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Complete sequencing of the Arabidopsis genome a decade ago has facilitated the func-
tional analysis of various biological processes including membrane traffic by which many
proteins are delivered to their sites of action and turnover. In particular, membrane traffic
between post-Golgi compartments plays an important role in cell signaling, taking care
of receptor–ligand interaction and inactivation, which requires secretion, endocytosis, and
recycling or targeting to the vacuole for degradation. Here, we discuss recent studies that
address the identity of post-Golgi compartments, the machinery involved in traffic and
fusion or functionally characterized cargo proteins that are delivered to or pass through
post-Golgi compartments. We also provide an outlook on future challenges in this area of
research.
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Several thousand proteins are delivered to their sites of action and
turnover by membrane trafficking. Cargo proteins include vac-
uolar proteases, storage proteins, membrane-associated receptors
and their soluble (secreted) peptide ligands, cell wall-modifying
enzymes, nutrient and hormone transporters, ion channels, and
PAMP receptors involved in pathogen defense. Thus, cellular
homeostasis, cell–cell communication in development, and phys-
iological responses to changes in the environment all depend
on membrane traffic. In this review, we will summarize recent
advances on post-Golgi membrane traffic covering compartments,
trafficking pathways, and molecular players involved.

DIVERSITY OF POST-GOLGI COMPARTMENTS
Major ultrastructurally defined endomembrane compartments
in post-Golgi trafficking are the trans-Golgi network (TGN),
the multivesicular body (MVB)/prevacuolar compartment (PVC),
and two types of vacuole, the lytic vacuole (LV) and the pro-
tein storage vacuole (PSV). Additional compartments such as the
recycling endosome (RE) have been postulated or inferred from
experimental studies or marker localization data but have not been
identified ultrastructurally in plants (Figure 1).

TRANS -GOLGI NETWORK/EARLY ENDOSOMES
Secretory cargo proteins arrive at the TGN from the ER via the
Golgi stacks. Originally described as partially coated reticulum
(PCR; Pesacreta and Lucas, 1984; Tanchak et al., 1988), the TGN

Abbreviations: AALP, Arabidopsis aleurain like protein; ABA, abscisic acid; CCV,
clathrin-coated vesicles; CPI1, cyclopropylsterol isomerase 1; ER, endoplasmic reticu-
lum; PAMP, pathogen-associated molecular pattern; PIP5K2, phosphatidylinositol-
4-phosphate 5-kinase 2; PMEI1, pectin methylesterase inhibitor protein 1; PI3P,
phosphatidylinositol-3-phosphate; RMR, receptor homology region transmem-
brane domain ring H2 motif protein; RPA, ROOT AND POLLEN ARF–GAP;
SNARE, soluble N -ethylmaleimide-sensitive factor attachment receptor; SYP, syn-
taxin of plants; TFL1, TERMINAL FLOWER 1; TRAPP, transport protein particle;
VAMP, vesicle-associated membrane proteins.

is a tubulo-vesicular compartment that is often closely associated
with a Golgi stack but can also move away (Viotti et al., 2010;
Kang et al., 2011). The TGN is a major sorting station for exocytic
cargo proteins except that some storage proteins are sorted at the
ER or cis-Golgi (Hara-Nishimura et al., 1998; Park et al., 2004).
Importantly, the TGN also functions as an early endosome (EE) in
plants, as revealed by time-course experiments with the lipophilic
endocytic tracer FM4-64 (Dettmer et al., 2006). Thus, the TGN is
at the intersection of the secretory and endocytic traffic. In addi-
tion, RAB-A class proteins related to the mammalian recycling
Rab11 GTPase localize at a subpopulation of TGN (Chow et al.,
2008; Kang et al., 2011). These observations suggest that distinct
sorting functions are performed by the TGN, although there is
no structural evidence for subdomains. TGN markers commonly
used include the a1 subunit of the vacuolar H+-ATPase (VHA)
and the Qc-SNARE SYP61 (Bassham et al., 2000; Sanderfoot et al.,
2001; Dettmer et al., 2006). The latter has been used to identify
the TGN proteome by mass spectrometry (Drakakaki et al., 2011).
The TGN appears to be formed from the trans-most cisterna of
the Golgi stack (Zhang and Staehelin, 1992), possibly by matura-
tion. Its integrity seems to be maintained by anterograde traffic
toward the plasma membrane (PM) and the vacuole as well as by
retrograde traffic to the Golgi apparatus.

PREVACUOLAR COMPARTMENT/MULTIVESICULAR BODIES
Multivesicular bodies are ultrastructurally distinct, with intralu-
menal vesicles formed by local endosomal sorting complex
required for transport (ESCRT)-mediated invaginations of the
limiting membrane (Tse et al., 2004; Otegui and Spitzer, 2008;
Stierhof and El Kasmi, 2010). MVBs act as a PVC and relay TGN-
sorted cargo proteins toward (lytic) vacuoles, thus functionally
corresponding to the late endosomes (LE) of animal cells (Tse
et al., 2004). A similar PVC [possibly related to the dark intrinsic
protein (DIP) organelle] is also observed in trafficking to the PSV
(Jiang et al., 2000; Shen et al., 2011) and might actually be identical
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FIGURE 1 | Illustrated overview of post-Golgi traffic. In the vacuolar
trafficking pathway (purple-colored), there is a controversy over the precise
location where VSR recycling occurs (pale purple-colored dashed line).
There are different populations of RAB-F-positive endosomes, but their
origin is unknown. There is no clear evidence for multiple secretory
pathways to the PM (indicated by the green-colored dashed line). Cell-plate
formation mainly relies on the secretory pathway (green-colored).
Molecular machineries involved in protein retrieval from the cell plate
(salmon-colored) and in endocytosis (red-colored) may be similar, including
clathrin (gray-colored dashed line). It is not clear whether clathrin is also
involved in the vacuolar trafficking pathway. Although there seem to be
multiple types of REs (blue and pale blue-colored), their origin and identity
are unknown. Small-sized letters indicate representative molecular markers
for post-Golgi trafficking pathways. For simplicity, polar location of BOR1 is
not shown. For details, see the text.

to the PVC in lytic vacuolar traffic (Miao et al., 2008). By analogy
with the non-plant systems in which LE fuse with the lysosome
(reviewed in Luzio et al., 2010), it is generally accepted that MVBs
fuse with the tonoplast, releasing the intralumenal vesicles, and
their membrane-bound cargo into the vacuole for degradation
(Scheuring et al., 2011). This has been demonstrated, for example,
for the syntaxin KNOLLE, which is detected on the intralumenal
vesicles of MVBs and on vesicles inside the vacuole at the end of
cytokinesis (Reichardt et al., 2007).

The origin of the MVBs in plant cells is still controversial
whereas the LE of yeast and mammals have been shown to mature
from EEs (Rink et al., 2005; Poteryaev et al., 2010). On the one
hand, Golgi/TGN-derived vesicles appear to fuse with one another
to form pre-MVBs from which MVBs mature en route to the PSV
in the Arabidopsis embryo (Otegui et al., 2006). On the other hand,
a recent study of both Arabidopsis root cells and tobacco mesophyll
protoplasts presents structural and functional evidence suggesting
that MVBs mature from TGNs by being pinched off and forming
ESCRT-mediated intralumenal vesicles (Scheuring et al., 2011).
Although the recent data strongly support a maturation model,
some points still remain to be resolved (see below). In animals,
early to late endosomal maturation appears to occur by Rab5–Rab7
conversion (Poteryaev et al., 2010). However, the plant homolog

of mammalian Rab5, ARA7/RAB-F2b GTPase, is not located at the
TGN/EE in plants but at PVCs/MVBs (Lee et al., 2004; Reichardt
et al., 2007). This difference suggests that the underlying molecular
machineries might be different between animals and plants.

