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TCUP: a novel hAT transposon active in maize tissue culture
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Transposable elements (TEs) are capable of inducing heritable de novo genetic variation.
The sequences capable of reactivation, and environmental factors that induce mobilization,
remain poorly defined even in well-studied genomes such as maize. We treated maize
tissue culture with the demethylating agent 5-aza-2-deoxcytidine and examined long-term
tissue culture lines to discover silenced TEs that have the potential to induce heritable
genetic variation. Through these screens we have identified a novel low copy number hAT
transposon, Tissue Culture Up-Regulated (TCUP ), which is transcribed at high levels in
long-term maize black Mexican sweet (BMS) tissue culture and is transcribed in response
to treatment with 5-aza-2-deoxycytidine. Analysis of the TIGR Maize Gene Index revealed
that this element is the most frequently represented EST from the BMS cell culture library
and is not represented in other tissue libraries, which is the basis for its name. A full-
length sequence was assembled in inbred B73 that contains the putative functional motifs
required for autonomous movement of a hAT transposon. Transposon display detected
novel TCUP insertions in two long-term tissue-cultured cell lines of the genotype Hi-II
A × B and BMS. This research implicates TCUP as a transposon that is capable of reac-
tivation and which may also be particularly sensitive to the stress of the tissue culture
environment. Our findings are consistent with the hypothesis that epigenetic alterations
potentiate genomic responses to stress during clonal propagation of plants.

Keywords: transposable element, tissue culture, DNA methylation, genome stress, epigenetics, somaclonal

variation

INTRODUCTION
Transposable elements (TEs) are ubiquitous members of all higher
eukaryotic genomes and compose the majority of DNA present in
the maize genome (Schnable et al., 2009). These mobile DNAs are
critical elements in the creation of genetic variation that can drive
the reorganization and evolution of genomes. Even though these
repetitive elements make up an extensive proportion of higher
eukaryotic genomes, they are normally maintained in a transcrip-
tionally silent and immobile state (Chomet et al., 1987; Lippman
et al., 2003, 2004; Dooner and Weil, 2007). TEs are known to
become activated from their dormant state by both biotic (Johns
et al., 1985; Grandbastien et al., 1997; Kashkush et al., 2003; Xu
et al., 2004) and abiotic stresses (Neuffer, 1966; Carpenter et al.,
1987; Peschke et al., 1987; Kalendar et al., 2000; Kimura et al., 2001;
Jiang et al., 2003).

The transcription of TEs near or within genic regions can
change the spatial and temporal expression of genes leading
to altered phenotypes by both genetic and epigenetic mecha-
nisms (Morgan et al., 1999; Kashkush et al., 2003). They may
also be mutagenic when mobilized and transpose into or near
genes. The mobilization of all types of transposons requires
transcription from autonomous elements. Activation of dormant
TEs may be a contributor to the phenomenon of somaclonal
variation. Somaclonal variation is defined as genetic or pheno-
typic variation among clonally propagated plants derived from
a single donor clone and results in a wide range of phenotypes

displayed in the progenies of regenerated plants (Kaeppler et al.,
2000).

Tissue culture induced activation of silenced TEs does not affect
all elements equally, with some elements predictably activated by
the culture process (Hirochika et al., 1996; Takeda et al., 1999), and
most others remaining quiescent. For example, silenced Mutator
elements are not reactivated through tissue culture and slightly
active elements can become methylated and silenced in tissue-
cultured lines (Planckaert and Walbot, 1989). Other TEs, such as
Tto1, are predictably activated during tissue culture. Tto1 contains
cis regulatory sequences sensitive to the auxins used in tissue cul-
ture, providing an explanation for the sensitivity of this element
to culture stress (Takeda et al., 1999).

The cell culture transcriptome of maize is enriched with TE
ESTs compared with other organ tissue, but not all TEs are equally
transcribed. The hAT transposon Mx is transcribed while the
related element Ac is not, highlighting the differential response
of TE to the tissue culture process (Vicient, 2010). The maize
miniature inverted repeat TEs (MITE) ZmTPApong is transcrip-
tionally activated in cell culture and mobilized in the regenerated
progeny (Barret et al., 2006) and the MITE related P instability
factor (PIF) is enriched in cell culture compared to other tissues
(Vicient, 2010). The activation of TEs has been associated with
a general loss of DNA methylation in heterochromatic regions,
but specific elements become hypomethylated and gain H3Kme2
in both heterochromatic and euchromatic chromosome locations
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(Tanurdzic et al., 2008). The unique sensitivity of different TEs
to specific stresses underlies the types and frequency of genetic
variation induced in specific environments.

