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Suberin is a highly persistent cell wall polymer, predominantly composed of long-chain
hydroxylated fatty acids. Apoplastic suberin depositions occur in internal and peripheral der-
mal tissues where they generate lipophilic barriers preventing uncontrolled flow of water,
gases, and ions. In addition, suberization provides resistance to environmental stress con-
ditions. Despite this physiological importance the knowledge about suberin formation has
increased slowly for decades. Lately, the chemical characterization of suberin in Arabidop-
sis enabled the proposal of genes required for suberin biosynthesis such as β-ketoacyl-CoA
synthases (KCS) for fatty acid elongation and cytochrome P450 oxygenases (CYP) for fatty
acid hydroxylation. Advantaged by the Arabidopsis molecular genetic resources the in silico
expression pattern of candidate genes, concerted with the tissue-specific distribution of
suberin in Arabidopsis, led to the identification of suberin involved genes including KCS2,
CYP86A1, and CYP86B1. The isolation of mutants with a modified suberin composition
facilitated physiological studies revealing that the strong reduction in suberin in cyp86a1
mutants results in increased root water and solute permeabilities. The enhanced suberin
1 mutant, characterized by twofold increased root suberin content, has increased water-
use efficiency and is affected in mineral ion uptake and transport. In this review the most
recent findings on the biosynthesis and physiological importance of suberin in Arabidopsis
are summarized and discussed.
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INTRODUCTION
Suberin is an apoplastic biopolymer deposited during secondary
cell wall differentiation in specialized plant tissues. The best-
known occurrence of suberin is the periderm of Quercus suber,
the cork oak tree. This tissue at the interface between the plant
and the environment consists to more than 50% of suberin (Graça
and Pereira, 2000). As indicated by the long shelf live of cork stop-
pers, the apoplastic deposition of suberin protects polysaccharide
cell walls from decomposition. Therefore suberized cell walls are
the most persistent plant components of composting tree barks
in soil (Kolattukudy, 2001). The unique insulation properties of
cork resemble the physiological importance of suberin in plants.
The apoplastic incrustation with the lipophilic suberin polymer
turns generic, hydrophilic plant cell walls into diffusion barriers
for water, gases, and solutes.

Generally suberin is present in cell walls of the root endodermis
and hypodermis (Enstone et al., 2003). In a primary developmen-
tal state of the endodermis and in most plants also the exodermis,
suberin can be present in Casparian bands (CB), the very local-
ized structural modifications of the radial cell walls that reduce the
apoplastic transport in and out of the stele (Schreiber et al., 1999;
Schreiber and Franke, 2011). In the secondary developmental state

Abbreviations: CB, Casparian bands; Diacids,α,ω-dicarboxylic acids; FAE, fatty acid
elongation; FAR, fatty acyl reductase; GPAT, glycerol-3-phosphate acyltransferase;
P450, Cytochrome P450 monooxygenases.

a suberin lamella is deposited all around the exo- and endodermal
cell wall which then forms a barrier also restricting the symplas-
tic transport of water and solutes (Schreiber, 2010; Ranathunge
et al., 2011). In addition, the widespread occurrence of suberin
also includes none-cutinized aboveground plant–environment-
interfaces such as periderms, the seed coat, and wound healing
tissues (Kolattukudy, 2001).

MACROMOLECULE CHEMISTRY
Suberin in cell walls is insoluble and can therefore not be iso-
lated without modification, which limits our understanding of
the polymer in situ. A lot of what we know about the chem-
istry of suberin, and also what we assume about the suberin
macromolecule, is based on the “most logic assembly” of the
components found in suberin depolymerisates of destructive pro-
tocols with certain specificity. These suberin analysis methods have
only been adapted to Arabidopsis in 2005 (Franke et al., 2005),
opening the doors for molecular genetic approaches in suberin
research in this model species. Based on such compositional
analyses suberin can be chemically described as an biopolyester
mainly comprised of ω-hydroxy acids and α,ω-dicarboxylic acids
(diacids) and lower amounts of fatty acids and alcohols; ranging
in carbon chain length from C16 to C32 (C24 in Arabidopsis).
Glycerol and minor amounts of aromatic phenylpropanoids are
also part of the aliphatic suberin polyester (Franke et al., 2005;
Franke and Schreiber, 2007; Graça and Santos, 2007; Graça, 2009;
Li-Beisson et al., 2010). The association of this polyester with
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aromatic polymers in periderms and the confirmation of link-
ages to phenolic units has also led to the tentative model that
suberin is a heterogeneous polymer of polyaliphatic and pol-
yaromatic domains (Kolattukudy, 2001; Bernards, 2002; Mattinen
et al., 2009). A direct linkage of these two components is an ongo-
ing discussion since aliphatic polyester and polyaromatic domain
polymers can only be analyzed separately. If not mentioned oth-
erwise, in this review the authors refer to suberin as the aliphatic
polyester since knowledge about synthesis and function of this
fraction has significantly advanced in the recent years.