Prototypical MVB/PVC markers include ARA7/RAB-F2b
GTPase and Qa-SNARE SYP2 paralogs (i.e., PEP12/SYP21 and
VAM3/SYP22/SGR), which associate with or reside on the lim-
iting membrane, respectively (Lee et al., 2004; Shirakawa et al.,
2010; Uemura et al., 2010). PEP12/SYP21 and VAM3/SYP22/SGR
were regarded as distinct membrane markers for two related
compartments, the PVC and the vacuole, respectively. Recently,
however, Uemura et al. (2010) demonstrated functional redun-
dancy of the two syntaxins and also showed by double labeling
that the two proteins largely colocalize on both endomembrane
compartments. Additionally, MVBs are morphologically altered by
treatment with wortmannin, an inhibitor of phosphatidylinositol-
3 kinase (PI3K), which causes swelling and vacuolation of PVCs
and is thus commonly used to identify PVCs (Tse et al., 2004;
Wang et al., 2009). However, wortmannin has additional effects
on endosomes and also impairs endocytosis from the PM (Lam
et al., 2007).

Recently, Foresti et al. (2010) proposed that a late PVC/MVB
exists as an intermediate compartment between the PVC and the
central vacuole in the tobacco leaf epidermis, which was based on
the localization of the recycling-defective vacuolar sorting receptor
(VSR) VSR2. However, the PVC marker RHA1/RAB-F2a (see also
below) was used to visualize this late PVC/MVB. It is thus impor-
tant to employ additional unique subcellular markers to verify the
presumed existence of a novel late PVC (see also Bottanelli et al.,
2011b).

RECYCLING ENDOSOMES
Recycling endosomes have not been identified morphologically
in plants. However, they were first functionally demonstrated as
the site of action of the brefeldin A (BFA)-sensitive ADP ribosy-
lation factor (ARF)–guanidine nucleotide exchange factor (GEF),
GNOM, which is required for the recycling of the auxin-efflux car-
rier PIN-FORMED1 (PIN1) to the basal PM in the root vasculature
(Geldner et al., 2003). In contrast, GNOM function is not required
for the recycling to the PM of AUXIN-RESISTANT1 (AUX1),
PIN2, and PM-located H+-ATPase (Kleine-Vehn et al., 2006),
which suggests the existence of multiple functionally distinct REs.
Although the partial colocalization of GNOM with FM4-64 would
be compatible with the notion that REs might be part of the TGN
(Geldner et al., 2003), the two compartments seem to differ in
BFA sensitivity (Geldner et al., 2009). Moreover, there is no direct
ultrastructural evidence supporting a subdomain organization of
the TGN that could be unambiguously related to distinct traf-
ficking roles. Interestingly, ARA7/RAB-F2b-positive endosomes
are morphologically abnormal in gnom mutant cells, resembling
wortmannin-treated MVBs (Geldner et al., 2003). However, this
effect might be indirect since GNOM does not localize at the
PVCs/MVBs. Moreover, delivery of the brassinosteroid receptor
BRI and the boric acid/borate exporter BOR1 from the PM to
the PVCs/MVBs appears to target these proteins to the LV rather
than recycling them back to the PM (Viotti et al., 2010). Thus, it
is unlikely that the PVCs/MVBs serve as REs. Recently, RAB-A1e
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and RAB-A1g-positive endosomes were proposed to correspond
to REs based on their higher sensitivity to BFA (Geldner et al.,
2009). Obviously, additional structural and functional evidence is
required to identify the REs unambiguously.

VACUOLES
Plant cells have different types of vacuoles with specific physiolog-
ical and functional features, depending on the developmental stage
(Marty, 1999). Two types of vacuoles have been best studied: (i)
the α-tonoplast intrinsic protein (α-TIP)-positive PSV that is built
during embryogenesis and serves as an energy sink during seed ger-
mination; (ii) the γ-TIP-positive LV or central vacuole (CV) that
appears to derive from the PSV during germination and functions
in degrading proteins and in sequestering secondary metabolites
(Höfte et al., 1992; Zheng and Staehelin, 2011). The prevailing view
was that multiple types of vacuole exist in a differentiated cell, as
revealed by the distinct locations of α-TIP and γ-TIP in Arabidopsis
root or leaf cells (Paris et al., 1996; Park et al., 2004). However, this
concept has been disputed in recent studies of α-, γ-, and δ-TIPs
as well as storage proteins in barley, pea, and Arabidopsis (Hunter
et al., 2007; Olbrich et al., 2007). The authors demonstrated that
there is only a single type of (central) vacuole which is labeled
with both α-TIP and γ-TIP in various differentiated tissues (also
reviewed in Frigerio et al., 2008). According to Sohn et al. (2007),
a mutation of TFL1, a shoot meristem identity gene involved in
flower development, results in defects in PSV trafficking. TFL1 is
not only located at the PM and a PSV-like organelle but also colo-
calizes with the δ subunit of the AP-3 complex which was more
recently shown to be involved in vacuolar biogenesis (see below for
details). Although the PSV-like organelle remains to be character-
ized morphologically and functionally, its existence may imply the
occurrence of hitherto unappreciated vacuolar functional diversity
in differentiated cell types.

Commonly used markers include aleurain, sporamin, and γ-
TIP for the LV/CV and lectin, globulin, albumin, and α-TIP for
the PSV (Höfte et al., 1992; reviewed in Robinson et al., 2005).
Apart from the vacuoles themselves, there are additional com-
partments such as dense vesicles (DVs), precursor-accumulating
compartments (PACs), and DIP-positive organelles that lie on the
PSV trafficking pathways (Hohl et al., 1996; Shimada et al., 1997;
Jiang et al., 2000; Hillmer et al., 2001).

CELL PLATE
Plant cells generate a transient membranous compartment named
cell plate in the plane of cell division during cytokinesis. Forma-
tion of the cell-plate starts in the center and progresses toward the
periphery until the margin of the cell-plate fuses with the parental
PM (Seguí-Simarro et al.,2004; reviewed in Jürgens,2005). The cell
plate is mainly built by homotypic fusion of Golgi/TGN-derived
vesicles whose delivery to the plane of cell division is guided
by the dynamic cytoskeletal array of phragmoplast microtubules
(reviewed in Jürgens, 2005; Reichardt et al., 2007). By contrast,
endocytosis seems to participate in the recruitment of the corti-
cal division zone (Van Damme et al., 2011). A commonly used
marker for the plane of cell division and the forming cell plate
is the cytokinesis-specific syntaxin/Qa-SNARE KNOLLE/SYP111
(Lauber et al., 1997).

POST-GOLGI TRAFFICKING PATHWAYS
LATE SECRETORY PATHWAY(s) TO THE PLASMA MEMBRANE
Traffic of soluble proteins from the ER to the PM and out of the
cell occurs by default, the only requirement being an N-terminal
signal peptide for protein translocation across the ER membrane,
as shown for several soluble enzymes as well as GFP (Denecke
et al., 1991; Batoko et al., 2000). Conversely, a key regulator of
Arabidopsis stem-cell homeostasis, the peptide ligand CLAVATA
3 (CLV3), which is normally secreted from the cell, was diverted
to the vacuole when fused to a C-terminal vacuolar sorting sig-
nal (Rojo et al., 2002). Thus, the absence of a sorting signal for
vacuolar trafficking is required for secretion of soluble proteins,
supporting the notion that secretion is a default pathway.

