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Here we present the first study, in which a large number of different vascular epiphyte
species were measured for their photosynthetic performance in the natural environment
of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte
species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abun-
dant species was analyzed intensely over several months. Moreover, the light environment
was characterized with newly developed light sensors that recorded continuously and with
high temporal resolution light intensity next to the epiphytes. Light intensity was highly
fluctuating and showed great site specific spatio-temporal variations of photosynthetic
photon flux. Using a novel computer routine we quantified the integrated light intensity
the epiphytes were exposed to in a 3 h window and we related this light intensity to
measurements of the actual photosynthetic status. It could be shown that the photosyn-
thetic apparatus of the epiphytes was well adapted to the quickly changing light conditions.
Some of the epiphytes were chronically photoinhibited at predawn and significant acute
photoinhibition, expressed by a reduction of potential quantum efficiency (F v/F m)30′ , was
observed during the day. By correlating (F v/F m)30′ to the integrated and weighted light
intensity perceived during the previous 3 h, it became clear that acute photoinhibition was
related to light environment prior to the measurements. Additionally photosynthetic per-
formance was not determined by rain events, with the exception of an Aechmea species.
This holds true for all the other 15 species of this study and we thus conclude that actual
photosynthesis of these tropical epiphytes was determined by the specific and fluctuat-
ing light conditions of their microhabitat and cannot be simply attributed to light-adapted
ancestors.

Keywords: vascular epiphytes, chlorophyll a fluorescence, photosynthesis, light reaction, photoinhibition, CAM,
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INTRODUCTION
Tropical epiphytic plants constitute a functional group of high
diversity and about 10% of the terrestrial plant species can grow
epiphytically (Kress, 1989). The vast majority of vascular epiphytes
occur in the tropics, with a higher abundance in montane rain-
forests and in cooler upper montane and cloud forests. However,

Abbreviations: CAM, crassulacean acid metabolism; ETR, apparent rate of photo-
synthetic electron transport of PS II; F, fluorescence yield of the light-adapted leaf;
F 0, fluorescence yield of the dark adapted leaf; F m, maximum fluorescence yield of
the dark adapted leaf; F m

′, maximum fluorescence yield of the light-adapted leaf;
ΔF, variable fluorescence yield of the light-adapted leaf (ΔF = F m

′ − F); ΔF /F m
′,

effective quantum yield of PS II; F v, variable fluorescence yield of the dark adapted
leaf (F v = F m − F 0); F v/F m, potential quantum yield of PS II; (F v/F m)30′ , poten-
tial quantum yield of PS II measured after 30 min of dark adaptation using the
dark-leaf-clips; PFD, photosynthetically active photon flux density (λ = 380–
710 nm); PS, photosystem.

also in the lowland rainforest of the Amazon epiphytes can reach
an astonishing diversity, such as described in the case study of
Freiberg (1999), where 74 species of epiphytes were found on a
single host tree.

Epiphytes have no physiological contact with their phorophyte
and it was hypothesized that epiphytism was driven by the compe-
tition for light: plants escape the dark forest floors by climbing or
becoming an epiphyte. This theory was first developed from obser-
vations of epiphytic bromeliads in Central America by Schimper
(1888). A detailed study of the distribution of a large number of
bromeliad species in Trinidad performed by Pittendrigh (1948),
led to the distinction of an “exposure group,” a “sun group,” and
a “shade-tolerant group,” and suggested that the epiphytic forms
emerged from terrestrial ancestors preadapted to open, drier habi-
tats. Subsequently this was supported by ecophysiological studies
(Griffiths and Smith, 1983; Smith et al., 1986; Smith, 1989).
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Conversely, studies of the distribution of epiphytic orchids in
a West African rainforest have shown that they are not found in
the very outer layers of the canopy, but rather dwell within the
crown of trees, where light intensity is reduced (Johansson, 1975).
It was also argued that shade- and sun-adapted physiological types
should be reflected in distinctive light response characteristics. A
comparison of light compensation points, light saturation of pho-
tosynthesis and the rate of photosynthesis at light saturation for a
variety of epiphytes gave variable results, with some epiphytic ferns
and orchids appearing as typical shade plants, while other ferns,
orchids, and Kalanchoe uniflora appeared to be sun types (Lüttge
et al., 1986). Most studies have considered light use as the main
driving factor for epiphytism, despite the additional constraints
of limited and highly fluctuating water and nutrient availability
that also characterizes the habitat of tree canopies (Benzing, 1990,
2000; Lüttge, 2008).

Additionally, to the total availability of light, one should
also bear in mind that light intensity within a canopy is sub-
ject to extreme spatio-temporal variations. Photosynthesis was
shown to be differently affected by fluctuating as compared to
constant conditions (Pearcy, 1990; Holtum and Winter, 2003;
Rascher and Nedbal, 2006; Lüttge, 2008, chap. 4.2.1). Fluctu-
ating light conditions may be extreme in tropical tree crowns
as high light intensities quickly change to low light conditions
because of fast moving clouds, diurnally changing solar angle
and wind moving canopy (Doley et al., 1987; Lüttge, 2008,
Figure 3.28).