BIOCHEMICAL DIFFICULTIES FAVOR MOLECULAR GENETIC
STUDIES
Based on the monomeric composition of mostly oxygenated fatty
acid derivatives with various chain lengths it was evident that
key steps in suberin monomer biosynthesis include fatty acid
elongation (FAE), ω-hydroxylation, diacid formation, and aro-
matic component synthesis (For a recent pathway model see
http://aralip.plantbiology.msu.edu/pathways/suberin_synthesis_
transport). Only a few biochemical approaches have been reported
in the past four decades. Nevertheless, they provided signifi-
cant allusions to enzymes of the suberin biosynthetic machinery.
Cytochrome P450 monooxygenases (P450), oxidoreductase, FAE,
and peroxidase activities involved in fatty acid ω-hydroxylation,
diacid formation, FAE, and aromatic compound polymerization
respectively, were detectable in polyester forming tissues of various
none model species (Agrawal and Kolattukudy, 1977; Soliday and
Kolattukudy, 1977; Razem and Bernards, 2003; Schreiber et al.,
2005c). However, these studies in bean, potato, and corn did not
succeed in the isolation and final characterization of defined reac-
tions in suberin pathways. Reasons for the limited progress of
biochemical approaches include the tissue-specific distribution of
suberin in scarce tissues limiting source material and the mem-
brane associated localization of involved enzyme activities and
multi enzyme complexes. In addition, potential substrates for
in vitro assays such as very-long-chain oxygenated fatty acids are
not commercially available.

CORRELATIONS BETWEEN SUBERIZATION AND
PHYSIOLOGICAL PARAMETERS
The application of micromanipulating sampling techniques tar-
geting suberized tissue and sophisticated compositional analy-
sis methods to investigate root suberization in the late 1990s
(Schreiber et al., 1999) allowed to quantitatively describe differ-
ences in tissue-specific suberization between species (Schreiber
et al., 2005b), as well as upon environmental conditions (Zim-
mermann et al., 2000; Schreiber et al., 2005a). Such studies in rice
revealed that CB formation and deposition of lamellar suberin
in the root exodermis is significantly enhanced under environ-
mental stress conditions such as salt stress (Krishnamurthy et al.,
2009) or oxygen deficiency (Kotula et al., 2009). Furthermore,
the increasing root suberin content negatively correlated with
the accumulation and transport of sodium into shoots (Krish-
namurthy et al., 2009, 2011). A similar quantitative relation was
established between the increasing exodermal suberin content
along the root axis and decreasing radial oxygen loss (Kotula et al.,
2009).

The above examples represent only a compendium of multiple
correlative evidences that quantitative differences in exodermal or
endodermal suberin impact the permeability of water and solutes
across roots in the adaptations to oxygen, salt, and drought stress
(Ranathunge et al., 2011). However, care should be exercised in the
evaluation of the “contribution” of suberin to the observed phys-
iological effects when interpreting physiological parameters and
cell wall modifications upon extreme culture conditions. Based on
transcriptomic studies it can easily be imagined that modified cul-
ture conditions result in a comprehensive reprogramming of gene
expression and metabolism (Kilian et al., 2007). Therefore physi-
ological adaptations to unfavorable conditions are not necessarily
directly related to suberin only. To gain more insides into the phys-
iological importance of suberin in stress tolerance and the relation
between suberin chemistry and permeability, plants are required
in which only suberin is modified. An increased knowledge about
suberin biosynthesis and deposition to specifically modify suberin,
e.g., in mutants and transgenic plants, is a key to investigate func-
tional effects and physiological parameters without background
effects due to varied growth conditions, developmental stage, or
species used in a study.