Secretory trafficking of membrane proteins is less well charac-
terized. Membrane proteins with a single transmembrane domain
appear to reach their destination along the secretory pathway
according to the length of their hydrophobic region: proteins with
a shorter membrane span are held back in the Golgi stack whereas
those with a longer membrane span are trafficked to the PM
(Brandizzi et al., 2002). The situation might be different for other
membrane proteins such as those with multiple membrane spans
or those with a hydrophobic tail anchor such as SNARE proteins
that are inserted into the ER membrane by the GET machin-
ery (Borgese and Fasana, 2011). For example, the rice secretory
carrier membrane protein 1 (SCAMP1) has four transmembrane
domains of which two domains appear to mediate export from
the Golgi stack and another one appears to mediate traffic from
the TGN to the PM (Cai et al., 2011).

Concanamycin A (ConcA) inhibits the activity of the TGN/EE-
residing VHA. As a consequence, TGN and MVB are incorporated
into the Golgi apparatus, and the Golgi stacks are morpholog-
ically altered as well. Consequently, ConcA blocks downstream
pathways of the TGN/EE (Dettmer et al., 2006; Reichardt et al.,
2007; reviewed in Robinson et al., 2008). Interestingly, ConcA
inhibits the secretion of secGFP at the TGN/EE (Viotti et al., 2010),
but other markers are not affected (Scheuring et al., 2011). Thus,
one or more pathway(s) might be involved in the secretion of sol-
uble proteins. Additional functional studies are required to resolve
this issue.

TRAFFICKING TO THE CELL DIVISION PLANE AS A SPECIALIZED
SECRETORY PATHWAY
Phragmoplast-assisted cell-plate formation is a unique mode of
cytokinesis that evolved in the plant lineage only. Golgi/TGN-
derived membrane vesicles that deliver the necessary material for
building the PM and the cell wall are targeted to the plane of
cell division (Seguí-Simarro et al., 2004). The available evidence
suggests that both secretory and endocytic traffic contribute to
cell-plate formation (Dhonukshe et al., 2006; Reichardt et al., 2007,
2011). Interestingly, cell-plate formation is critically dependent on
secretory traffic delivering de novo synthesized KNOLLE syntaxin
whereas endocytic traffic appears to be a consequence of pre-
venting recycling of internalized membrane proteins to the PM
(Reichardt et al., 2011). Many proteins that are detected at the
PM during interphase accumulate at the plane of division dur-
ing cytokinesis (Steinmann et al., 1999; Zuo et al., 2000). However,
only cycling PM proteins arrive at the division plane by endocytosis
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whereas non-cycling PM proteins such as SYP132 have to be newly
synthesized and delivered by secretion to accumulate at the form-
ing cell plate (Reichardt et al., 2011). This observation may also
indicate that protein trafficking to the cell-plate relies on a default
pathway. How KNOLLE syntaxin reaches the plane of cell divi-
sion has been analyzed in transgenic plants expressing chimeric
syntaxins in which protein domains have been swapped between
KNOLLE and MVB-localized PEP12/SYP21 (Touihri et al., 2011).
KNOLLE syntaxin with its tail anchor replaced by that of the pre-
vacuolar syntaxin PEP12 still reaches the cell plate and rescues a
knolle mutant whereas an N-terminal region from PEP12 targets
the chimeric protein to the MVB/PVC (Touihri et al., 2011). This
result supports the notion of trafficking to the plane of cell division
being a default pathway.

ENDOCYTOSIS AND RECYCLING TO THE PLASMA MEMBRANE VS.
TARGETING TO THE VACUOLE FOR DEGRADATION
Upon internalization from the PM, endocytosed proteins face two
options: They may be recycled to the PM or they may be passed on
to the vacuole for degradation. In Arabidopsis, many PM proteins
including auxin-efflux carriers PIN1 and PIN2, brassinosteroid
receptor BRI1 and boron transporter BOR1 undergo constitu-
tive endocytosis and recycling (Steinmann et al., 1999; Geldner
et al., 2003, 2007; Geldner and Jürgens, 2006; Takano et al., 2010).
There are only a few exceptions known such as the Qa-SNARE
SYP132, which does not constitutively cycle and rather stays at
the PM (Reichardt et al., 2011). Constitutive cycling of PM pro-
teins was initially revealed for PIN1 by treating seedling roots
with the fungal toxin brefeldin A (BFA), which trapped internal-
ized PIN1 reversibly in endosomal BFA compartments (Geldner
et al., 2003). BFA prevents ARF GTPase activity by inhibiting
GDP–GTP exchange through the cognate BFA-sensitive regulator
ARF–GEF (see below). In the case of PIN1 recycling, the ARF–GEF
GNOM is the BFA target, as indicated by its co-localization with
PIN1 trapped in BFA compartments and by BFA-insensitive PIN1
recycling to the PM in the presence of engineered BFA-resistant
GNOM (Geldner et al., 2003). In contrast to PIN1, GNOM is
not essential for recycling of PIN2, AUX1, and PM-H+-ATPase
(Geldner et al., 2003). Thus, there are also GNOM-independent
recycling pathways from endosomes to the PM.

Clathrin-mediated endocytosis in plants has been demon-
strated for PIN proteins and the endocytic tracer FM4-64, using
both overexpression of the dominant-negative hub fragment of the
clathrin heavy chain and T-DNA insertional clathrin heavy chain
mutants (Dhonukshe et al., 2007; Robert et al., 2010; Kitakura
et al., 2011). Wortmannin has also been widely used to interfere
with endocytosis (Emans et al., 2002; Reichardt et al., 2007; Ebine
et al., 2011), in addition to its known disruptive effects on vac-
uolar trafficking, although this drug has rather ill-defined effects
on endosomes (see above). Wortmannin was recently shown to
cause aggregation of clathrin at the PM, which might explain the
inhibitory effect of wortmannin on endocytosis (Ito et al., 2011).

Clathrin is also involved in the retrieval of PIN protein from
the cell plate where PIN interacts with dynamin-related protein 1A
(DRP1A; see below; Mravec et al., 2011), although clathrin often
does not clearly colocalize with DRP1A at the cell plate (Ito et al.,
2011). Thus, the molecular machinery of protein retrieval from

the cell-plate appears to be similar to that of endocytosis. Whereas
PIN1 is endocytosed from the cell plate and then retargeted to the
PM, the cytokinesis-specific syntaxin KNOLLE/SYP111 is endo-
cytosed and then delivered to the LV for degradation (Reichardt
et al., 2007). Hence there must be a selective sorting mechanism,
possibly at the TGN or cell plate (see below).

Clathrin-mediated endocytosis in mammalian cells also
involves the AP-2 complex, with its μ-adaptin subunit selecting
cargo with a tyrosine-based sorting motif for internalization from
the PM (reviewed in Boehm and Bonifacino, 2001). Tyrphostin
A23 is a competitive inhibitor of the interaction of the sorting
sequence Yxxφ (where Y is a tyrosine, x is any amino acid, and φ is
a bulky hydrophobic residue) of cargo proteins with the medium
(μ2) subunit of mammalian AP-2 complex, and this has been
used to explore clathrin-dependent trafficking pathways (Ban-
bury et al., 2003). In plants, tyrphostin A23, but not its structural
analog tyrphostin A51, inhibits endocytosis of FM4-64, and the
artificially expressed human transferrin receptor (Ortiz-Zapater
et al., 2006; Dhonukshe et al., 2007). Although tyrphostin A23
appears to have non-specific deleterious effects in plant cells (see
below), the inhibitory effect of tyrphostin A23 might result from
the existence of a plant equivalent to μ2 adaptin, which has not
been identified. There is also clathrin-independent endocytosis
which, however, has not been well analyzed in plants. So far, a
distinct route of endocytosis has been demonstrated by ultrastruc-
tural tracing of charged nanogold in the presence of ikarugamycin,
which inhibits clathrin-dependent endocytosis (Moscatelli et al.,
2007; Onelli et al., 2008). It will be important to study the under-
lying mechanism of this presumed novel endocytic route at the
molecular level.