Thus, the aim of this study was to (1) develop a novel approach
to quantify the fluctuating light environment in natural canopies
and to relate this to the momentary functional status of pho-
tosynthesis, to (2) use this approach and quantify light use and
photosynthesis of a large number of epiphytes in their natural,
fluctuating environment, and (3) to describe the diversity of epi-
phytic photosynthesis and its dependency on two main driving
environmental factors, namely light and water.

MATERIALS AND METHODS
STUDY SITE AND PLANTS
All measurements were performed from May to September
1997 within Les Nouragues national park (Reserve Naturelle des
Nouragues) in the centre of French Guyana close to Arattai field
station, located at the junction of the Arattai and Apporague river
(3˚95′24′′ N, 52˚35′27′′ W, 45 m asl). At the site mean air tempera-
ture (1 m above the forest floor) is 24.9˚C and mean annual rainfall
2920 mm, with rainfalls occurring year round and September to
October being the driest months (Sarthou, 1992; van der Meer,
1995; Rascher et al., 2003; Lakatos et al., 2006).

A Virola michelii Heckel (Myristicaceae) tree, which had a dense
cover of epiphytes, was chosen for this survey (Figures 1A,B). The
tree was located 120 m from the Arattai river about 10 m above the
water level. The tree was 52 m high and its major branches started
at 33 m above ground, maximum crown diameter was 20 m (at a
height of 37 m). The tree was climbed using rope assisted climbing
techniques. For a detailed description of this tree and the envi-
ronmental conditions inside the canopy see Freiberg (2001). 72
species of holoepiphytes and two species of hemiepiphytes were
found on this tree (Freiberg, 1999) and 16 species, which were

FIGURE 1 | Habitat on the upper branches of the host tree Virola

michelii Heckel. The pictures were taken between 38 and 41 m above
ground. (A) Overview picture of a representative branch of V. michelii in the
upper canopy (height 41 m). The branches are densely covered by vascular
epiphytes that accumulated a substrate layer on the branches. The
dominating species is Maxillaria alba (Hook. f.) Lindl. (B) Close-up view of
the same branch showing several orchid species growing next to each
other. Additionally, the spatial pattern of different light intensity becomes
obvious, those light fleckles were highly fluctuating because of moving
clouds and leaves. (C) Custom made light sensor (metal capsule), that was
placed in close proximity to the plants for continuous recording of light
intensity. Selected species, which were included in this study, are also
visible in this panel: Clusia grandiflora Engl. (a), Maxillaria alba (Hook. f.)
Lindl. (b), and Tillandsia anceps Lodd. (c).

accessible by climbing techniques, were chosen for this study. From
each species at least two, generally more than three individuals
were marked, and the light environment and photosynthesis were
characterized on more than 30 days during the measuring period.
For a list of species and their distribution within the canopy see
Table 1.

LIGHT MEASUREMENTS
Intensity of photosynthetically active radiation (PFD, λ = 380–
710 nm) was measured using two methods. (1) The micro-
quantum sensor of the Fluorescence Yield Analyzer (Mini-PAM)
was used for instantaneous measurements of prevailing PFD in
parallel to the measurements of chlorophyll fluorescence. (2)
Miniaturized light sensors (metal capsules in Figure 1C) were
specially developed to characterize the light environment over a
longer time period. These sensors were placed directly next to the
leaves and recorded time series of light intensity over 72 h. This
allowed us to relate photosynthetic performance to the history of
light that was received before.

These custom made light sensors are based on a gallium-
arsenide photodiode (Pontailler, 1990), whose readings were
stored every 2 min on a battery operated, miniaturized data logger
(Tinytalk TK-070 2, Gemini Data Loggers Ltd., Chichester, UK).
The light sensor and the data logger were sealed in a waterproof
metal cylinder and data were collected for at least 24 h prior to the
fluorescence measurements. The sensors were calibrated against a
LI-COR quantum sensor (LI-190, LI-COR, Lincoln, NE, USA) and
showed linear characteristic in the range of 0–900 μmol m−2 s−1.
At higher PFD, reading of the sensors curved and reached satura-
tion at about 1400 μmol m−2 s−1. We thus will use the numerical
values at high PFD with care. However, local PFD within the
canopy only rarely exceeded 1400 μmol m−2 s−1.

Frontiers in Plant Science | Functional Plant Ecology January 2012 | Volume 2 | Article 117 | 2

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Functional_Plant_Ecology
http://www.frontiersin.org/Functional_Plant_Ecology/archive


Rascher et al. Photosynthesis of tropical epiphytes

Table 1 | Epiphyte species stable isotope values, that were recorded over the 3 months measuring period within the canopy of the Virola tree.

Plant species Canopy position δ13C Δ

Virola michelii Heckel (Myristicaceae) Host tree ./. −31.75 (5) 24.53

Aechmea melinonii Hook. (Bromeliaceae) Tank bromelia (large) Inner −15.01 (4) ./.

