as
antagonists of plant pathogens and might possibly even function
as plant-growth promoting agents (Vega et al., 2009).

Type I endophytes produce alkaloids and thereby can directly
intoxicate herbivores (see above). A recent meta-analysis revealed
that type I endophytes in general slightly enhance host resistance to
insects, although this result might be biased due to the concentra-
tion of the experimental effort on few agronomically important
model systems (Saikkonen et al., 2010). For type II endophytes,
by contrast, the situation appears to be less clear. Beyond doubt,
in vitro cultures of many class II endophytic fungi produce com-
pounds with antibacterial, fungicidal, and herbicidal effects (see
Schulz and Boyle, 2005; Gao et al., 2010; Ownley et al., 2010 for
references) and these compounds could exert a direct resistance
effect. Class II endophytes, however, reach in general much lower
densities in their host than do class I endophytes, and we are not
aware of any empirical study on the direct resistance-enhancing
effect in planta of the secondary compounds that are produced by
class II fungal endophytes. In European aspen (P. tremula), how-
ever, the phenotypic resistance to herbivores of different clones was
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positively correlated to their load of endophytic fungi (Albrectsen
et al., 2010), which makes a direct effect that is mediated by some
fungal metabolites likely.

Second, several plant endophytic fungi also live as ento-
mopathogens and thereby exert a direct negative effect on her-
bivores (Vega et al., 2009; Ownley et al., 2010). Interestingly, the
life style as an insect parasite might be the ancestral state of many
plant endophytic fungi, including type I endophytes (Rodriguez
et al., 2009). In fact, parasitic fungi can often infect a wide spec-
trum of hosts including plants, animals, and other fungi. For
example, the ubiquitous fungus Beauveria bassiana (Ascomycota)
has been found as an endophyte in banana, corn, cotton, potato,
tomato, common cocklebur, opium poppy, coffee, and cocoa (for
references see Gurulingappa et al., 2010) but is also known to
occur naturally in hundreds of insect hosts (Vega et al., 2009;
Ownley et al., 2010). Care must be taken before we consider B.
bassiana as some kind of “mega-generalist,” because it likely rep-
resents a species complex (H. E. Roy, pers. comm). In a recent
study, Ormond et al. (2010) reported a strong assortment of
specific genotypes of B. bassiana with specific hosts and other
environmental conditions. Specificity at the level of genetically
defined strains might be, thus, much higher than suggested by
the above-cited lists of host species. Still, the fungi beyond doubt
can switch from plant to insect hosts and vice-versa. Because the
effects on the various hosts can be highly different, a surprisingly
high number of fungi cause no symptoms in plants but act as
severe pathogens when infecting an insect host (Ownley et al.,
2010). A likely scenario appears to be that the fungus uses the
plant as vector, that is, to enhance its transmission rate among
different insect hosts. Knowledge on the ecology of these ento-
mopathogens is limited (Rodriguez et al., 2009; Vega et al., 2009;
Roy et al., 2010) and it therefore remains to be proven whether the
negative effects on insect hosts can positively feed back to plant
fitness. However, “biocontrol” entomopathogens are commonly
isolated from symptomless plant tissues (Ownley et al., 2010) and
beyond doubt can kill their insect hosts, which makes it likely
that they exhibit a positive effects at least at the level of plant
populations.

Whereas the direct effect of entomopathogenic fungi on her-
bivores happens outside the plant, a third, indirect mechanism
results from effects of endophytes on the expression levels of host
resistance genes. An infection with the root endophytic fungus
Acremonium strictum enhanced resistance of broad bean (Vicia
faba) to the generalist herbivore (Helicoverpa armigera). Because
the fungus could not be re-isolated from the leaves, the authors
suggested that it caused a systemic resistance effect and that the
anti-herbivore effect did not depend on a direct contact between
fungus and herbivore (Jaber and Vidal, 2010). It appears to be
likely that in most of these cases the enhanced resistance results, at
least in part, from changed expression patterns of resistance genes
of the host plant (Ownley et al., 2010).

Finally, the presence of endophytes enhances the genetic and,
consequently, biochemical diversity of the leaf tissue, which should
represent per se a beneficial effect in evolutionary terms, because
this increased diversity can make the adaptation of herbivores to
certain plants more difficult (Schulz and Boyle, 2005; Albrectsen
et al., 2010).

THE CONDITIONAL OUTCOMES OF PLANT–MICROBE
INTERACTIONS
CONDITIONAL OUTCOMES: AN INTRODUCTION
Based on studies that were conducted with model plants under
laboratory or agronomic field conditions, we usually conclude
that plant-infecting microorganisms can be classified as either
pathogens or mutualists. Specific strains of microorganisms evi-
dently behave as pathogens of certain hosts under virtually all envi-
ronmental conditions, whereas Rhizobia and mycorrhizal fungi
usually improve the nutritional status of their host plants and
might enhance their resistance to biotic or abiotic stress. Fun-
gal endophytes and PGPB commonly enhance host resistance to
herbivores and, in specific cases, to abiotic stress.