If not recycled, PM proteins are delivered, via PVCs/MVBs, to
the LV for degradation (Kleine-Vehn et al., 2008;Viotti et al., 2010).
It is not at all clear where the two routes of recycling and degrada-
tion diverge among the post-Golgi endosomal compartments in
plants. All endocytosed PM proteins are delivered to the TGN/EE.
If the MVBs indeed mature from some subdomain of TGNs and
the REs are also derived from TGNs, the sorting would likely occur
at the TGNs (see above). Apart from the difficulty of ultrastruc-
turally identifying REs, there are conflicting (or incomplete) data
regarding the recycling vs. degradation. For example, the sorting
nexin 1 (SNX1)-labeled PVC/MVB has been proposed to be the
site of sorting (Jaillais et al., 2006). However, PM proteins to be
recycled have not been detected at the PVC/MVB (Viotti et al.,
2010). Instead, the recycling pathway might be affected indirectly
by interfering with vacuolar trafficking.

Ubiquitination is likely an endocytic signal for PM proteins
to be targeted to the vacuole for degradation (Abas et al., 2006;
Kleine-Vehn et al., 2008). After having been trafficked to the endo-
somes, ubiquitinated proteins seem to be recognized by ESCRTs
complexes, which in turn promote MVB formation (Spitzer et al.,
2006; Otegui and Spitzer, 2008). For example, PIN1, PIN2, and
AUX1 proteins are known cargo proteins of the ESCRT machinery
(Spitzer et al., 2009). As an example for ligand-dependent endo-
cytosis, the immunity-related pattern recognition receptor FLS2
is degraded in response to ubiquitination and BAK1-mediated
phosphorylation triggered by the bacterial elicitor flagellin 22
(Lu et al., 2011). Similarly, endocytosis of IRON-REGULATED
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TRANSPORTER 1 (IRT1) and traffic of BOR1 from the PM to the
LV depend on their ubiquitination (Barberon et al., 2011; Kasai
et al., 2011).

VACUOLAR CARGO TRAFFICKING PATHWAY(s)
Newly synthesized soluble cargo proteins destined to the vacuoles
need an N- or a C-terminal vacuolar sorting sequence (known as
NTPP or CTPP), as supported by the vacuolar trafficking of NTPP-
tagged ER-translocated secGFP (Di Sansebastiano et al., 1998).
Generally, LV- and PSV-destined soluble cargo proteins have NTPP
and CTPP, respectively, as sorting sequences that are thought to
bind to corresponding VSRs for targeted delivery. VSR1/ELP (one
of seven homologs), for example, recognizes the N-terminal sort-
ing sequence, NPIR, of AALP or sporamin at the TGN/EE for
sorting, and delivery to the MVB/PVC (Sanderfoot et al., 1998;
Ahmed et al., 2000). However, this notion was questioned recently
by the observation that transiently expressed ER-anchored pea
VSR caused retention of soluble vacuolar cargo molecules in the
ER (Niemes et al., 2011), suggesting that sorting to the vacuole may
occur at an earlier step. More direct evidence is needed to identify
the endomembrane compartment(s) at which VSRs interact with
their vacuolar cargo proteins normally.

The VSR1/ELP interacts with the μ1 medium subunit of
the mammalian AP-1 complex and with Arabidopsis μA-adaptin
in vitro through a tyrosine residue-based sorting sequence, YMPL
(Sanderfoot et al., 1998; Ahmed et al., 2000), implying that
clathrin-coated vesicles (CCVs) are likely involved in vacuolar traf-
ficking. However, this idea was challenged by the recent observa-
tion that transient overexpression of the truncated clathrin heavy
chain, the so-called clathrin hub, does not interfere with vacuolar
trafficking, which was consistent with the alternative MVB mat-
uration model (Scheuring et al., 2011). However, it is not known
how efficiently the clathrin hub interferes with CCV formation
(see below),although endocytosis of FM4-64,PIN1,and PIN2 pro-
teins is clearly inhibited (Dhonukshe et al., 2007; Scheuring et al.,
2011). Moreover, the MVB maturation model does not explain
why a mutation of the adaptor protein (AP) complex-recognition
sequence, YMPL, of pea VSR causes its mistargeting in tobacco
protoplasts (daSilva et al., 2006) and why homodimerization-
defective VSR1 is less detected in a CCV-enriched fraction in
Arabidopsis leaf than is pea VSR (Kirsch et al., 1994; Kim et al.,
2010). Arabidopsis VSR2 and a lily ortholog, LIVSR, have been
reported to localize at the PM in germinating lily or tobacco
pollen tubes (Wang et al., 2010, 2011). However, the significance
of this observation for the regulation of vacuolar sorting is entirely
unclear.

Unlike vacuolar trafficking of soluble cargo proteins, not much
is known about sorting mechanisms of membrane proteins.
AtβFructosidase 4 (βFruct4) appears to require multiple specific
sequences for stepwise sorting from the TGN via the MVB to the
vacuole in Arabidopsis (Jung et al., 2011). In the tobacco epidermis,
differential trafficking mechanisms are involved in the vacuolar
trafficking of several membrane proteins tested (Bottanelli et al.,
2011a).

Generally, soluble cargo proteins are thought to be released
from VSR at the PVCs/MVBs, although there is no conclusive
molecular evidence for this. Whereas soluble cargo proteins are

delivered to the vacuole via membrane fusion of the PVCs/MVBs
with the vacuole (Scheuring et al., 2011), VSR was presumed to
be recycled from the PVCs/MVBs to the TGN/EE by the retromer
complex (Sanderfoot et al., 1998; daSilva et al., 2005; Oliviusson
et al., 2006; Jaillais et al., 2007). However, this long-held belief has
recently been questioned by the controversial localization of the
retromer complex to the TGN, rather than the MVB, in Arabidop-
sis and tobacco (Jaillais et al., 2006, 2007, 2008; Niemes et al., 2010;
Pourcher et al., 2010). The localization of the retromer complex to
the TGN would be consistent with the maturation model for the
origin of the MVB (see above).

Fusion of the PVCs/MVBs with the vacuole may require Qa-
SNARE SYP2 proteins and the homotypic fusion and protein
sorting/class C-VPS protein (HOPS/C-VPS) complex comprising
the Arabidopsis VPS16-homolog VCL1, VPS11, and VPS33 (Rojo
et al., 2001, 2003; Shirakawa et al., 2010). However, the latter two
proteins have yet to be functionally studied.

Different trafficking pathways to the PSV have been shown in
diverse species including pumpkin, bean, and Arabidopsis (Frige-
rio et al., 1998; Hara-Nishimura et al., 1998; Hinz et al., 1999;
Park et al., 2004, 2005). RMRs are suggested to be PSV sort-
ing receptors in Arabidopsis, tobacco, and rice (Jiang et al., 2000;
Park et al., 2005, 2007; Hinz et al., 2007). RMRs were studied
in Arabidopsis and rice. RMR1 and RMR2 have been localized
at the Golgi, a PVC-like organelle and the PSV (or protein bod-
ies); these proteins interact with the C-terminal vacuolar sorting
sequences of storage proteins in vitro (Park et al., 2005, 2007;
Hinz et al., 2007). Unlike VSRs in lytic vacuolar traffic, RMRs
appear not to be recycled and instead are bound to the aggre-
gates of soluble cargo proteins (Park et al., 2007). More recent
mutant studies in Arabidopsis have challenged the role of RMRs
in PSV trafficking and identified VSR1, VSR3, and VSR4 as the
major sorting receptors that function redundantly in the target-
ing of soluble cargo proteins to the PSV and the LV/CV (Shimada
et al., 2003; Zouhar et al., 2010). This result suggests that VSRs
presumably fulfill multiple functions and that vacuolar biogene-
sis of PSV and LV/CV might be closely linked, especially in early
embryogenesis.