FUNCTIONAL GENOMICS FACILITATED THE IDENTIFICATION
OF KEY FACTORS IN SUBERIN MONOMER BIOSYNTHESIS
Molecular genetic approaches in the previously used “suberin
model species” such as the long live circle tree Q. suber and the
polyploid potato were strongly limited since targeted mutagene-
sis, mapping, and reverse genetics are rather generation spanning
projects in these species. Consequently,Arabidopsis with the wealth
of genomic resources got increasing attention in suberin research
after the distribution and chemistry of suberin had been char-
acterized in this short living model species (Franke et al., 2005).
As most suberin detection methods are laborious and/or plant
lethal, high throughput forward screens are disadvantages favor-
ing reverse genetic approaches. One strategy was the short listing
of candidate genes potentially involved in fatty acid oxygenation,
elongation, or conjugation based on transcript abundance in tis-
sues undergoing suberization. Community serving, large scale
expression studies generating publicly available transcriptomic
sets with high developmental-, organ-, and tissue-specific resolu-
tions (Birnbaum et al., 2003; Brady et al., 2007; Kilian et al., 2007)
greatly facilitated the selection of potential suberin biosynthetic
genes out of multimember families.

The ω-hydroxylation of fatty acids, required to produce the
predominant suberin monomers, is typically catalyzed by P450s
(Pinot and Beisson, 2011), a family of proteins represented by
272 genes in the Arabidopsis genome (Schuler et al., 2006). Tran-
scriptomic data sets have been screened for root expression and
among the top 50 root expressed P450, members of the CYP86 and
CYP94 subfamily were identified (Figure 1). These sub families are
known to catalyze fatty acid ω-hydroxylation in plants (Kandel
et al., 2006). Recombinant CYP86A1 was previously character-
ized as the first C16 and C18 fatty acid ω-hydroxylase from plants
(Benveniste et al., 1998). However, only the characterization of the
corresponding horst mutant 10 years later revealed the biological
process CYP86A1/HORST is involved. Detailed expression studies
using promoter:reporter fusions showed that CYP86A1/HORST
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FIGURE 1 | Expression level of the 50 most highly root expressed

Arabidopsis P450. Data were extracted from online published results of NSF
2010 project (0115068) “Functional genomics of P450s”

(http://arabidopsis-p450.biotec.uiuc.edu). Expression values are normalized
relative to a universal control created from a control RNA pool derived from all
aerial tissues and roots. Putative ω-hydroxylases are indicated in red.

is specifically expressed in the roots, in particular in the endo-
dermis, the suberized tissue of roots (Höfer et al., 2008). The
compositional suberin analysis of cyp86a1/horst mutant roots
demonstrated the involvement in suberin biosynthesis. Consistent
with the catalytic function of the recombinant CYP86A1/HORST
protein, C16 and C18 oxygenated fatty acids are strongly reduced
in cyp86a1/horst suberin, resulting in a 60%reduction in total root
suberin (Li et al., 2007; Höfer et al., 2008). Translational fusions
of CYP86A1 with GFP demonstrated that bulk parts of suberin
biosynthesis are taking place at the endoplasmic reticulum.

Subsequently, the CYP86B1 was characterized to have a very
similar expression pattern in the root endodermis (Compagnon
et al., 2009). In the corresponding ralph mutant the effect on
total suberin was not significant, but a pronounced monomer spe-
cific effect was determined. Very-long-chain ω-hydroxy acids and
diacids, specifically of carbon chain length C22 and C24, were
almost completely lacking in root suberin as well as in the seed
coat (Compagnon et al., 2009; Molina et al., 2009). In RNAi
lines these chain-length-specific phenotypes correlated with the
partially decreased CYP86B1/RALPH expression levels, further
demonstrating that CYP86B1 is required for ≥C22 ω-oxygenated
fatty acids in suberin. The depletion in very-long-chain oxy-
genated fatty acids was compensated by an increase in C22 and C24
acids in approximately stoichiometric amounts. Although many
attempts to characterize the recombinant enzyme failed these com-
positional data strongly suggest that CYP86B1/RALPH encodes
a very-long-chain specific fatty acid ω-hydroxylase uncovered in
plants before. Furthermore, the replacement of bifunctional fatty
acids by monofunctional fatty acids in the cyp86b1/ralph suberin
polyester clearly indicates that suberin structure needs more inves-
tigation. As discussed by Molina et al., 2009, a large fraction
of monofunctional monomers should preclude an extended or
cross-linked aliphatic polymer, since monofunctional fatty acids

terminate the ester polymer chain. Thus yet unidentified com-
ponents are required to describe the suberin macromolecular
structure.