Anthurium trinerve Miq. (Araceae) Creeping, <50 cm Inner −28.52 (1) 21.12

Clusia grandiflora Engl. (Clusiaceae) Woody shrub (>2 m tall) Inner–middle −27.92 (1) 20.49

Sphyrospermum buxifolium Poepp. and Endl. (Ericaceae) Shrub (<1 m) Inner–middle −31.58 (6) 24.35

Hillia illustris (Vell.) K. Schum. (Rubiaceae) Shrub Middle −28.98 (1) 21.61

Lepanthes helicocephala Rchb.f. (Orchidaceae) Small epiphyte Inner −27.93 (2) 20.50

Ludovia lancifolia Brongn. (Cyclanthaceae) Exclusively at main trunk Inner −29.98 (1) 22.66

Maxillaria alba (Hook.f.) Lindl. (Orchidaceae) High abundance on vertical branches Inner–middle −29.52 (9) 22.17

Maxillaria uncata Lindl. (Orchidaceae) Most abundant species Middle −27.72 (1) 20.28

Maxillaria violaceo-punctata Rchb.f. (Orchidaceae) Inner −28.78 (1) 21.40

Norantea guianensis (Marcgraviaceae) n.a. −27.29 (1) 19.83

Peperomia sp. (Piperaceae) Inner −29.53 (4) 22.19

Scaphyglottis violacea Lindl. (Orchidaceae) Middle −29.85 (1) 22.52

Stelis argentata Lindl. (Orchidaceae) Inner–middle −29.10 (1) 21.73

Tillandsia anceps Lodd. (Bromeliaceae) Small plant Inner −28.47 (1) 21.07

Vriesea amazonica (Baker) Mez (Bromeliaceae) Inner–middle −28.96 (1) 21.59

The canopy position, where this species dominantly was found is determined according to Freiberg (1999). Values for δ13C and Δ are given in ‰.

QUANTIFICATION OF VARIATIONS IN LIGHT INTENSITY WITHIN THE
CANOPY
Light intensity (PFD), which was measured at various spots within
the canopy of the Virola michelii tree, fluctuated greatly in time and
space (Figure 2). Covering foliage moved by wind and fast chang-
ing clouds, which are characteristic for the wet tropics, induced
rapidly changing light flecks of varied duration. The crown of the
Virola michelii tree follows classical tree architecture with horizon-
tal branches minimizing shadowing as already described by Halle
et al. (1978). Nevertheless, local and small scale light environment
that determines photosynthesis of individual leaves and branches
cannot be determined analytically. Thus, it was impossible to pre-
dict light distribution within the canopy and, for example, spots
which were located higher within the canopy (Figure 2C) could
be exposed to lower PFD than a branch, which was just below
(Figure 2A). Generally, no clear trends of PFD with the location
in the canopy (height, distance from trunk) could be derived; aver-
age PFD was only lower regularly during early afternoon, because
of the dense cloud cover and rainfall often occurring during this
time of the day.

In order to characterize the light environment to which indi-
vidual plants were exposed, we developed a dynamic weighting
routine (Figure 3). An autonomous light sensor was placed directly
next to the leaf of an epiphyte to be measured (Figure 1C) and PFD
was recorded continuously for at least 24 h prior to PAM mea-
surements (see Figure 3A for an exemplary day course). During
the following days, photosynthesis of this epiphyte was character-
ized and PFD values prior to these photosynthesis measurements
were integrated. PFD was assumed to determine the state of the
photosynthetic apparatus more strongly, if it was absorbed just
before the photosynthesis measurement. Thus, ambient PFD was
weighted with an exponential function, where light intensities that
were prevailing before the PAM measurements were multiplied

with a higher weighting factor, the longer the time span between
insolation and PAM measurement, the lower the weighting factor
(Eq. 4; Figure 3B). Weighted PFD were then integrated to derive
the “effective” integrate PFD prior to the measurement (PFDexp;
Figure 3C). The integrated PFD over the whole day (insolation)
is shown for comparison (Figure 3C, insert). We regard PFDexp

as a good parameter to describe the light environment the plant
was exposed to and assume that this approach is especially use-
ful to quantify light perception within a fluctuating environment.
PFDexp was calculated as:

PFDexp (t0) =
6∫

0

PFD (t0 − t ) 2− t
τ dt (1)

where t 0 is the time of the measurement, PFD(t ) is the light
intensity at a given time, τ is the half-time of the exponential
weighting function, and t describes the time (in hours) before the
measurement of photosynthesis.

We are aware of the fact that the factor τ in Equation 4, which
determines the half-time in which perceived PFD affects the photo-
synthetic apparatus, may be critical. We thus tested the correlation
of photosynthetic parameters with PFDexp under changing τ. The
correlations were stable as long as τ was between 0.2 and 2 h, we
thus used 0.5 h as a fixed value for the following analyses. We also
tested a linear decay function, which yielded similar results to the
exponential function with the same half-time; however, we con-
sidered that an exponential decay function would reflect underly-
ing physiological mechanisms (such as repair mechanisms) more
accurately.