ASYMMETRIC LOCALIZATION OF PLASMA-MEMBRANE PROTEINS
Most PM proteins are located in the PM all around the cell rather
than being confined to a specific surface area (Geldner and Jür-
gens, 2006; Geldner et al., 2007). However, several PM proteins
localize polarly or asymmetrically, i.e., on one side of the cell
(Steinmann et al., 1999; Swarup et al., 2004; Takano et al., 2005,
2010). These include several members of the PIN family of auxin-
efflux carriers as well as other PM proteins such as BOR1 and
its paralog BOR4 (Miwa et al., 2007), the boron importer NIP5;1
(Takano et al., 2010), exporter PIS1/PDR9/ABCG37 of the plant
hormone precursor indole-3-butyric acid (Langowski et al., 2010),
the Casparian strip membrane domain proteins CASPs in the
endodermis (Roppolo et al., 2011), and the ABCG-type trans-
porter DSO/AtWBC11 in the epidermis (Panikashvili et al., 2007).
In addition, the GPI-anchored COBRA protein is present only on
the lateral surfaces of root vascular cells (Schindelman et al., 2001).
How the polar localization comes about has not been well studied
in most cases. For PIN1, however, it was demonstrated that the
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initial accumulation in the PM is non-polar, which might reflect
non-polar secretory trafficking, whereas endocytosis and targeted
recycling bring about the polar localization of PIN1 (Dhonuk-
she et al., 2008). PIN1 is actively localized at the basal PM in
the root vasculature by the ARF–GEF GNOM and PP2A phos-
phatases that counteract the PINOID kinase (Steinmann et al.,
1999; Michniewicz et al., 2007). In contrast, PIN2 localizes at the
PM apically and basally in the epidermis and cortex, respectively,
and only the basal localization seems to be dependent on GNOM
function (Geldner et al., 2003). In general, apical targeting of PIN
proteins requires the PINOID kinase and its homologs WAG1
and WAG2, which phosphorylate their PIN substrates (Dhonuk-
she et al., 2010). Additionally, the sterol composition mediated by
the ER-residing CPI1 affects PIN2 redistribution after cytokine-
sis (Men et al., 2008). PIN3, which is required for phototropism,
locates polarly at the PM of epidermis, cortex, endodermis, and
vasculature, but apolarly in the columella (Friml et al., 2002). Upon
shading, PIN3 relocates polarly toward the inner membrane of
the endodermis, which depends on the function of GNOM and
PINOID, and thus triggers apical hook development (Ding et al.,
2011). Whereas the polar localization of some PIN transporter
might reflect the (changeable) direction of auxin flow, the polar
localization of other PM proteins might rather reflect the intrinsic
polarity of the cell in which they are expressed. This might apply
to DSO in the outer PM of the epidermis or BOR1 in the inner
PM of various root cells including the epidermis, endodermis, and
columella. BOR1 accumulation, but not its polarity, responds to
changes in the external supply of boron. BOR1 cycles between the
PM and endosomes when the external concentration of boron is
low; however, BOR1 is fast endocytosed and delivered to the LV
when the root is exposed to a high concentration of boron (Takano
et al., 2005, 2010). Tyrosine residues appear to be important in
BOR1 turnover (Takano et al., 2010), although their specific role
is not clear.

MOLECULAR PLAYERS OF POST-GOLGI TRAFFIC
VESICLE FORMATION BY ARF GTPases AND THEIR REGULATORS,
ARF–GEFs, AND ARF–GAPs
Small GTPases of the ARF family recruit coat proteins by under-
going GTP/GDP exchange cycles that are tightly controlled by
specific regulatory proteins, ARF–GEFs, and ARF–GAPs. The Ara-
bidopsis genome encodes approx. one dozen ARF GTPases; the
precise number is unknown because divergent ARFs cannot easily
be distinguished from functionally distinct ARLs (ARF-LIKE pro-
teins). Of the three eukaryotic ARF classes, only ARF1 isoforms are
present in plants, which, on the other hand, also have plant-specific
ARF classes such as ARFA and ARFB (and possibly additional ARF
classes; Jürgens and Geldner,2002). ARF1 predominantly accumu-
lates at the TGN/EE and the Golgi stacks and thus likely recruits
both COPI and AP complex/clathrin coat proteins (Pimpl et al.,
2000; Matheson et al., 2007; Stierhof and El Kasmi, 2010). Barley
isoforms of ARF1 named ARFA1b/1c function in callose depo-
sition and preinvasive basal defense and have been localized to
MVBs (Böhlenius et al., 2010). However, this localization has been
disputed (Robinson et al., 2011). Plant-specific ARFB was detected
at the PM and proposed to be the plant equivalent of mam-
malian ARF6, although no functional assays have been performed

(Matheson et al., 2008). Moreover, there is no ortholog of the
mammalian ARF6 exchange factor EFA6 in Arabidopsis.

The Arabidopsis genome encodes eight ARF–GEFs that are all
150–220 kDa in size and can be grouped into two clades related to
human GBF1 and BIG, respectively (Anders and Jürgens, 2008).
Importantly, BFA can be used to conditionally inactivate specific
ARF–GEFs and thus determine the trafficking pathways these
ARF–GEFs regulate. Sensitivity or resistance to BFA critically
depends on specific amino acids in the catalytic SEC7 domain of
ARF–GEFs, which forms the basis for engineering fully functional
BFA-sensitive or BFA-resistant variants of ARF–GEFs (Geldner
et al., 2003; Richter et al., 2007). BFA-sensitive GNOM regu-
lates endosomal recycling of PIN1 and PIN3 proteins (Geldner
et al., 2003; Ding et al., 2011), but only partially the recycling of
PIN2 and PM-localized H+-ATPase (Geldner et al., 2003), which
suggests the existence of multiple recycling pathways. A similar
conclusion could be drawn from the observation that the small
compound endosidin 1 has differential effects on endocytic traf-
ficking of several proteins tested (Robert et al., 2008). Additionally,
GNOM functionally complements its closest homolog GNOM-
LIKE 1 (GNL1), which is BFA-insensitive and functions in COPI
complex recruitment at the Golgi stacks in retrograde traffic to
the ER (Richter et al., 2007). Recently, GNOM was proposed to
act in the internalization of FM4-64 at the PM (Naramoto et al.,
2010). The third GBF1-related ARF–GEF, GNOM-LIKE 2 (GNL2)
is required for pollen germination (Jia et al., 2009). GNL2 appears
to be functionally related to GNOM, being able to mediate polar
recycling of PIN1 when ectopically expressed in the seedling root
(Richter et al., 2011). Interestingly, GNOM and GNL2 promote
polar growth of root hairs and pollen tubes, respectively (Richter
et al., 2011). The BIG clade comprises five members. Not much is
known about BIG1 to BIG4. The catalytic SEC7 domain of BIG3
(originally designated BIG2) was demonstrated to catalyze the
nucleotide exchange on ARF1 in vitro in a BFA-insensitive manner
(Nielsen et al., 2006). BIG5 (also known as MIN7 or BEN1) was
shown to play a role in immunity, being degraded in response to
its interaction with the HopM1 effector of Pseudomonas (Nomura
et al., 2006). Additionally, BIG5 might act in the trafficking of
PIN1, PIN2, and PM-ATPase from the TGN/EE to the RE (Tanaka
et al., 2009).