One chemical difference between the aliphatic polyesters cutin
and suberin is the occurrence of very-long-chain monomers in
suberin compared to the C16 and C18 dominated cutin (Franke
et al., 2005; Pollard et al., 2008). Therefore another molecu-
lar target in suberin biosynthesis is FAE. β-ketoacyl-CoA syn-
thases (KCS) are the key enzymes in this process (Joubès et al.,
2008). The much smaller KCS gene family seemed to be suit-
able to identify the suberin candidates amongst the 21 Ara-
bidopsis KCS by a systematic characterization of the gene fam-
ily, as intended in the Arabidopsis 2010 initiative. Unfortunately,
molecular genetic and biochemical studies revealed broad over-
laps in both enzymatic function and expression pattern, which
slowed down the short listing of KCS candidate genes. Only
three C2-extending FAE-cycles are required to provide the carbon
backbone of the “longest” (C24) Arabidopsis suberin monomers,
but at least seven KCS are characterized by a strong expres-
sion in roots (Figure 2; Joubès et al., 2008). Further more, at
least five Arabidopsis KCS have been demonstrated to be able
to participate in the elongation to C22 (Trenkamp et al., 2004;
Blacklock and Jaworski, 2006; Paul et al., 2006), the predom-
inant very-long-chain monomers in Arabidopsis root suberin.
Nevertheless, KCS2/DAISY and KCS20 were identified to be
involved in suberin formation. The only moderate chemical phe-
notypes in the corresponding mutants (Franke et al., 2009; Lee
et al., 2009) might reflect the above redundancy. The minor
but significant suberin changes could also indicate that muta-
tions in the above KCS, which could also be involved in other
processes requiring very-long-chain fatty acids (e.g., membrane
lipids), secondarily affect the fatty acid pool for suberin monomer
biosynthesis.
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FIGURE 2 | Root expression patterns of selected Arabidopsis

β-ketoacyl-CoA synthases (FAE–KCS). For the indicated FAE–KCS
(presented by AGI code) the putative promoter regions (1100–1900 bp)
upstream the ATG start codon were fused to the GUS reporter gene
and introduced into Arabidopsis wild-type plants. Seedling roots of

ProFAE–KCS:GUS transgenic lines were incubated in a GUS staining
solution for 2–4 h as described Franke et al. (2009) and microscopically
inspected. A transgenic line transformed with the same, but
promoter-less, GUS containing vector was similar treated to serve as a
control (top left).

Similar to the P450 above, also GPAT5, the first gene identified
in suberization, is expressed in the root endodermal tissue (Beisson
et al., 2007). The detailed characterization of the gpat5 mutants
revealed that the encoded glycerol-3-phosphate acyltransferase is
involved in the formation of C22 and C24 very-long-chain oxy-
genated suberin monomers in roots and also in the seed coat.

Furthermore, extractable C22/C24 monoacylglycerols and very
long-chain alkyl hydroxycinnamate esters, designated root waxes
in dependence of suberin associated peridermal waxes, are also
reduced in gpat5 mutant roots indicating a central role of GPAT5
in the biosynthesis of extractable and polymer bound extracellu-
lar lipids. Different from sn-1 acylation by GPATs in the metabolic
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pathways of membrane and storage lipid biosynthesis, GPAT5 cat-
alyzes the sn-2 acylation of glycerol (Yang et al., 2010). In the
biochemical characterization of related proteins, sn-2 acylation
was exclusively found for GPATs involved in extracellular poly-
ester biosynthesis. Therefore and due to the absence of GPATs
with sn-2 acylation related domains in animals, microorganism,
and algae, sn-2 acylation is hypothesized to be associated with land
plant evolution (Yang et al., 2010).

The continuing expansion and cross-linking of Arabidopsis
resources enabled the development and employment of compre-
hensive bioinformatics tools including the generation and analysis
of transcriptional networks. The use of the above suberin genes to
deduce such networks resulted in the successful isolation of new
coexpressed suberin involved genes such as fatty acyl reductases
(FAR1, FAR4, FAR5; Domergue et al., 2010) and a feruloyl trans-
ferase ASFT (Molina et al., 2009), the latter representing the first
gene required for aromatic suberin constituents.