RAIN MEASUREMENTS
Rainfall was recorded continuously at Arattai field station, which
was about 500 m from the study site. Rainfall was integrated
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FIGURE 2 | Light intensity (PFD) recorded on three subsequent days

with three parallel sensors, which were located on the same side of

the trunk within the canopy. (A) Light sensor located on vertical branch,
about 40 cm off the main trunk. (B) Light sensor located on the same
vertical branch, but 2 m off the main trunk. (C) Light sensor located 3 m just
above sensor A, on vertical branch, about 40 cm off the main trunk.

over time periods of 6 h and these integrated values were used
for correlation analyses. We exemplary also tested longer and
shorter time intervals and found that results were not greatly
affected as long as half-time remained in the range of a few
hours.

CARBON ISOTOPE ANALYSIS
Carbon isotope ratios (δ13C) were determined mass-
spectrometrically as relative deviations to Pee Dee belemnite stan-
dard [δ13C (‰)]. From each plant one to nine leaves were col-
lected, dried and finely powdered. δ13C values indicate the general
mode of photosynthesis [C3, C4, or crassulacean acid metabolism
(CAM)], and for the leaves of C3 plants, can be used to calculate the
relation between intercellular and extracellular CO2 partial pres-
sures (c i/ca). This ratio is related to the ratio between assimilation
rate and stomatal conductance (A/gs) and, thus, more negative
δ13C values maybe due to either higher conductance or lower CO2

FIGURE 3 | Example of light intensity (PFD) during the day course and

the way of calculating an exponentially weighted integral over a 3 h

time window. (A) Momentary (ambient) PFD measured by a light sensor in
2 min intervals. The sensor was located just above a dense stand of
Maxillaria alba, 34 m above the ground in the canopy. (B) Exponential
weighting function, with a half-time (τ) of 30 min. Light intensities
measured before are multiplied (weighted) with this factor. (C)

Exponentially weighted and integrated light intensity (PFDexp) over a 3 h
window, determining the “recently” perceived photon flux. Insert:
integrated light intensity over the same day course for comparison.

fixation rates. The δ13C of bulk leaf material reflects the pho-
tosynthetic conditions during leaf formation (i.e., the structural
component, mainly cellulose) and recent photosynthetic activity
(i.e., soluble sugars; Eq. 2). Carbon isotope discrimination, was
calculated as

Δ = δ13Ca − δ13Cp

1000 + δ13Cp
× 103 [0/00] (2)

where δ13C
p is the value measured for the plant material and δ13C

a

is the value of the CO2 of the ambient atmosphere, for which we
used the average value of −8.00‰ as generally applied when δ13C

a

was not measured.
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CHLOROPHYLL FLUORESCENCE MEASUREMENTS
Chlorophyll a fluorescence was measured using the miniaturized
pulse-amplitude modulated photosynthesis yield analyzer (Mini-
PAM) of H. Walz (Effeltrich, Germany) with a leaf clip holder
described by Bilger et al. (1995). Prior to and just after each
measurement, the fluorescence standard provided by H. Walz
was measured. The readings of the standard were then used to
normalize the absolute fluorescence values of leaves. By this pro-
cedure we could correct for different settings of the instrument,
variations of the sensitivity and unavoidable differences in the
distance of the fiber optics to the leaf surface. After this correc-
tion also absolute fluorescence values can be compared to each
other. Spot measurements of light intensity (λ = 380–710 nm)
were taken inside the measuring field by the micro-quantum sen-
sor of the Mini-PAM and calibrated against a LI-COR quantum
sensor (LI-190, see above). The effective quantum yield of PS II
(ΔF /F m

′) was calculated as (F m
′ − F)/F m

′, where F is fluores-
cence yield of the light-adapted sample and F m

′ is the maximum
light-adapted fluorescence yield when a saturating light pulse
of 800 ms duration (intensity ≈4000 μmol m−2 s−1) is superim-
posed on the prevailing environmental light levels (Genty et al.,
1989; Schreiber and Bilger, 1993). During these measurements
special care was taken not to change the ambient conditions,
e.g., the angle of the leaf or shading. Predawn values of opti-
mal quantum yield of PS II (F v/F m) were performed twice
before sunrise between 4:00 and 5:00. F v/F m was calculated as
F v/F m = (F m − F 0)/F m, where F 0 is ground fluorescence yield of
the dark adapted leaf and F m maximum fluorescence of the dark
adapted leaf when a saturating light pulse, as described above, is
superimposed. Additionally, potential quantum yield was mea-
sured at different times of the day, after leaves were darkened
for 20–30 min using the darkening clips of H. Walz. With this
treatment acute photoinhibition during the day course can be
detected. To avoid confusion these measurements will be denoted
(F v/F m)30′ , where the subscript number indicates the duration of
darkening. (F v/F m)30′ values may be lower than predawn val-
ues, indicating an inhibited photosynthetic apparatus; we will
refer to this as “dynamic photoinhibition” as maximum values
may still recover after a night–long dark relaxation. Predawn
F v/F m values, which were below the theoretical and empiri-
cal optimum of 0.83, indicate a non-repairable damage to the
photosynthetic apparatus, and we will refer to this as “chronic
photoinhibition.”