However, the situation is far more complex. It now appears to
be generally accepted that the interactions of plants with Rhizo-
bia and fungal endophytes (both leaf endophytes and mycorrhiza)
shift along a continuum from antagonism to mutualism (Francis
and Read, 1995; Johnson et al., 1997; Denison and Kiers, 2004;
Schulz and Boyle, 2005; Paszkowski, 2006; Hoeksema et al., 2010;
Yuan et al., 2010). For example, mycorrhization either enhanced
or decreased the resistance of the aboveground parts of plants to
insect herbivores (Gehring and Bennett, 2009). The situation is
particularly difficult for the fungal endophytes that usually do not
cause visible disease symptoms (Francis and Read, 1995; Muller
and Krauss, 2005; Saikkonen et al., 2006). In a common garden
experiment with several tall fescue accessions, any putative effects
of infection by Neotyphodium on the abundance and diversity
of herbivores were overridden by the influences of environmen-
tal conditions and plant genotype (Vesterlund et al., 2011). In
another experiment, infection of Arizona fescue by Neotyphodium
generally decreased host growth rates and even host fitness in
terms of number, mass, and germination rate of seeds (Faeth and
Sullivan, 2003). Similarly, Faeth and Shochat (2010) reported an
increased, rather than decreased, abundance of herbivores on Neo-
typhodium-infested Festuca arizonica plants, and Jani et al. (2010)
reported increasing abundances and diversity of herbivores on
native grasses with increasing contents of endophyte-produced
alkaloids. These observations led several authors to question the
general role of fungal endophytes as mutualists (Faeth, 2002; Faeth
and Fagan, 2002), consider the positive reports on endophyte-
mediated resistance to herbivores as unrepresentative (Saikkonen
et al., 2006) or call the endophyte-grass mutualism “usually par-
asitic” (Faeth and Sullivan, 2003). What are the reasons for these
conditional outcomes of seemingly mutualistic symbiotic interac-
tions, why are these interactions still so common in nature, which
data are required to predict the outcome of a certain interaction
under natural conditions, and what does this conditionality mean
in the context of our present considerations?

CONDITIONAL OUTCOMES: EXAMPLES
Although admittedly not the focus of the present article, the net
effects of phloem feeders on the fitness of their host plant can
help us to understand the context dependency of mutualisms.
Aphids and other insects feed on phloem sap and thereby deprive
the plant of highly valuable resources. Still, a recent meta-analysis
(Romero and Koricheva, 2011) demonstrated on average net pos-
itive effects on plants of the presence of sap sucking herbivores.
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How can herbivores benefit their host plant? Aphids and other
phloem feeders are commonly attended by ants, which can exert
a significant “indirect” defensive effect by enhancing the preda-
tion pressure on most herbivores (Heil, 2008). In consequence,
the presence of phloem feeders can positively affect plant fitness
in the presence of other, more detrimental, herbivores (Moreira
and del Claro, 2005; Styrsky and Eubanks, 2007).

What does this story tell us in the context of plant–microbe
mutualisms? The message is simple: whether a given interaction
between two species has a positive or negative net effect on either
of the partners depends on the current biotic and abiotic envi-
ronment. The outcome can therefore only be defined for a given
set of environmental conditions. In fact, classical pathogens can
positively affect their host plant under certain circumstances, and
cases of supposedly mutualistic endophytes that harm their host
or that are counterselected under specific growing conditions in
fact appear to be common.

As an example of the first possibility, a normally detrimen-
tal virus infection can benefit the host plant when inducing the
emission of volatiles with a repellent effect on herbivores. This
case has been reported for white clover (Trifolium repens) plants
infected with White Clover Mosaic Virus, which induced certain
volatiles that repelled females of fungus gnats (Bradysia sp.; Van
Moelken, 2009). Logically, this effect will benefit virus-infected
plants under intense pressure by this particular herbivore, but
not when the herbivore is absent. Even infection of plants with
strains of Colletotrichum, a genus comprising“classical”pathogens,
can be mutualistic in plants that were not known to be host
plants (Redman et al., 2001). We are not aware of further studies
reporting a positive effect of a plant pathogen but actually sug-
gest that “conditionally beneficial pathogens” might be common,
for the following reason. Most, if not all, biotrophic pathogens
induce a systemic acquired resistance of their host plant against
future pathogen infection. As described above, many of the ben-
eficial effects of non-pathogenic endophytes are caused by an
enhancement of the host’s resistance status as well. In the pres-
ence of a second, more virulent or lethal pathogen, a previous
local infection with a less virulent pathogen is likely to have a
positive net effect on plant fitness, due to its resistance-enhancing
effect.

More commonly, however, researchers report negative net
effects of supposedly mutualistic symbionts or find that endo-
phytes are counterselected in certain environments. For example,
Argentinian populations of Bromus setifolius exhibited higher
(>80% of plant sampled) rates of infection with the fungus Neoty-
phodium tembladerae in regions where herbivore pressure exerted
by leaf-cutting ants was high; by contrast, infections rates below
20% were observed in regions where this herbivore species is
rare (White et al., 2001 cited in Rodriguez et al., 2009). Appar-
ently, infection by endophytes can be rapidly counterselected in
environments where it is not likely to benefit host fitness.

Negative effects of mycorrhization might arise from a general
shift in plant allocation patters toward growth, at the expense
of defense (Barazani et al., 2005). A recent study demonstrated
positive effects of fungicide treatment on reproductive success of
Polemonium viscosum and suggested high costs of mycorrhization
as a likely reason (Becklin et al., 2011). Unfortunately, potential

effects on other fungi were not considered and more data will be
required to understand effects of mycorrhization, or infection with
leaf endophytes, on the production of flower rewards and, ulti-
mately, plant reproductive success. In this context, also the type
of the enemy matters with which an endophyte-infected plant
is interacting. Belowground infection with microbial mutualists
usually enhances the resistance to soil-borne pathogens and to
necrotrophic leaf pathogens (Pozo and Azcón-Aguilar, 2007; Van
Dam and Heil, 2011). By contrast, mycorrhized plants commonly
suffer from an enhanced susceptibility to biotrophic pathogens
and aphids, and occasionally also to leaf chewers (Pozo and Azcón-
Aguilar, 2007; Hartley and Gange, 2009; see also Figure 1 in Van
Dam and Heil, 2011). In the case of leaf chewers, the degree of
specialization of the herbivore also matters, as mycorrhization
commonly enhances the resistance of the host to generalists while
increasing its susceptibility to specialists (Koricheva et al., 2009).
At least the effect of endophyte-produced alkaloids can scale up to
higher trophic levels and for example negatively affect the natural
enemies of the herbivores (Faeth and Shochat, 2010; Jani et al.,
2010), thereby reducing the potential for indirect plant defense
via tritrophic interactions (Heil, 2008). Even the direct defense of
the plant can be impaired, as demonstrated by the observation
that mycorrhization of Plantago lanceolata roots was negatively
correlated with the concentration in roots of aucubin, a defensive
iridoid glycoside (De Deyn et al., 2009).