The Arabidopsis genome encodes 15 ARF–GAPs that are
grouped into four different classes (Jürgens and Geldner, 2002).
Class 1 ARF–GAP VASICULAR NETWORK DEFECTIVE 3
(VAN3), also known as SCARFACE (SFC) and ARF–GAP domain
protein 3 (AGD3), locates at the TGN (Koizumi et al., 2005;
Sieburth et al., 2006). More recently, VAN3 was proposed to be
a putative ARF–GAP counteracting GNOM at the PM by regulat-
ing endocytosis of PIN1 (Naramoto et al., 2010). NEVERSHED
(NEV)/AGD5, an ortholog of yeast Age2, functions in the traffick-
ing of cargo molecules for floral organ abscission at the TGN/EE
and RAB-A1-positive endosomes (Liljegren et al., 2009). RPA and
AGD1 were shown to act in root hair growth (Song et al., 2006b;
Yoo et al., 2008). The rice ARF–GAP OsAGAP is involved in vesicle
traffic in the auxin-influx pathway (Zhuang et al., 2006). How-
ever, the ARF-substrate specificity of ARF–GAPs has been barely
analyzed. For example, ARF–GAPs AGD5, AGD7, and RPA were
shown to activate ARF1 in vitro (Song et al., 2006b; Min et al., 2007;
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Stefano et al., 2010). In addition, AGD5 was shown to interact also
with ARFB in vitro (Stefano et al., 2010). Interestingly,AGD7 inter-
acts with ARF1 in vivo, and overexpression of AGD7 inhibits γCOP
recruitment to the Golgi membrane and also disrupts anterograde
ER-Golgi traffic (Min et al., 2007).

MEMBRANE VESICLE COAT PROTEINS
Unlike mammals, Arabidopsis lacks the equivalent of caveolin coat
protein. Furthermore, stonin and Golgi-localizing γ-ear homol-
ogy, ARF-binding protein (GGA) are not found in Arabidopsis
(Boehm and Bonifacino, 2001). Thus, clathrin presumably plays
a major role in plant post-Golgi traffic by binding to AP com-
plexes. Non-coated secretory vesicles (SV) have been observed at
the Golgi/TGN by electron tomography and proposed to deliver
mainly secretory cargo proteins to the PM (Staehelin et al., 1990;
Kang et al., 2011). However, the functional significance of the
non-coated vesicles has not been demonstrated.

The Arabidopsis genome encodes three and two homologs of
clathrin light chain and clathrin heavy chain, respectively, which
have been detected at the TGN, the cell plate, and the PM (Otegui
et al., 2001; Dhonukshe et al., 2007; Mravec et al., 2011). Recently,
the clathrin light chain was also shown to be associated with
ARA6/RAB-F1-positive MVBs, but not with RHA1/RAB-F2a-
positive MVBs (Ito et al., 2011). To date, however, there is no report
on the participation of clathrin plaques in membrane invagination
at the MVBs in plants, although a thick layer of ESCRTs complexes
had been observed at the limiting surface of PVCs/MVBs (Tse
et al., 2006; Stierhof and El Kasmi, 2010). Thus, further analysis
is needed to define the role of clathrin at ARA6/RAB-F1-positive
MVBs.

Up to now, functional and pharmacological analyses have
demonstrated the involvement of clathrin in endocytosis in
Arabidopsis and tobacco (Dhonukshe et al., 2007; Zhao et al.,
2010; Kitakura et al., 2011). Tyrphostin A23 is broadly used to
explore clathrin-dependent trafficking pathways (Banbury et al.,
2003; Ortiz-Zapater et al., 2006; Dhonukshe et al., 2007). However,
tyrphostin A23 appears to have non-specific deleterious effects
in Arabidopsis and tobacco cells (I. Reichardt and G. Jürgens,
unpublished data; also reviewed in Robinson et al., 2008). Hence,
proper controls are absolutely necessary to distinguish specific
from non-specific interference when tyrphostin A23 is used to
study membrane traffic.

The clathrin hub has been used to interfere with clathrin-
mediated trafficking pathways in mammals and plants (Liu et al.,
1995; Dhonukshe et al., 2007). This fragment comprises the C-
terminal third of the clathrin heavy chain and is supposed to
compete with the endogenous clathrin heavy chain in interacting
with clathrin light chains (Liu et al., 1995). Fortunately, the find-
ing of clathrin-dependency in endocytosis that had been revealed
by the combinational approaches of the clathrin hub overex-
pression and tyrphostin A23 was consistent with the results of
a functional study of clathrin heavy chain mutants (Dhonukshe
et al., 2007; Robert et al., 2010; Kitakura et al., 2011). Based on
both clathrin hub overexpression and ultrastructural analysis of
PVC/MVB, the vacuolar trafficking pathway was proposed to be
clathrin-independent (Scheuring et al., 2011). In our knowledge,
however, it is not fully explained how the clathrin hub interferes
with CCV formation at the molecular level in plants. For example,

do all three clathrin light chain proteins have the same affinities for
the clathrin hub? Thus, an in-depth functional study of clathrin is
needed to elucidate fully the role of clathrin in plant membrane
traffic.

Heterotetrameric AP complexes recognize a tyrosine- or
dileucine-based sorting motif of cargo molecules, which in turn
recruit cytosolic clathrin to the membrane for CCV formation.
Although the sequence similarity of adaptins with their mam-
malian counterparts reveals four different types of AP complexes
and five homologs of the μ subunit (named as μA–μD instead
of μ1–μ4) in Arabidopsis (Boehm and Bonifacino, 2001), they
have been hardly studied in plants. In addition, the existence of an
additional AP complex (AP-5) locating at the LE has been recently
demonstrated in mammalian cells; their homologs (μ5, β5, and ζ)
were found in Arabidopsis and Physcomitrella patens by sequence
similarity, even though their corresponding sigma subunit (σ5)
was not found yet (Hirst et al., 2011).

The AP-3 complex consisting of δ/β3/μD/σ3 seems to be
involved in vacuolar biogenesis (Feraru et al., 2010; Zwiewka et al.,
2011). Interestingly, elimination of the AP-3 complex appears to
have no obvious phenotypic effect. However, the knockout alleles
of AP-3 subunits β and δ suppress the zigzag (zig ) phenotype of
plants lacking the vacuolar trafficking Qb-SNARE VTI11, and zig
suppressor 4 (zip4) was identified as a loss-of-function allele of
μD adaptin (Niihama et al., 2009). μA was proposed to be the
putative medium subunit of the AP-1 complex as inferred from
the localization at the trans-Golgi in Arabidopsis and from the
in vitro interaction with the tyrosine sorting sequence of VSR-PS1
or TGN38 (Happel et al., 2004). However, there is no functional
in vivo evidence supporting this notion. The ENTH-domain con-
taining monomeric adaptor, Epsin1 is functionally involved in
vacuolar trafficking, but not in the secretory pathway (Song et al.,
2006a). Epsin R2 interacts in vitro with the AP-3 complex and
VTI12, giving a hint at its involvement in PSV traffic (Lee et al.,
2007). The ANTH-domain-bearing monomeric adaptor AP180
interacts with AtαC-adaptin, one of putative large subunits of AP-2
(Barth and Holstein, 2004).