Non-photochemical processes (NPQ) were calculated as
(F m − F m

′)/F m
′ (Bilger and Björkman, 1990). F m values were

taken as average readings for each individual from predawn mea-
surements. The apparent rate of photosynthetic electron trans-
port of PS II (ETR) was obtained as ETR = ΔF /F m

′ · PFD
· 0.5 · 0.84, where the factor 0.5 assumes equal excitation of
both PS II and PS I. The factor of 0.84 takes into account
that a fraction of incident light is not absorbed by photosys-
tems. For the plants used in this study no specific reflection
factors are known. Due to the fact that no specific anatomi-
cal, light reflecting structures, such as hairs, were present, we
assumed an average reflection on the leaf surface and thus
used the empirical mean absorption factor of 0.84 (Ehleringer,
1981).

Light within the canopy changes during the course of the
day and shows patches of varying intensity. Thus, leaves are
exposed to rapid changes in PFD of various duration and intensity,
which cannot be determined analytically. Momentary efficiency
of light-reactions of photosynthesis is mainly driven by these
spatio-temporal fluctuations in PFD. In order to extract intrin-
sic parameters of the photosynthetic capacity of single species
ΔF /F m

′ and ETR values were plotted over PFD. Light dependency
data plotted in such way can be mathematically fitted in order
to quantify the characteristic cardinal points of photosynthesis
(Rascher et al., 2000).

To determine the cardinal points of light dependency curves,
ETR vs. PFD data were fitted using single exponential functions:

f (x) = a
(

1 − e−bx
)

(3)

where a and b are independent parameters.
From the results of Equation 3 the initial slope of ETR and

the maximum electron transport rate (ETRmax) at saturating light
intensity, were calculated (in the following fitted values ± SE are
given). The parameters are tested statistically using the Wald Test,
as follows:

W = a1 − a2√
SE2 (a1) + SE2 (a2)

(4)

where a1 and a2 are the parameters tested against each other and W
has a standard normal distribution for high sample sizes (Rascher
et al., 2000).

Instant light-response curves of ΔF /F m
′ were obtained using

the light-curve program of the Mini-PAM, where actinic light
intensity was increased during 4 min in eight steps following each
other within 30 s. Light was provided by the internal halogen
lamp of the instrument, using the fiber optics and the leaf clip
holder. The measured light intensities were corrected as described
in Rascher et al. (2000). The leaves measured in this way were
dark adapted only for 30 s before the light-curve runs. Due to the
short time of adaptation to the stepwise increased light intensities
between the single measurements (30 s), possibly photosynthesis
of the leaves was not in steady state. However, data from different
species can be compared with each other and give insight into the
fast adaptation of photosynthesis to increasing PFD (Rascher et al.,
2000).

RESULTS
EPIPHYTE PHOTOSYNTHESIS IN THE FIELD
Mode of photosynthesis
Carbon isotope ratios (δ13C) of all plants, except those of Aechmea
melinonii, were below −27.9‰, showing that primarily carbon
fixation was by ribulose-1,5-bisphosphate-carboxylase/oxygenase
(Rubisco) and, thus, the species of this study were performing
C3-photosynthesis. The CAM mode of photosynthesis, which
was found to dominate among tropical epiphytes of dry sites in
Trinidad (Griffiths and Smith, 1983) would have shifted the δ13C to
less negative values. The less negative value of −15‰ of Aechmea
melinonii indicates an almost exclusive primary carbon fixation
via phosphoenolpyruvate-carboxylase and identifies A. melinonii
as the only CAM plant in this study.
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Integrated H2O-conductance and water use efficiency
Δ Values of the single species varied greatly, i.e., by about 4.5‰
between the lowest and highest value obtained by the epiphytes.
This indicates a strong variability of histories of the intrinsic water
use efficiency and the relative instantaneous water use efficiency
between species as it can be assumed that vapor pressure deficits
were similar for the different microsites (Table 1).

No correlations between Δ values, growth form, or position
within the canopy were found.

Light response characteristics
In order to extract cardinal points of photosynthesis, which
describe the intrinsic properties of the photosynthetic apparatus
in the species studied, single measurements of effective quan-
tum yield (ΔF /F m

′), electron transport rate (ETR), and non-
photochemical energy dissipation (NPQ) of each species were
plotted vs. PFD (Figures 4 and 5, see Rascher et al., 2000 for
the fitting model). We used two approaches to record these light
response characteristics: (i) we plotted all measurements, which
were taken under ambient PFD (closed symbols in Figures 4 and 5)
and (ii) we recorded instant light response curves with an adap-
tation time of 30 s to increasing light intensities (open symbols in
Figures 4 and 5).