A very nice example of synergistic effects due to the employ-
ment of the same model species is the characterization of the
first enhanced suberin mutant esb1 (Baxter et al., 2009). Esb1 was
identified in a forward screen for changes in the leaf ion com-
position and described as being reduced in Ca, Mn, and Zn.
Crafting experiments revealed that the root determines the leaf
ionome phenotype. After the gene was identified it turned out to
be expressed in the endodermis pointing to a potential involve-
ment in suberization. The root suberin analysis revealed that all
suberin monomers are more or less equally increased, resulting in
a twofold total suberin content in esb1 roots.

PHYSIOLOGICAL APPROACHES INVESTIGATING THE ROLE
OF SUBERIN IN ARABIDOPSIS
In the last 4 years an array of mutants originated to start
looking into the physiological consequences of quantitative
(cyp86a1/horst, esb1) and/or qualitative (gpat5, cyp86b1/ralph,
kcs2/daisy, kcs20, far1, far4, far5, asft/hht ) suberin modifica-
tions (Ranathunge et al., 2011). More or less specific eval-
uations of the permeability of plant environment interfaces
included “whole plant assays” of the fitness during the culture
period. In our hands the chemically moderate suberin mutants
kcs2/daisy and cyp86b1/ralph, as well as the severely suberin-
reduced cyp86a1/horst mutant, showed no obvious growth or
developmental phenotypes under the “optimized” growth cham-
ber conditions as well as under salt stress. This could indicate that
compositionally modified suberin (kcs2/daisy, cyp86b1/ralph) and
small amounts of suberin (cyp86a1/horst ) are sufficient to pro-
vide wild-type-like functional properties. However it cannot be
excluded that physiological adaptations modifying the water and
solute balance during the long term soil culturing have compen-
sated for potential barrier changes by “disorganized” root suberin.
In this context is worth mentioning that gpat5 seedlings with also
moderate changes in very-long-chain suberin monomers are more
sensitive toward high salt conditions when grown on agar plates
(Beisson et al., 2007). Furthermore, germination rate and seedling
establishment under high salt conditions is decreased in the two
seed suberin affected mutants gpat5 and asft/hht, indicating that
the ion permeability of the seed coat and primary root is affected
(Beisson et al., 2007; Gou et al., 2009). This was confirmed in a

more direct assay showing a significantly increased diffusion of a
tetrazolium dye into the seeds of gpat5 and asft/hht. Although this
indicates a reduced diffusion resistance of the seed surface a quan-
titative assessment of permeability across suberized tissue was not
possible using above assay.

Effects on the permeability of water and solutes across roots
were investigated in a quantitative manner using decaptured whole
root systems, positively and negatively pressurized in the root
pressure probe (Ranathunge and Schreiber, 2011). A significantly
faster pressure equalization – indicative for whole root perme-
ability – after application of hydrostatic and osmotic pressures
to pressure-probe-connected roots was determined in the 60%
suberin-reduced cyp86a1/horst mutant. In contrast to previously
determined negative correlations between the suberin content and
root permeability, only very minor effects on water and solute per-
meability were observed in esb1 roots using the pressure probe.
This indicates that additional suberization does not necessarily
result in a strongly increased resistance to the effected water and
solute flows. Probably other factors than suberin amount con-
tribute to the lower limit for permeability across the whole root
under the applied pressure conditions. Suberin polymer ultra-
structure and submicroscopical root anatomical features (e.g.,
cell wall pores) could be considered as such factors for further
investigations.

Whole plant stress experiments revealed a pronounced drought
tolerance for the esb1 mutant (Figure 3). Whether this is a direct
consequence of the increased suberin content limiting the back-
flow of water from the plant to the dry rhizosphere or an indirect
effect of physiological adaptations improving the water-use effi-
ciency due to enhanced suberin barriers needs to be investigated.
Nevertheless the esb1 characterization provided the first genetic
evidence for the role of suberin in water balance and translocation
of ions to the shoot (Baxter et al., 2009). This is further supported
by the recently identified mutant in sphingolipid metabolism
showing suberin phenotypes accompanied by changes in the leaf
ionome (Chao et al., 2011).