A second defensive strategy besides resistance is tolerance,
which means a reduced negative effect of a given damage level due
to an enhanced capacity of regrowth after defoliation (Fornoni,
2011). Mycorrhization reduced regrowth after defoliation (De
Deyn et al., 2009) and similar observations led Garrido et al.
(2010a,b) to speculate that colonization of plant roots with myc-
orrhizal fungi could “constrain the evolution of plant tolerance to
herbivory.” Similarly, Neotyphodium infection of grasses can neg-
atively affect their recovery rate after clipping (Saari et al., 2010),
which indicates that the same trade-off might also apply to endo-
phyte infection. Other studies, however, found positive effects of
mycorrhization on plant regrowth capacity after defoliation (Kula
et al., 2005). In a comparison of three different mycorrhizal fungi,
the fungal species mattered, as different fungi did, or did not, cause
an enhanced tolerance of P. lanceolata to caterpillar feeding (Ben-
nett and Bever, 2007). Depending on the actual composition of
the taxa involved, the colonization by a mycorrhizal or endophytic
fungus on the same plant genotype can, thus, be positive, neutral,
or negative.

In interaction with the presence or absence of certain herbi-
vores, abiotic factors such as soil nutrients and light can be crucial
in determining the net effects of plant infection by microorgan-
isms. For example, light intensity determined the pathogenicity
of the fungal endophyte Diplodia mutila in the tropical palm Iri-
artea deltoidea (Álvarez-Loayza et al., 2011). The authors observed
that the fungus causes increasingly intense disease symptoms with
increasing light intensity, whereas it can protect seedlings and
adult palms from stem and seed borers when acting as a mutualist
under understory (i.e., low-light) conditions. Whereas the detailed
molecular mechanisms and the ecological and evolutionary conse-
quences of this phenomenon remain to be studied (Álvarez-Loayza
et al., 2011), it is common knowledge that nutritional mutualisms
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can benefit plants only under limiting conditions. The energeti-
cally expensive bacterial fixation of elementary nitrogen pays off
for the plants only when supply of mineral nitrogen is limited.
Likewise, net effects of mycorrhization are strongly dependent on
soil nutrient availability (Hoeksema et al., 2010, and references
therein). However, even the resistance effects that are mediated by
endophytes are triggered by abiotic conditions, particularly nutri-
ent supply. For example, plants of meadow fescue, L. pratense,
supported significantly lower numbers of cherry aphid (Rhopalosi-
phum padi) when being infected with Neotyphodium under high
nutrient conditions, whereas this resistance effect was strongly
impaired under low nutrient conditions (Lehtonen et al., 2005). In
the end, even completely mutualistic endophytes obtain resources
from their hosts and therefore cause metabolic costs, which must
be outweighed by the benefits of their presence in order to cause a
net mutualistic interaction.

Finally, rather than negatively affecting the interaction of plants
with other beneficial organisms, beneficial microorganisms can

themselves be harmed by such interactions. For example, the sys-
temic induction of pathogen resistance in leaves can impair the
capacity of plant roots to establish their interaction with Rhizobia
or AMF (see de Román et al., 2011 and references therein) and leaf
infestation with whitefly (Bemisia tabaci) affected the composition
of the bacterial rhizosphere with likely negative effects on PGPB
(Yang et al., 2011). In summary, the net outcome of most, if not all
plant–endophyte interactions is highly conditional and depends
on the detailed biotic and abiotic environment as much as on the
specific genotypes of both endophyte and plant host (Figure 2).

CAUSES AND CONSEQUENCES
Why are the effects of plant–microbe interactions so variable? Two
non-exclusive frameworks have been proposed to understand the
conditional outcomes for the infection of pants with fungal endo-
phytes, but they are likely to generally apply to all plant–endophyte
interactions: the virulence-resistance balance (Schulz and Boyle,
2005) and cost–benefit relations (Faeth, 2002).

FIGURE 2 | Conditional outcomes of plant–microbe interactions. We
illustrate here the multiple factors that mediate the outcome of the presence
of a resistance-enhancing endophyte (A). Resistance against biotic stressors
(pathogens and herbivores) and abiotic stressors (e.g., heat) has positive
effects (from the perspective of the plant: green arrows), whereas the costs
that are caused by the maintenance of the resistance-enhancing endophyte

represent a negative effect (red arrows). Due to this interplay of positive and
negative effects, the same interaction results mutualistic in presence of those
stressors to which the endophyte provides resistance (B) whereas, by
contrast, the net outcome becomes negative (antagonism) either in the
absence of stressors [(C) lack of benefits] or when resource limitation
enhances the relative costs of maintaining the endophyte (D).
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Balanced antagonism: the molecular perspective
First, at the molecular level, all endophytes require at least some
virulence to infect their host while the host requires some resis-
tance traits to control their density (Schulz and Boyle, 2005;
Eaton et al., 2011; Zamioudis and Pieterse, 2011). The partial sup-
pression of the host resistance phenomenon represents a crucial
step not only during the infection of plants with fungal endo-
phytes but also in the nodulation or mycorrhization of plant roots
(Garcia-Garrido and Ocampo, 2002; Mithöfer, 2002; Paszkowski,
2006; Liu et al., 2007; Pozo and Azcón-Aguilar, 2007; Zamioudis
and Pieterse, 2011). Maintaining the delicate balance between
host resistance and endophyte virulence represents a key fac-
tor that decides whether the endophyte can infect the plant at
all, and whether it then causes visible disease symptoms (Schulz
and Boyle, 2005; Paszkowski, 2006). For example, clavicipita-
ceous endophytes become pathogenic when developing in grass
hosts that lack a component of the inducible NADPH oxidase
pathway, because the host looses control over their growth rate
(Eaton et al., 2011). Besides genetic and other endogenous factors,
the balance depends also on exogenous (that is, environmental)
factors.