In general, with increasing PFD ΔF /F m
′ declined, ETR

increased to a maximum, and NPQ increased often without reach-
ing saturation. Different species showed rather different light
response characteristics. ΔF /F m

′ and ETR values, which were
recorded during the instant light response curves, in general,
were higher than steady state measurements (Figures 4 and 5).
The host tree Virola michelii had a maximum ETR (ETRmax) of
56 ± 2 μmol m−2 s−1 and NPQ values reached about 3. The epi-
phytic Ludovia lancifolia showed quite similar light response char-
acteristics even though NPQ increased faster at low light inten-
sities (ETRmax = 57 ± 3 μmol m−2 s−1). A similar ETRmax (56 ±
1 μmol m−2 s−1) was also attained by the most abundant epiphyte
orchid Maxillaria alba, although it reached higher NPQ values at
higher PFD (maximum NPQ = 5.8), and the epiphytic bromeliad
Vriesea amazonica also showed a very similar performance
(ETRmax = 55 ± 2 μmol m−2 s−1, NPQ values up to ∼5). These
species having ETRmax values between 55 and 60 μmol m−2 s−1

were followed by species with ETRmax close to 50 μmol m−2 s−1,
i.e., Peperomia sp. (ETRmax = 52 ± 2 μmol m−2 s−1), Sphyros-
permum buxifolium (ETRmax = 50 ± 2 μmol m−2 s−1), and Stelis
argentata (ETRmax = 47 ± 2 μmol m−2 s−1), with NPQ values of
4–5 at high PFD. While the seven species discussed so far are still
rather close to each other with respect to ETRmax and highest
NPQ values at high PFD, Tillandsia anceps had considerably lower
ETRmax (21 ± 2 μmol m−2 s−1, P < 0.001) but also NPQ values
reaching 4–5.

At the other end of the scale the CAM bromeliad and epiphyte
Aechmea melinonii and the woody C3 epiphyte Clusia grandiflora
had the highest ETRmax (91 ± 3 and 82 ± 2 μmol m−2 s−1, respec-
tively, P < 0.001). Maximum NPQ values were lower for Aechmea
melinonii (up to three), while Clusia grandiflora reached the high-
est NPQ values measured during this study. For the CAM species
cardinal points of light use characteristics may be dependent on
the time of the day, when light dependency curves were measured.

During phase III of CAM sensu Osmond (1978) nocturnal stored
organic acid is remobilized and a high internal CO2 concentra-
tion is built up behind closed stomata. Thus non-photochemical
energy dissipation, expressed as NPQ may be reduced, while pho-
tosynthetic electron transport remains unaffected. The δ13C value
of –27.9‰ rated the Clusia grandiflora as a C3 species, which
confirms earlier determinations of carbon isotope ratios (Lüttge,
1999). Thus, Clusia grandiflora may be indeed an obligate C3

species, however, in the genus Clusia there are many C3/CAM
intermediate species, which often make only very limited use of
their CAM option in the field so that this may not be reflected very
much in δ13C values (Lüttge, 1999; Holtum et al., 2004). Additional
measurements such as gas-exchange and diel organic acid fluctu-
ations would be required to decide if Clusia grandiflora may have
a CAM option. Such measurements are neither available from the
present study nor from the literature. Hence, we may assume that
Clusia grandiflora performed C3-photosynthesis, during which a
high electron transport rate has to be accomplished by high NPQ
values.

No relationships between different life forms or light response
characteristics of the epiphytes and position within the canopy
were noted.

Chronic and dynamic photoinhibition
Potential quantum yield of photosynthesis (F v/F m) of the host
tree (Virola michelii) and 16 vascular epiphytes was measured on
2 days before sunrise (Table 2). The host tree and 14 epiphytes
had mean F v/F m values at and above 0.80, indicating that light-
reactions of photosynthesis generally were in a fully functioning
state without signs of predawn, chronic photoinhibition. Only,
Lepanthes helicocephala and Tillandsia anceps had F v/F m values
below 0.8 in 6 of 6 and 10 of 11 measurements, respectively, which
may be interpreted as a sign of chronic predawn photoinhibi-
tion. Additionally, in Aechmea melinonii (3/8), Anthurium trinerve
(2/6), Maxillaria alba (16/27), Maxillaria violaceo-punctata (2/4),
and Peperomia sp. (10/14) individual F v/F m values were below 0.8
(number of values below 0.8 in relation to total measurements are
given in parenthesis). We interpret these repeated recordings of
low F v/F m values within the same species as chronic photoinhi-
bition of the individual plant or leaf measured specifically at this
particular day. In general this species does not suffer from chronic
photoinhibition and the low F v/F m values may be due to the fact
that measurements may have been made outside the optimal sea-
sonal conditions of the species. Moreover, this might be related to
a variety of other reasons including lower inherent photosynthetic
capacity or alternative dissipation mechanisms.

By grouping the species according to their distribution within
the canopy it became clear that species growing in the inner
canopy closest to the trunk had lowest predawn F v/F m values,
while species, which were growing further in the periphery of the
grown had higher F v/F m values (P < 0.001, Table 2).