VESICLE BUDDING BY DYNAMIN-RELATED GTPases
Dynamin-related proteins (DRPs) are GTPases that constrict or
pinch off membranes and thus function in vesicle budding from
diverse endomembrane compartments such as the PM, cell plate,
and Golgi/TGN and also mediate fission of mitochondria and
plastids (reviewed in Praefcke and McMahon, 2004; reviewed in
Pucadyil and Schmid, 2009). DRP2B/ADL6 is involved in the
vacuolar trafficking pathway (Jin et al., 2001; Lam et al., 2002).
Moreover, DRP2B/ADL6 and DRP1A/ADL1 participate in CCV
formation at the PM and cell plate (Fujimoto et al., 2010; Mravec
et al., 2011). DRP2A and DRP2B are functionally redundant, local-
ize to the tip of root hairs where endocytosis occurs and play an
essential role in gametophyte development (Taylor, 2011). Rice
BRITTLE CULM 3/OsDRP2B mediates vesicle trafficking involved
in cellulose biosynthesis (Li et al., 2010).

VESICLE TETHERING BY RAB GTPases AND TETHERING FACTORS
Tethering of transport vesicles to their target membrane requires
RAB GTPases and their effector proteins whereas the subsequent
fusion of the membranes is mediated by the SNARE fusion
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machinery and its regulators. The Arabidopsis genome encodes
57 RAB GTPases representing eight clades A–H (Rutherford and
Moore, 2002).

Arabidopsis RAB-E1d, which is related to mammalian Rab8 and
yeast Ypt2, locates at the Golgi, regulates the secretory pathway, but
not the vacuolar pathway, in the tobacco leaf epidermis, and inter-
acts with PM-residing PIP5K2 (Camacho et al., 2009; Bottanelli
et al., 2011a).

RAB-A2 and RAB-A3 localize at the VHA-a1-positive TGN and
also at the growing margin of the cell plate during cytokinesis
(Chow et al., 2008). In contrast, tobacco NtRAB11b labels Golgi
stacks in the apical clear zone of growing pollen tubes; GDP-locked
NtRAB11b inhibits traffic of exocytic and recycling vesicles to the
pollen tube tip (de Graaf et al., 2005). RAB-A4b affecting both
root hair and pollen tube growths preferentially labels the TGN
and cell-wall materials-containing SV near the PM in growing tips
(Preuss et al., 2004, 2006; Szumlanski and Nielsen, 2009; Kang
et al., 2011). These findings suggest a role for RAB-A class pro-
teins, which are related to mammalian recycling Rab11 and yeast
Ypt3, in exocytosis and recycling pathways. This idea might be also
supported by the observation that null mutations eliminating sub-
units of TRAPPII, which is a putative GEF for RAB-A1c, inhibit
the secretory pathway, but not vacuolar traffic (Qi et al., 2011).

There are three RAB-F class proteins in Arabidopsis.
Whereas RHA1/RAB-F2a and ARA7/RAB-F2b colocalize at the
PVCs/MVBs (Lee et al., 2004; Reichardt et al., 2007), plant-specific
ARA6/RAB-F1 locates in differential populations of the endo-
somes, although their localizations overlap to some extent (Ueda
et al., 2001, 2004). Additionally, ARA6/RAB-F1 is more resis-
tant to BFA than is ARA7/RAB-F2b (Ueda et al., 2004). While
the GDP-locked mutant of RAB-F2 proteins inhibits vacuolar
targeting of AALP in Arabidopsis transient assays, the homolo-
gous mutation of plant-specific ARA6/RAB-F1 does not (Ueda
et al., 2001; Sohn et al., 2003), suggesting that only RAB-F2
proteins act in vacuolar traffic. However, overexpression of the
nucleotide-free ARA6/RAB-F1 was recently shown to cause mis-
targeting of vacuolar soluble cargo proteins to the apoplast in
the tobacco epidermis (Bottanelli et al., 2011a). Similarly, a puta-
tive ARA6/RAB-F1 ortholog, m-Rabmc in Mesembryanthemum,
was also proposed to be involved in vacuolar targeting at the
PVCs/MVBs (Bolte et al., 2004). However, the loss-of-function
mutant of ARA6/RAB-F1 did not disturb substantially the vacuo-
lar transport of sporamin; moreover, whereas RAB-F2 proteins are
genetically linked to the vacuolar Qa-SNARE VAM3/SYP22/SGR,
ARA6/RAB-F1 is not (Ebine et al., 2011). In fact, the mutant phe-
notype of VAM3/SYP22/SGR was almost completely suppressed
by the loss-of-function mutation of ARA6/RAB-F1 (Ebine et al.,
2011), indicating the counteracting role of ARA6/RAB-F1 in
vacuolar trafficking mediated by VAM3/SYP22/SGR. Therefore,
ARA6/RAB-F1 is unlikely involved in vacuolar traffic in Arabidop-
sis, in contrast to RAB-F2. Instead, ARA6/RAB-F1 was shown to
modulate PEN1/SYP121–VAMP727-driven vesicle fusion at the
PM, which was elicited by environmental stimuli such as salin-
ity (Ebine et al., 2011). Thus, there are likely multiple types of
MVBs with distinct functions, although it is entirely unclear how
they might originate. These three RAB-F class proteins are acti-
vated by the same RAB-GEF, VPS9a, in vitro (Goh et al., 2007).

The in vivo situation might be more complex since the vps9a
mutant phenotype is suppressed by the overexpression of the
GTP-locked form of ARA7/RAB-F2b, but not of ARA6/RAB-F1
(Goh et al., 2007; Ebine et al., 2011). In the tobacco epidermis,
however, overexpression of VPS9a titrated out the negative effect
of the nucleotide-free ARA6/RAB-F1, but not of RHA1/RAB-
F2a (Bottanelli et al., 2011b). Thus, further analysis is required
to understand precisely the biological functions of these RAB-F
GTPases and their regulator, VPS9a.

RAB-H related to mammalian Rab6 was demonstrated to res-
cue the yeast ypt6 mutant, revealing its potential role in the retro-
grade trafficking from endosomes to the Golgi stacks (Bednarek
et al., 1994; Johansen et al., 2009), but this was not clearly
addressed.

Rice Rab7 belonging to the RAB-G subclass localizes at the
tonoplast in Arabidopsis transient assays, consistent with its pro-
posed involvement in vacuolar fusion (Nahm et al., 2003). By anal-
ogy, the overexpression of the nucleotide-free Arabidopsis Rab7
inhibits vacuolar targeting in tobacco epidermis (Bottanelli et al.,
2011a). Rice prenylated Rab acceptor, OsPRA1 was shown to affect
the fusion of PVCs/MVBs with the vacuole by interacting with
both VAM3/SYP22/SGR and OsRAB7 (Heo et al., 2010).