The importance of induced plant resistance traits for root sym-
bioses is supported by the observation that induced leaf resistance
to pathogens can impair the capacity of roots to become colonized
by AMF (de Román et al., 2011) and that also natural herbivory
has commonly negative effects on mycorrhization levels, whereas
experiments using clipping treatments mostly failed to confirm
this effect (Gehring and Bennett, 2009). The explanation presented
for the last phenomenon was that a low intensity of herbivory
changes the amounts or quality of root exudates, which in turn has
positive effects on mycorrhizal fungi and, likely, nutrient acquisi-
tion required for regrowth, whereas high levels of leaf damage
reduce plant assimilation rates and thus the potential for carbon
allocation to symbionts (Gehring and Bennett, 2009). An alter-
native explanation would be, however, that herbivory enhances
JA-dependent resistance traits and, due to the general trade-off
between JA-signaling and SA-signaling, impairs the resistance to
microbial infections, thus causing shifts in the resistance–virulence
balance that at least transiently cause higher colonization rates.
Clipping treatments, by contrast, remove leaf area without liberat-
ing the elicitors that are required to mount an adequate resistance
response and therefore only reduce leaf area, without inducing any
resistance responses.

Host ontogeny is of crucial importance, because non-
symptomatic endophytes can become pathogenic as soon as the
increasing leaf age or abiotic stress weaken the resistance level of
their hosts (Schulz and Boyle, 2005). Finally, many endophytes
that did not cause visible disease symptoms under the specific
study conditions belong to genera that also comprise important
pathogens. For example, fungi that were isolated from surface-
sterilized symptom-free leaves were determined or annotated as
belonging to the genera Alternaria (Fisher et al., 1994; Albrectsen
et al., 2010; Ghimire et al., 2011), Colletotrichum (Fisher et al.,
1994; Frohlich et al., 2000; Ghimire et al., 2011; Higgins et al.,
2011), Fusarium (Fisher et al., 1994; Gazis and Chaverri, 2010;
Ghimire et al., 2011), Phomopsis (Fisher et al., 1994; Frohlich et al.,
2000), or Verticillium (Frohlich et al., 2000). Few, if any, mutations

in certain effector molecules or changes in host resistance sta-
tus appear, therefore, to be sufficient to convert an asymptomatic
endophyte into a highly virulent pathogen or vice-versa (Freeman
and Rodriguez, 1993), as it is also being discussed for host–plant
shifts of pathogens (Schulze-Lefert and Panstruga, 2011).

Cost–benefit relations: the level of the entire organism
At the level of the entire organism, using a general cost–benefit
framework can help to understand the context dependency of
plant–microbe interactions (Figure 2). Cost–benefit frameworks
have already been suggested by for the specific case of AM fungi
(Johnson et al., 1997; Gange and Ayres, 1999; Vannette and Hunter,
2011) and of class I fungal endophytes (Faeth, 2002) and have been
well developed for plant defense traits (Herms and Mattson, 1992;
Heil and Baldwin, 2002). In fact, however, essentially ALL plant
traits (including traits that are encoded by plant genes and traits
that represent the extended phenotype of associated microorgan-
isms) come with certain costs and provide the plant with certain
benefits.

On the one hand, costs can be direct ones and then usu-
ally result from the allocation of limited resources to trait A,
which then cannot be allocated also to a trait B that is com-
peting for the same resources. This situation is expressed in the
“growth-differentiation balance” hypothesis (Herms and Mattson,
1992): plants cannot grow rapidly and at the same time effec-
tively defend the newly developed tissue, because every atom of
carbon or nitrogen that is invested into the synthesis of defen-
sive secondary compounds has to be withdrawn from primary
metabolism. Because endophytes compete with primary metabo-
lism for certain nutrients, their presence can incur a considerable
cost in terms of reduced growth rates under limiting sol nutri-
ent condition (Cheplick et al., 1989). Costs of a given trait can,
however, also occur as ecological costs (Heil, 2002), which result
when the expression of a trait negatively affects other interactions
of the host with its biotic or abiotic environment. For example,
actively N-fixing nodules can attract root-feeding weevil larvae
and in the presence of these herbivores cause negative net effects
on plant growth and fitness (Johnson et al., 2005). The pres-
ence of Rhizobia can even significantly affect the community of
aboveground herbivores and predators, which benefits or harms
the plant, depending on the detailed shifts in the concrete insect
communities (Katayama et al., 2011).