In order to study the dynamic performance of potential quan-
tum yield and possible recovery in more detail, we darkened
single leaves during the course of the day for 30 min. For clar-
ity we will denote these values as (F v/F m)30′ and we will interpret
reduced (F v/F m)30′ values as signs of dynamic photoinhibition,
i.e., a reduction of potential quantum efficiency, which cannot
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FIGURE 4 | Light response characteristics expressed as effective

quantum yield (ΔF /F m
′, left column), photosynthetic electron

transport rate (ETR, middle column), and non-photochemical energy

dissipation (NPQ, right column) in dependency of light intensity (PFD)

of the host tree [Virola michelii (A–C)], the tank bromeliad Aechmea

melinonii (D–F), the tall woody epiphyte Clusia grandiflora (G–I), the

liana Ludovia lancifolia (J–L), and the small epiphytic orchid

Maxillaria alba (M–O). Closed symbols refer to measurements under
ambient PFD, while open symbols refer to instant light response curves
with an adaptation time of 30 s. ETR values were fitted using a single
exponential function, the resulting best fitted function is shown in the
graphs (solid lines: ETRmax from ambient measurements, dashed lines, and
numbers: ETRmax from instant light response curves; ETR is given in
micromole electrons m−2 s−1).
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FIGURE 5 | Light response characteristics expressed as effective

quantum yield (ΔF /F m
′, left column), photosynthetic electron transport

rate (ETR, middle column), and non-photochemical energy dissipation

(NPQ, right column) in dependency of light intensity (PFD) of the small

epiphyte Peperomia sp. (A–C), the small-leaves Ericacea Sphyrospermum

buxifolium (D–F), the small epiphytic orchid Stelis argentata (G–I), the

small non-tank bromeliadTillandsia anceps (J–L), and medium size

bromeliad Vriesea amazonica (M–O). Closed symbols refer to
measurements under ambient PFD, while open symbols refer to instant light
response curves with an adaptation time of 30 s. ETR values were fitted using
a single exponential function, the resulting best fitted function is shown in the
graphs (solid lines: ETRmax from ambient measurements, dashed lines, and
numbers: ETRmax from instant light response curves; ETR is given in
micromole electrons m−2 s−1).
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Table 2 | Predawn values of potential quantum yield of the epiphytes grouped according to their position within the canopy of the host tree

Virola michelii.

Canopy position Plant species F v/F m

Minimum Mean

Inner Aechmea melinonii 0.645 0.778 ± 0.059(8)

Anthurium trinerve 0.759 0.814 ± 0.035 (6)

Lepanthes helicocephala 0.728 0.761 ± 0.025 (6)

Ludovia lancifolia 0.809 0.825 ± 0.014 (16)

Maxillaria violaceo-punctata 0.763 0.792 ± 0.028 (4)

Peperomia sp. 0.746 0.785 ± 0.019 (14)

Tillandsia anceps 0.550 0.714 ± 0.094 (11)

Average 0.714 ± 0.033 (7) 0.783 ± 0.059 (65)

Inner–middle Clusia grandiflora 0.792 0.831 ± 0.018 (13)

Sphyrospermum buxifolium 0.810 0.829 ± 0.013 (22)

Maxillaria alba 0.706 0.793 ± 0.028 (27)

Stelis argentata 0.812 0.825 ± 0.008 (8)

Vriesea amazonica 0.835 0.848 ± 0.010 (6)

Average 0.791 ± 0.022 (5) 0.819 ± 0.027 (69)

Middle Hillia illustris 0.811 0.833 ± 0.011 (11)

Maxillaria uncata 0.796 0.814 ± 0.022 (4)

Norantea genianensis 0.800 0.824 ± 0.017 (4)

Scaphyglottis violacea 0.794 0.814 ± 0.018 (6)

Average 0.800 ± 0.008 (5) 0.824 ± 0.017 (25)

Fv/Fm was measured before sunrise. Data are mean values ± SD; numbers in brackets indicate sample size.

be restored to maximum during 30 min. All species studied with
respect to (F v/F m)30′ were prone to dynamic photoinhibition and
often values below 0.7 were obtained (Figure 6).

However, no obvious correlations between (F v/F m)30′ and time
of the day, position within the canopy, or momentary light inten-
sity were found. We thus tested the correlation of (F v/F m)30′
with the dynamic changing environmental factors and plotted
(F v/F m)30′ vs. the total PFD during this day (PFDint), the expo-
nentially weighted PFD of the last 3 h (PFDexp), and the integrated
rainfall of the last 6 h (Figure 6). For most plants (F v/F m)30′ was
correlated with light absorbed. (F v/F m)30′ decreased with inte-
grated or exponentially weighted PFD (Figure 6, left and middle
column). The degree of correlation, which is expressed in the
correlation coefficient (r), varied among the species.