FIGURE 3 | Drought tolerance in the enhanced suberin 1 (esb1)

mutant. Arabidopsis wild-type plants and two allelic esb1 mutants were
cultured in soil for 3 weeks with regular irrigation. Subsequently watering
was discontinued. Plants were recorded 11 days after water withdrawal. A
wild-type without water withdrawal served as a control (Upper left).
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CHALLENGES AND PERSPECTIVES
Although suberin biosynthetic pathways have been suggested for
decades, only the very recent reverse genetics approaches in Ara-
bidopsis allowed the definite identification of genes encoding
various enzymatic activities in suberin formation. As outlined
above, many key players in the biosynthesis of suberin monomers
have been identified in the past 4 years. The sequential order of
reactions is currently under investigation and discussion (Pollard
et al., 2008). Future challenges include the elucidation of subse-
quent steps in apoplastic suberin formation such as export and
assembly of precursors. The list of candidates in recent models
include ABC-transporters, lipid transfer proteins, lipases, and oxi-
dases (Li-Beisson et al., 2010). From a structural point of view
it will be challenging to determine the intramolecular linkages.
This and the discovery of intermolecular linkages could provide
hints of whether suberin macromolecular structure affects barrier
properties and whether suberin is immobilized in the cell wall by
“molecular entanglement” or distinct covalent linkages to other
structural cell wall polymers. Very recently the first gene required
for aromatic suberin components, ASFT/HHT, has been identified
(Gou et al., 2009; Molina et al., 2009). Although ASFT/HHT has
only been investigated for the contribution to the suberin poly-
ester domain, the recent success in molecular genetic approaches
let us expect the identification of more players in aromatic suberin
biosynthesis possibly including genes required for polyphenolic
cell wall components. This will allow us to verify and, if present,
investigate in Arabidopsis the composition, structure, linkages, and
importance of a polyaromatic domain often associated with the
aliphatic polyester domain and previously mostly studied in the
much slower developing potato.

The increased water and solute permeability in cyp86a1/horst
roots and the linkage between root suberin and leaf ionome also
points to the requirement of a higher spatial resolution in the local-
ization of the suberin containing root modifications providing the
ion selectivity in the roots. As mentioned above CB provide a
resistance to the apoplastic path of water and dissolved molecules
across the root. This can be visualized by soluble dyes or fluo-
rescing molecules such as propidium iodide. Propidium iodide
movement into the vascular system is blocked at the position of
CB (Alassimone et al., 2010). The compounds in the CB that are

responsible for this barrier properties are a matter of debate. In
corn, suberin represents a reasonable candidate as CB in the pri-
mary stage endodermis react positive in the histochemical suberin
staining using Sudan Red (Schreiber et al., 1999). In Clivia miniata
where it is possible to mechanically isolate CB it could be shown
that they contain substantial amounts of lignin-like phenolics and
rather small amounts of aliphatic suberin. Unfortunately in both
species it is not reasonable to target CB formation by molecular
tools. Instead, progress can be expected using Arabidopsis since
very recently the first gene involved in CB formation has been
identified in this model plant (Roppolo et al., 2011). This has been
possible by extended analysis of tissue-specific transcriptomic data
in combination with genome wide analysis of intracellular tar-
geting sequences, tools which are best available for Arabidopsis.
Upcoming CB mutants and the molecular dissection of CB forma-
tion will help to understand the chemical composition of CB and
will provide the opportunity to further look into the physiological
importance of CB in water relation and ion permeability.

The esb1 drought and ion phenotypes demonstrates the poten-
tial of modifying plant nutrition and improving stress tolerance
by modifying the degree of suberization also in agronomical
important species. The transfer of knowledge to crop plants has
successfully been demonstrated in potato. The recently identi-
fied potato genes CYP86A33, StKCS6, and FHT are the orthologs
of previously characterized Arabidopsis genes. Silencing of these
potato genes resulted in chemical modifications of tuber perid-
erm suberin, accompanied by changes in the peridermal water
permeability (Serra et al., 2009a,b, 2010). The potential for sim-
ilar translational research has greatly increased in the past since
genomes for rice, potato, and other crops species are available and
advanced sequencing techniques initiated systematic genome and
transcriptome analyses in a variety of species including cork oak
(Paiva et al., 2011). The recent and future pioneering findings in
Arabidopsis will continuously pave the road for successful suberin
research in such species.
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