On the other hand, the benefits of a certain trait (or interaction)
can also be direct or ecological ones. Rhizobia and mycorrhizal
fungi provide their host plant with valuable nutrients, which
clearly represents a direct benefit. Still, the relative contribution
of this benefit to plant fitness depends on the environment, that is,
the concentration of mineral nutrients in the soil. Plant roots in
fact stop the allocation of assimilates toward their nodules or do
not establish the mutualism under high soil nitrogen conditions.
The benefits that type I fungal endophytes provide to their host
plant are, by contrast, essentially ecological ones: these endophytes
enhance the resistance of their host to herbivores (Clay, 1990, and
above). In the absence of sensitive herbivores, this potential benefit
cannot be realized and the net effect of infection is inevitably neg-
ative, because the (allocation) costs of nourishing the endophyte
are not counterbalanced by any positive (ecological) effect.
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We present here a graphic model to understand these com-
plex interactions (Figure 3) and suggest that the net outcome of
a certain interaction should be determined – for a given set of
environmental conditions –as follows:

direct benefits + ecological benefits − direct costs = Outcome

Terming an interaction “mutualism,”“commensalism,” or “par-
asitism” should be based on its average net outcome, considering
the most common environments under which the interacting
organisms occur naturally. We suggest consider only ecological
benefits, but not ecological costs, in this context. Ecological ben-
efits represent an important part of the overall benefits that are
provided by microorganisms to their host plant. In the case of
resistance-enhancing endophytes, all benefits provided are ecolog-
ical ones. By contrast, ecological costs must be considered more
cautiously, because most traits of an organism eventually attract
predators or parasites and then impair rather than improve fitness.
For example, fruits, pollen, and nectar are eventually consumed by
animals that do not provide the expected service (dispersal and
pollination). However, these traits in principle serve the repro-
duction of the plant. Thus, it would not be useful to consider, e.g.,
pollen grains as plant parasites under certain conditions, although
their production eventually impairs plant fitness due to the losses
to non-pollinating insects.

Consequences: predicting patterns in conditional outcomes
Host–endophyte interactions are highly variable and their net
effects are strongly context dependent. Most importantly, how-
ever, we have seen above how important plant traits are strongly

FIGURE 3 | Dose–response relations in plant–endophyte interactions.

Endophytes cause direct metabolic costs that should be directly correlated
to their abundance within the host (α) whereas their benefits are likely to
follow a saturation curve (β). Therefore, the resulting net benefit (γ) follows
an optimum curve and is predicted to reach positive values at low and
intermediate densities (green area => mutualistic densities of the
endophyte) but negative values (red area => antagonistic densities) at high
(antagonistic) infection densities.

affected by the presence of endophytes in the plant. Due to the
significant endophyte–environment interactions, we must assume
that a large part of our current picture on general plant ecolog-
ical traits is heavily biased or, at best, incomplete. Most studies
on endophytes have been realized under controlled conditions,
which often were not representative of the “normal” situation
(Saikkonen et al., 2006). By contrast, most field ecological studies
that were conducted in the wild did not even consider, let alone
control for, the percentage of the plant population under investiga-
tion that was infected by endophytic microorganisms. Predictions
on general or typical outcomes of endophyte–plant interactions
under natural conditions are, therefore, still hardly possible in
most contexts. A general pattern that we would expect is, however,
that generalist herbivores are more commonly affected than spe-
cialists by any infection of the plant with a microorganism that
interferes with the resistance of the host plant (Koricheva et al.,
2009). Considering the fact that specialists are better adapted to
the particular biochemistry and characteristic defenses of their
host plant, any endophyte that indirectly affects the resistance of
its host (that is, via an enhancement of the host’s own resistance) is
likely to accelerate the normal effects of resistance: decreased per-
formance of generalists but no or even positive effects on adapted
specialists. Even endophytes that directly affect resistance via the
synthesis of alkaloids or other toxic compounds might, however,
attract specialists to their host plant, or at least affect specialists less
strongly than generalists: due to the common and predictable pres-
ence of these endophytes in certain host species, co-evolutionary
responses on the side of specialist enemies are likely. As far as we are
aware, these patterns are exactly what researchers find (Koricheva
et al., 1998, 2009; Hartley and Gange, 2009; Currie et al., 2011).

Similarly, the allocation of assimilates and resources toward
the endophyte appears an inevitable consequence of their pres-
ence. Therefore, the presence of an endophyte is likely to cause
a stronger negative effect on plant-growth rates under limiting
nutrient conditions (Cheplick et al., 1989). We also predict that
these costs will be proportional to the endophyte density reached
in the plant, being generally higher for type I than for type II fungal
endophytes. However, we are not aware of a study that has tested
this prediction.

AREAS FOR FUTURE RESEARCH
SEARCH FOR THEM
We need more field research in order to broaden our knowledge
on the microorganisms that are common in nature, that affect the
ecological interactions of plants with their environment and that,
thereby, drive plant evolution. For horizontally transmitted, non-
systemic endophytic fungi and bacteria in particular, we lack the
most basic knowledge: “who is there?”, “who is where?”, and “who
is common and/or ecologically important?”. Even these basic ques-
tions remain largely unanswered for most groups of endophytes,
because research effort has mainly concentrated on the vertically
transmitted clavicipitaceous fungi of grasses (Saikkonen et al.,
2006; Saikkonen, 2007). Various studies have screened for fun-
gal endophytes, but they used different methods and their results
are therefore hard to compare, particularly with respect to quan-
titative questions. Second, factors such as host ontogeny, season,
leaf age, microclimatic conditions, and the distance from other
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plants (that can serve as a source for infection with horizontally
transmitted endophytes) affect the fungal (and likely also bacter-
ial) population of a certain plant organ (Arnold and Herre, 2003;
Schulz and Boyle, 2005; Ormond et al., 2010). As exemplified by
the effect of light intensity of the pathogenicity of a fungal endo-
phyte (Álvarez-Loayza et al., 2011), these factors can be subject
to complex interactions: infection by D. mutila is likely to benefit
seedlings and saplings in the understory but may harm the larger
plants that are exposed to full light conditions. Third, species satu-
ration curves usually demonstrate that the conducted studies were
unlikely to discover the total endophyte diversity present (Arnold
et al., 2000; Frohlich et al., 2000; Higgins et al., 2011). Finally,
screenings for endophytic bacteria are usually restricted to taxa
with a known plant-growth promoting effect.