Rainfall within the last 6 h before measurements (Figure 6, right
column) only had a strong effect on Aechmea melinonii, where
dynamic photoinhibition [(F v/F m)30′] was greatly prevented by
increased water availability after rain (Figure 6F). This must be
due to the fact that Aechmea melinonii was the only tank forming
epiphyte allowing water storage. Tank bromeliads are known to be
able to make use of short term precipitation for their photosyn-
thetic performance (Lee et al., 1989). All the other species showed
no correlation of (F v/F m)30′ with rainfall, and increased water
availability after rain did not prevent photoinhibition caused by
high PFD.

DISCUSSION
Developing a novel field-proof set up of light sensors together
with a dynamic weighting algorithm proved to be essential in our

study to document that light intensities within a natural, tropi-
cal canopy do not follow simple gradients. Gradients within the
canopy only describe the mean distribution but fail to character-
ize a specific microhabitat. Natural light conditions in the canopy
were highly fluctuating and produced a spatio-temporal mosaic of
ever changing light. As a consequence species distribution within
the canopy could not simply be described by position within the
canopy. However, species distribution was not random and one
functional parameter (F v/F m) showed a correlation with general
canopy position (Table 2). According to our knowledge this is one
of the rare demonstrations that functional traits are correlated
with microhabitats of plants.

We could further show that epiphytic plants within this fluctu-
ating mosaic are adapted to these fast changes of environmental
conditions. Dynamic photoinhibition was correlated with the light
intensity that plant experienced in the previous few hours. This
underlines the dynamic behavior of the photosynthetic machin-
ery, which continuously adapts to the prevailing environmental
constraints. It was proposed earlier that adaptation to rapidly
changing environmental conditions is a major driving force for
functional adaptation of plant metabolism (Rascher and Nedbal,
2006; Schurr et al., 2006).

We argue that these results will expand our (eco-)physiological
knowledge on the acclimation of light-reactions of photosynthe-
sis under natural and thus fluctuating conditions. Measurements
under controlled conditions never reflect the highly variable,
multifactorial environmental conditions, and stress given in wet-
tropical forests, where stress is never imposed by one dominating
environmental factor alone, but always by the combination of
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FIGURE 6 | Correlation analyses between dynamically restored potential

quantum yield after 30 min of dark adaptation (F v/F m30′ ) and integrated

PFD perceived until the measurement (PFDint, left column), exponentially

weighted PFD perceived during the last 3 h (PFDexp, middle column), and

rain within the last 6 h (right column). Names of the plants are given in the
panels; r is the correlation coefficient for the linear correlation. Where two
values of r are given the upper one refers to the squares and the lower one to
the circles.
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factors often showing considerable and unpredictable fluctuations
(Lüttge, 2008, 2010a). One of these highly fluctuating factors is
irradiance as documented for the canopy of the host tree Virola
michelii, chosen for the present study (Figure 2). According to our
knowledge this work was the first ecophysiological comparative
investigation of as many as 16 epiphyte species in the field in the
same canopy of a given tree.

There was only one CAM species (Aechmea melinonii) among
the epiphytes studied here. In general, CAM is very abundant
among vascular epiphytes, 57% of all species of which are known
to be CAM species (Lüttge, 2004). Among other factors this may
be particularly driven by the strong problem of water supply of
epiphytes (Zotz and Hietz, 2001) as CAM is a water saving mode
of photosynthesis. Thus, very moist tropical rainforests may be rel-
atively poor in CAM epiphytes. In a lowland rainforest of Panama
(Barro Colorado Island) as judged from carbon isotope ratios,
about 25% of the vascular epiphytes were CAM species (Zotz
and Ziegler, 1997). However, in the extremely wet cloud forest of
Panama, Pierce et al. (2002) found that epiphytic CAM bromeliads
of the genus Aechmea seem to possess a number of ecophysiologi-
cal advantages over C3 bromeliads, because the expression of CAM
phases allows more flexible timing of CO2-aquisition during the
night than during the day, and hence, superior carbon budgets
when leaves are frequently wetted. The occurrence of CAM taxa
in wet forests led Pierce et al. (2002) to assume that the intru-
sion of Aechmea into the Panamanian cloud forest is a recent
radiation of this photosynthetic pathway and occupation of new

niches where the plasticity inherent in CAM (Lüttge, 2004, 2010b)
is pre-adapting more xerophytic physiotypes to wetter habitats.
On this background the fact that Aechmea was the only epiphytic
CAM species in the lowland rainforest of French Guyana offers an
interesting outlook.

The species selected for the presented measurements belong to
different systematic taxa, represent different epiphytic life forms
and vary somewhat in their position within in the canopy of the
host tree. For most of the ecophysiological traits assessed, i.e., long
term water use, light use in photosynthesis, and susceptibility to
photoinhibition, we could observe no correlation with phylogeny
of taxons, life forms and canopy site-occupation. Only suscepti-
bility to photoinhibition was significantly increased in the inner
canopy (Table 2). Moreover, we could clearly show that photosyn-
thetic characteristics were greatly determined by the short term
fluctuations and that light absorbed in a 30 min time window was
the main driving factor for changes in functional photosynthetic
parameters.
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