MEMBRANE FUSION BY SNARE COMPLEXES AND REGULATORY SM
PROTEINS
Membrane-anchored SNARE proteins form complexes that medi-
ate membrane fusion, e.g., between a transport vesicle and its
target membrane. Based on the analysis of yeast and mammalian
SNARE complexes, each SNARE complex comprises a helical
bundles of four SNARE domains (R, Qa, Qb, and Qc) that are
contributed by one R-SNARE protein on the vesicle and two
or three Q-SNARE (Qa, Qbc or Qa, Qb, and Qc) proteins on
the target membrane (Fasshauer et al., 1998). The Arabidopsis
genome encodes 54 SNARE proteins that grouped into 18 Qa-,
11 Qb-, 8 Qc-, and 14 R-SNAREs (Uemura et al., 2004). To
date, however, only a few SNARE complexes have been character-
ized. SNARE complexes comprising SYP4/TLG2 (Qa = syntaxin),
VTI1 (Qb), SYP61/OSM1 (Qc), and an unknown VAMP (R-
SNARE) protein mediate the fusion of PVC/MVB-derived vesicles
at the TGN (Sanderfoot et al., 2001; Uemura et al., 2004). The
SYP2 syntaxin family includes two members, PEP12/SYP21 and
VAM3/SYP22/SGR, that differ in subcellular location, PVC/MVB
vs. vacuole, but nonetheless are functionally redundant in vacuo-
lar trafficking (Foresti et al., 2006; Tyrrell et al., 2007; Shirakawa
et al., 2010; Uemura et al., 2010). However, RAB-F2 GTPases are
genetically linked to VAM3/SYP22/SGR, but not to PEP12/SYP21
(Ebine et al., 2011). Furthermore, the SNARE complex compris-
ing VAM3/SYP22/SGR (Qa), ZIG/VTI11 (Qb), SYP51 (Qc), and
VAMP727 (R-SNARE) protein is involved in vacuolar traffic, seed
maturation, vacuole biogenesis, and also in shoot gravitropism
(Sanderfoot et al., 1999; Yano et al., 2003). ZIG/VTI11 can substi-
tute forVTI12, which is related to PSV trafficking, but not vice versa
(Sanmartín et al., 2007).

Syntaxins (Qa-SNARE proteins) of the SYP1 family are prefer-
entially located at the PM except for KNOLLE/SYP111, which is
specifically targeted to the plane of cell division (Lauber et al., 1997;
Uemura et al., 2004; Enami et al., 2009; Reichardt et al., 2011).
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Interestingly, the closest KNOLLE homolog, SYP112, behaves like
KNOLLE when expressed from the KNOLLE promoter, although
SYP112 seems to have no function of its own (Müller et al., 2003).
Other SYP1 family members such as SYP124, SYP125, and SYP131
are exclusively expressed in pollen and SYP123 is preferentially
expressed in root hair cells (Enami et al., 2009; Silva et al., 2010).
Overexpression of cytosolic fragments lacking the hydrophobic tail
anchor of the PM-localized syntaxins PEN1/SYP121 and SYP122
and Qc-SNARE SYP71, which localizes at both the PM and the ER,
were shown to suppress secretion of secGFP (Geelen et al., 2002;
Tyrrell et al., 2007; Suwastika et al., 2008), but not of the chimeric
protein secGFP-PMEI1 (De Caroli et al., 2011). Thus these find-
ings suggest that there might be differentially regulated fusion
mechanisms at the PM. It should be noted that the dominant-
negative effect of the cytosolic fragment of PEN1/SYP121 is caused
by titrating out SNARE interaction partners such as SNAP33,
which possibly also form complexes with other SYP1 syntaxins
(see below). PM-resident PEN1/SYP121 (Qa) confers non-host
resistance to Arabidopsis against powdery mildew, forming SNARE
complexes with SNAP33 (Qbc) and VAMP721 or VAMP722 (R-
SNAREs; Collins et al., 2003; Assaad et al., 2004; Kwon et al.,
2008). PEN1/SYP121 and its close homolog SYP122 have some
overlapping function in plant growth but SYP122 cannot substi-
tute for PEN1/SYP121 in innate immunity (Assaad et al., 2004).
PEN1/SYP121 interacts also with a K+-channel in stomatal clo-
sure (Grefen et al., 2010; Eisenach et al., 2011) and its ABA-related
tobacco ortholog, NtSyr1/NtSYP121 is involved in vesicle traf-
ficking to the PM (Geelen et al., 2002). SYP132 is involved in
nodule symbiosis in Medicago and plant resistance against bacteria
in tobacco (Catalano et al., 2007; Kalde et al., 2007). SYP132 was
recently shown also to suppress the knolle mutant phenotype when
expressed from the KNOLLE promoter (Reichardt et al., 2011),
which is consistent with the accumulation of SYP132 at the cell
plate in addition to its ubiquitous occurrence at the PM (Enami
et al., 2009).

One of three SNAP25-orthologs, SNAP33 (Qbc-SNARE)
promiscuously interacts with KNOLLE/SYP111 and PEN1/SYP121
(Heese et al., 2001; Collins et al., 2003; Kwon et al., 2008). Although
snap33 mutant seedlings display some incomplete cell walls, they
only die later because of necrotic lesions (Heese et al., 2001). Inter-
estingly, the plant-specific Qb-SNARE, NPSN11 also interacts with
KNOLLE/SYP111 (Zheng et al., 2002). However, the composition
of KNOLLE-containing SNARE complexes is still unknown. Three
out of 14 VAMPs (R-SNAREs) in Arabidopsis have been function-
ally studied; VAMP721 and VAMP722 are functionally redundant
R-SNAREs of PEN1/SYP121 SNARE complexes and are essential
for plant development (Kwon et al., 2008). VAMP727 locating at
the subpopulation of PVCs/MVBs in the vicinity of the tonoplast
plays a role in the transport of storage protein and in the biogen-
esis of the PSV (Ebine et al., 2008). Additionally, VAMP727 also

interacts with the Qa-SNARE PEN1/SYP121 at the PM, possibly
stimulated by ARA6/RAB-F1 (Ebine et al., 2011).

Sec1/Munc18 (SM) family proteins confer specificity to mem-
brane fusion by embracing monomeric syntaxins or assembled
SNARE complexes (reviewed in Südhof and Rothman, 2009).
The Arabidopsis genome has six members of SM proteins: SLY1,
VPS45, VPS33, and three Sec1p homologs. VPS45 interacts with
the SNARE complex of SYP41/SYP61/VTI12 at the TGN/EE and
is involved in vacuolar trafficking (Zouhar et al., 2009). VPS33 is
located at the tonoplast and PVCs/MVBs, and was proposed to
be a member of the AtC–VPS complex that also comprises VCL1
and VPS11 (Rojo et al., 2003). Thus, VPS33 might be involved
in vacuolar biogenesis and homotypic membrane fusion. KEULE
is the only member of Sec1 homologs that has been function-
ally characterized in Arabidopsis. KEULE is required for cell-plate
formation, interacting with KNOLLE/SYP111 genetically and bio-
chemically (Waizenegger et al., 2000; Assaad et al., 2001). Addi-
tionally, KEULE might also act in root hair development, but
independently of KNOLLE/SYP111, as suggested by abnormal
root hair development in keule mutant seedlings (Assaad et al.,
2001).

PERSPECTIVES
Although substantial progress in the analysis of plant membrane
traffic has been achieved in recent years, there are still a number
of serious open questions that we need to address in order to fully
comprehend regulatory mechanisms underlying post-Golgi traf-
ficking. First of all, we do not know how post-Golgi compartments
originate and how they are established and maintained. More
specifically, the organization of endosomes needs to be thoroughly
analyzed ultrastructurally to clarify whether the diverse functions
attributed to “endosomes” are different aspects of the same struc-
ture or rather features of specific and distinct compartments. This
might also be important for the distinguishing between models
for the origin of specific compartments, e.g., MVB maturation.
It is also obvious that we need additional specific, both soluble
and membrane-bound, cargo markers for each traffic destination
for live imaging of trafficking pathways. All this should be com-
bined with the genetic tools available in Arabidopsis, which have
not been exploited fully and systematically to analyze regulatory
mechanisms in membrane traffic. Furthermore, the crucial role
of membrane lipids in post-Golgi traffic as well as raft-mediated
endocytosis (Men et al., 2008; Kale et al., 2010; Markham et al.,
2011) needs to be addressed in more detail.
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