As a first step into the future, we suggest to apply broad screen-
ing techniques to search for endophytic microorganisms in natural
species and plant communities. Screening can be realized both
empirically and in silico. Screening attempts that include an ini-
tial cultivation step have been applied successfully and revealed an
as of yet unknown fungal and bacterial diversity in various host–
plant species (Albrectsen et al., 2010; Gazis and Chaverri, 2010;
Ormond et al., 2010; Ghimire et al., 2011; Higgins et al., 2011).
However, the cultivation step is likely to filter against a significant
part of the microbial flora. Culture-independent techniques such
as the direct PCR of microbial DNA extracted from plant tissue
(Higgins et al., 2011) and subsequent mass sequencing is there-
fore likely to improve our knowledge on the as yet overlooked
microbial diversity within plants. Molecular, culture-independent
methods to study microbial biodiversity of natural systems rely
either on the extraction of DNA, cloning and sequencing of small
DNA fragments (shot gun cloning – metagenomics) or in the
a priori amplification of defined genes using polymerase chain
reaction. Some of the genes that are commonly used as molec-
ular markers are the ribosomal genes (16S and 18S/ITS), RNA
polymerase B (rpoB), methane monooxygenase (pmoA), nitro-
genase (nifH), nitrite reductase (nirS/nirK), among others. Later,
such amplified products can be directly cloned and sequenced,
or submitted to several fingerprinting methods such as: ampli-
fied ribosomal DNA restriction analysis or restriction fragment
length polymorphism (RFLP); automated ribosomal intergenic
spacer analysis (ARISA); terminal RFLP (T-RFLP); denaturing
gradient gel electrophoresis (DGGE) or temperature gradient gel
(TGGE); single strand conformation polymorphism (SSCP); and
denaturing high-performance liquid chromatography (DHPLC).
Some reviews about the advantages and disadvantages of each
of these methods for community profiling have been published
elsewhere (Binladen et al., 2007; Nocker et al., 2007; Huys et al.,
2008; Reeder and Knight, 2010). It is important to note that
although great progress has been achieved and massive sequenc-
ing technologies are becoming more feasible, addressing microbial
communities, and microbial diversity in natural environments
is still a challenge (Bent and Forney, 2008). Moreover, micro-
bial communities seems to be greatly diverse within a single
host organism (Arnold et al., 2000; Frohlich et al., 2000; Schoet-
tner et al., 2009; Higgins et al., 2011) and even tripartite sym-
bioses formed in a “babushka-like” style by a plant, an endo-
phytic fungus, and an endo-fungal bacterium or virus have been

reported (Partida-Martinez and Hertweck, 2005; Márquez et al.,
2007; Hoffman and Arnold, 2010; Naumann et al., 2010) and
might significantly contribute to the as of yet unknown microbial
diversity in natural ecosystems.

Where exactly are all these microbes localized? Endophytic
microbes that live within the plant tissue can be visualized, for
example, by in situ hybridization and microscopy with selec-
tive stains (Singh et al., 2004). Additionally, in cases where the
microbial cells can be transformed with plasmids coding for flu-
orescent proteins such as GFP, the transformed cells could be
followed during the interaction with their host (Partida-Martinez
et al., 2007). Studying the molecular mechanisms via which plants
interact with microbes will rely on the combination of multiple
molecular, genomic, and biochemical methods, depending on the
culturability of the microbial endophytes, the feasibility of genetic
transformation of both plant and endophyte, and the ability to
create asymbiotic hosts plants. Finally, we should apply Koch’s pos-
tulates to investigate the phenotypic effects of endophyte infection
and to nail down certain phenotypes clearly to the colonization by
one defined (or a defined combination of) strain(s) of endophytes.

At the in silico level, there is a large pool of potential information
in all the genomic sequencing projects that have become realizable
due to affordable next-generation sequencing techniques. In the
first evaluation step of any genome sequencing project that is real-
ized with an eukaryotic organism, genes of putatively microbial
origin are considered“contaminations”and therefore are routinely
removed from the raw datasets. However, the microorganisms
that carry these genes are likely to represent an integrative part
of the functioning entire organism, rather than contaminations.
Any bacterium or fungus that is regularly infecting (or otherwise
associated with) a certain host affects the phenotype of its host in
a predictable manner and is likely to co-evolve with its host. Dis-
carding these sequences from further analysis prevents us from a
more complete understanding of the true subject of our scientific
effort: the entire plant as it exists in nature.

THE TAXONOMY AND EVOLUTION OF ENDOPHYTIC MICROBES
As most of the above-mentioned methods produce sequence data
for the microbial strains that form the community within a given
host plant, the information obtained can be used to place the
discovered taxa within the broader phylogenetic context: a crucial
step if one aims at understanding the evolution of endophytes. Are
mutualistic or commensalistic microorganisms former pathogens
that have lost their virulence to some degree but maintained the
capacity to invade the tissue of living plants? Or are mutualists
and antagonists derived from different phylogenetic clades? Con-
sidering the general conditionality in all these interactions and
the existence of mutualistic and pathogenic taxa within the same
genera (see above, and the multiple fungal taxa that form ecto-
mycorrhiza: A. E. Bennett, pers. comm.), a discovery of major
clades that are characterized by a well defined life history appears
to be unlikely. As mentioned, many endophytes are believed to
have evolved from former insect parasites and the Clavicipi-
taceae comprise, besides mutualistic plant endophytes, also ento-
mopathogens, plant pathogens, and saprophytes (Rodriguez et al.,
2009). Because the sexual phase of Neotyphodium, Epichloë, has
a parasitic nature (Muller and Krauss, 2005), it appears tempting
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to speculate that endophytes are former pathogens that have suc-
cessfully completed the common tendency in host–parasite coevo-
lution: decreasing their virulence until a balanced, asymptomatic
interaction has been reached. Intriguingly, one single mutation
was sufficient to convert a pathogenic strain of Colletotrichum
magna into a non-pathogenic endophyte that had the capacity to
protect its host from infection by fungal pathogens (Freeman and
Rodriguez, 1993). Similarly, the endophyte Guignardia mangiferae
(Botryosphaeriaceae) and the citrus pathogen G. citricarpa differ
only in a limited number of enzymes and the endophyte appeared
phylogenetically derived from the pathogen (Romao et al., 2011).
Thus, current evidence leads to the conclusion that endophytes
commonly represent former pathogens that have reduced their
virulence to a degree that allows asymptomatic life within
their host.

However, the patterns at the lowest taxonomic levels might
look completely different. Specific strains of what is currently con-
sidered as one species might be well specialized to usually cause
either a pathogenic or an asymptomatic infection or to preferably
infect different hosts (Ormond et al., 2010). Direct comparisons of
related strains with contrasting strategies such as those presented
by (Romao et al., 2011) would greatly help in the understanding
of factors that plant-infecting microorganisms employ to success-
fully infect their host and to elicit, suppress, or avoid major host
resistance responses.

POPULATION ECOLOGY
We have stated above that a completely endophyte-free plant is
unlikely to be able to survive under natural conditions (Figure 1).
Unfortunately, as to our very best knowledge, no empirical data
exist to support this statement. Studies on class I endophytes
routinely produce “endophyte-free” plants and investigate their
behavior under field conditions. However, the controls are only
checked for the absence of the (vertically transmitted) clavicipi-
taceous fungus in the beginning of the experiment, but not for
other, horizontally acquired endophytes. It would be highly inter-
esting to produce complete endophyte-free plants and study their
phenotype and ecological success under controlled conditions as
well as in the field. These studies should be accompanied with the
above-mentioned cultivation-independent screening techniques,
in order to monitor for the occurrence of horizontally acquired
endophytes in the originally endophyte-free plants. Two aspects
appear to be of particularly crucial importance if we aim at
understanding the role of endophytes in any ecosystem: (1) the
population densities reached by endophytes and (2) the temporal
order at which the symbioses of a plant with various microbial
partners are usually established.

That microbial population density matters is nicely illustrated
by a recent report on the effects of different inoculum densities
used to infect Datura stramonium with various Glomus species: the
positive effects on seed set of the infection followed an optimum
curve with increasing infection intensity, whereas plant tolerance
to defoliation was linearly and negatively correlated with infec-
tion intensity (Garrido et al., 2010a). Such patterns are likely to be
common, because any endophyte represents a cost to its host plant
(see above). Therefore, too high densities can be expected to cause
negative effects under most conditions.

We follow Gange and Ayres (1999) and use an easy graphical
model (Figure 3) to illustrate the importance of the quantity of any
given endophyte for the net effect of the infection. Because every
cell of living endophyte has its own metabolic demands, the direct
costs of endophyte infection should be linearly and positively cor-
related to the amount of endophyte that must me nourished by a
host plant. By contrast, the effects of many, if not all, endophytes
are likely to follow a saturation curve: increased nitrogen supply
from Rhizobia or increased supply of phosphorous from mycor-
rhizal fungi benefits plants only until all needs are saturated and
other factors become limiting. Likewise, any resistance factor will
reach an optimum level of concentration above which an increase
in the concentration of the compound does not further enhance
the level of phenotypic resistance. As the net effect of the endo-
phyte can be calculated by its benefits minus its costs (see above),
we predict that the net positive effects of endophyte infection in
relation to their quantity follow an optimum curve, as it has been
indeed been found empirically by Garrido et al. (2010a).

Data obtained in the above-mentioned screening processes can
also be directly used to answer critical questions: how common are
endophytes in natural populations? how specific are they? what
determines the endophytic flora, particularly for the horizontally
transmitted species: host or ecosystem? That is, are two plants more
likely to share common endophytes when they are (a) taxonomi-
cally related or (b) growing in the same habitat? Both host species
and season affected the distribution of genetically defined strains
of B., bassiana (Ormond et al., 2010) and such patterns are likely
to be more pertinent at higher taxonomic levels. Data of this type
represent an essential basis for the formulation of further, more
detailed research questions aimed at improving our knowledge on
the ecological role of endophytes in natural ecosystems.

Another important question concerns the temporal order in
which plants become infected with the different types of endo-
phytes, and the temporal relations among these infections and
the numerous further ecological interactions of a plant (Van Dam
and Heil, 2011). Erb et al. (2011) have nicely demonstrated that
the sequence of arrival matters for the plant-mediated interac-
tions among two herbivores. Similar patterns were found for the
mutualistic outcome of the infection of plants with certain Col-
letotrichum strains (Redman et al., 2001). In fact, the sequence
of arrival becomes crucial when we consider endophyte-mediated
changes in the resistance phenotype of a plant. Most beneficial
effects of endophytes must be considered preventive rather than
curative, but can we expect the infection by endophytes always to
precede the attack of a plant by its enemies? Vertically transmitted
endophytes infect a plant throughout its entire life cycle: infection
with clavicipitaceous endophytes, thus, should normally precede
any other ecological interaction of the host plant. It appears also
to be likely that plant roots acquire nodulating bacteria and myc-
orrhizal fungi at early stages of root development, soon after
germination. The situation is, however, much less clear for the
leaf-colonizing type II endophytes. In one study, the distance from
a putative source tree influenced endophyte colonization, suggest-
ing a highly dynamic infection process (Arnold and Herre, 2003).
Type II endophytes might therefore have to infect a plant after
its encounters with pathogens or herbivores, with as yet unknown
consequences for all partners involved. Given the conditionality of
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all these interactions, the temporal order at which a plant normally
establishes the interactions with its various horizontally transmit-
ted microbial symbionts certainly requires future investigation.
Again, the above-mentioned molecular methods could be applied
to plants under natural conditions to characterize the endophytic
flora in different organs, in plants of different developmental stages
and in con- and heterospecific plants that grow at different sites.

EFFECTORS AS DETERMINANTS OF THE SPECIFICITY AND NET EFFECTS
OF ENDOPHYTES
As mentioned above (see Balanced Antagonism: The Molecular
Perspective), endophytes require virulence factors to overcome the
resistance of their host (Zamioudis and Pieterse, 2011). The bal-
ance between host resistance and endophyte virulence is likely to
be a central determinator of endophyte density, with all its con-
sequences on host development and fitness (Eaton et al., 2011).
Effectors play a crucial role in the microbial invasion process
and are likely to be central determinants of the host spectrum of
pathogens (Schulze-Lefert and Panstruga, 2011). Similarly, endo-
phytes employ effectors to suppress plant immunity and colonize
the host plant (Zamioudis and Pieterse, 2011). As suggested for
the investigation of generalist vs. specialist pathogens (Barrett
and Heil, 2012), comparing the genomes and phenotypes of tax-
onomically related pathogens and mutualistic endophytes will
allow to directly investigate the genetic differences that are con-
tributing to these different microbial life styles. Next-generation
high-throughput sequencing should also be applied to mRNA,
because the detailed balance between the infection by the endo-
phyte and its control by the host is maintained mainly via inducible
responses, that is, at the transcriptional level (Eaton et al., 2011).
Considering the arguments presented above, this type of experi-
ments will benefit strongly from a detailed experimental control
at the qualitative and quantitative level over the endophyte pop-
ulation of the host in combination with comparisons under dif-
ferent environmental conditions and of different host ontogenetic
stages.

CONCLUDING REMARKS
Plant-infecting microorganisms are ubiquitous and affect many
vitally important plant traits, particularly those that control the
interactions of plants with their abiotic and biotic environment.
Undoubtedly, some microorganisms will usually have negative
effects on the fitness of their hosts and thus should be termed
pathogens, whereas other microorganisms that colonize the tissue
of plants usually have positive effects and then represent mutualis-
tic endophytes. However, all plant–microbe interactions can shift
along a mutualism–antagonism continuum. To understand their
effects on plant ecology, plant fitness, and ultimately plant evo-
lution, we therefore need to know the net effects that the typical
microbial flora of a plant has under the average environmental
conditions and understand the molecular mechanisms that cause
the observed phenotypic effects. Most importantly, a microbe-free
plant is not what we normally see in nature. It is likely that all plants
that grow under natural conditions are, or have been in their past,
colonized by several microorganisms, which exert highly condi-
tional, but vitally important effects on their host. Considering,
and ideally controlling for, the presence of these microorganisms

will benefit future research into our study object of interest: the
“normal” plant that is growing in – and interacting with – its
natural environment.
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GLOSSARY
• Benefits, direct – all direct contributions to the growth, develop-

ment, or reproduction of the host organism
• Benefits, ecological – all effects on ecological interactions of the

host with abiotic or abiotic factors that exert a beneficial net
effect on host fitness (for example, an enhancement of host
resistance to herbivores benefits the host only in the presence of
herbivores)

• Costs, direct – have direct negative effects on the fitness of the
organism. Direct costs can result from the allocation of lim-
ited resources to the trait, autotoxic effects of the trait or its
direct, genetic coupling to another trait with negative net effects
(pleiotropic costs)

• Costs, ecological – all negative effects of the expression of a given
trait or interaction that result only from an negative interac-
tion among the trait in question and other, ecologically relevant
interactions (for example, the attraction of root herbivores
to N-fixing nodules represents an ecological cost of nitrogen
fixation)

• Effector – molecule secreted by a plant enemy to manipulate
host resistance

• Endophyte – a microorganism that lives at least during a part
of its life cycle inside living plant tissue without causing visible
disease symptoms

• Endophyte, Type I – the ‘singlbaseclassical’ fungal endophytes:
vertically transmitted asexual fungi (usually genus Neoty-
phodium, Clavicipitaceae) in grasses that cause no visible disease
symptoms under most growing conditions and that usually
exert some kind of positive effect on their host

• Endophyte, Type II – horizontally transmitted bacterial or fungal
endophytes

• Induction – the augmentation of gene expression by exogenous
factors

• Pathogen – an endophytic microorganism that causes pheno-
typically visible disease symptoms, thereby negatively affecting
plant fitness

• Phenotype, extended – sensu (Dawkins, 1999) the sum of ALL
effects of a gene, including those elicited in other organisms.
In the context of the present work, those effects of the plant
phenotype that are caused by the interaction of the genome of
the endophytic microorganism with the plant genome and its
environment

• Priming – the preparation of a gene by an exogenous factor for
faster and stronger expression
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• Resistance mechanism, direct – in the context of the present
article all negative effects on the enemies of the host plant
that are caused by direct antagonisms between endophyte and
plant enemy (most commonly mediated by the production
of compounds that deter or harm the enemy or by direct
endophyte-enemy competition)

• Resistance mechanism, indirect – in the context of the
present article all negative effects on the enemies of the
host plant that are caused by stimulation (induction or
priming) of host resistance genes or that are mediated via
interactions with further organisms (such as, for example,
vectors)
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