The goal of this research was to characterize a novel maize class
2 hAT transposable element that was first identified based on high
expression specifically in black Mexican sweet (BMS) long-term
cell culture. Based on its initial in silico identification indicating
EST evidence of high expression in BMS and no expression in
other tissues, we named the element Tissue Culture Up-Regulated
(TCUP). A subsequent pharmacological analysis using the DNA
methylation inhibitor, 5-aza-2-deoxycytidine, was used to evaluate
the effect of DNA methylation on TCUP transcription in newly
initiated cultures. The mobility of TCUP was also evaluated in a
series of long-term Hi-II A × B tissue culture lines.

MATERIALS AND METHODS
CALLUS LINES
The BMS cell line was initiated in the 1970s at the University
of Minnesota and was most recently acquired for our studies
from Charles Armstrong at Monsanto in 2001. Independent callus
lines were created from individual Hi-II A × B embryos harvested
12 days after pollination. Callus lines were maintained on N6
media supplemented with 1.5 mg/l of 2,4-dichlorophenoxyacetic
acid (Armstrong, 1994). The embryogenic cell cultures were
transferred to fresh media monthly.

PLANT MATERIAL
The inbred stocks obtained from the Maize Genetics Cooperation
Stock Center were BMS [Accession: B542B], Hi-II A [Accession:
T0940A], and Hi-II B [Accession: T09040B] (Armstrong et al.,
1991). All seeds were bulked and maintained using sib crosses
in field nurseries. Hi-II A × B seeds were generated by crossing
Hi-II B pollen onto Hi-II A ears. Embryos used for tissue cul-
ture initiation were acquired from green house grown ears of a
self-pollinated Hi-II A × B plant.

SUSPENSION CULTURE TREATMENTS
Each culture line was initiated using 1.5 g of Hi-II A × B type II
embryogenic callus broken into small clumps. The culture lines
were each split into two flasks prior to initiation of the experi-
ment. One flask within each of the three cell lines was treated with
25 μM 5-aza-2-deoxycytosine, and the other flask was used as a
non-treated control. Liquid N6 medium was replaced with either
treated or untreated medium every 3 days for 9 days to ensure an
adequate treatment length.

GENOMIC DNA ISOLATIONS FROM PLANT TISSUE
Genomic DNA was isolated from plant tissue using the CTAB
method (Saghai-Maroof et al., 1984). The DNA was suspended in
LTE (1 mM Tris–HCl pH 8.0, 0.1 mM EDTA pH 8.0). DNA was
extracted from callus using the Plant DNAzol reagent (Invitrogen
catalog # 10978-021).

PCR AMPLIFICATION OF GENOMIC DNA
PCR reactions contained the following components: 1× Taq DNA
polymerase buffer, 2.0 mM Mg2Cl, 200 μM dNTPs, 0.6 μM each
primer, 1 U Taq DNA polymerase, 100 ng of genomic DNA, and

sterile distilled deionized water to a volume of 25 μl. Cycling
parameters were generally as follows: 94˚C 2 min, 30–35× (94˚C
for 30 s, 58˚C for 45 s, 72˚C 1 min per kilobase of amplicon)
72˚C for 7 min. TCUP 5′ probe sequence corresponding to 9–
875 bp of accession DQ324364.1 was amplified using primers
TCUP5′F GCCAAATGGCACTAACACGAC and TCUP5′R GAG-
GAGAGTACCAGTGCCAGT. The TCUP internal probe sequence
corresponding to 2203–3439 bp was amplified using primers Inter-
nalF GCTGGTGTGCTTGCTGATTATG and InternalR CGTC-
GATGATCCTGCCAGTTA. The TCUP 3′ probe sequence cor-
responding to 3313–4127 bp was amplified using primers
TCUP3′F GGTGGCATCAGCACAAACTCA, TCUP3′R TATA-
GATGGCCAACCGGGCCGCACGGCACG. Reamplification of
the excised and sequenced novel band from transposon dis-
play was performed using H6_band1 CACGGCGCGAACTTGAA-
CATATAG and display TCUP3′-1 ACTGGTAGTGCCGTGC-
CTGG.

DNA SEQUENCING
Sequencing reactions consisted of 1 μl of BigDye Terminator mix
version 3.1 (Applied Biosystems), 1.5 μl of BigDye buffer version
3.1 (Applied Biosystems catalog # 4336697), 1 μM of primer, and
0.2 μg of plasmid DNA in a final reaction volume of 10 μl. The
cycle parameters were 95˚C for 3 min; 35× (96˚C for 10 s; 55˚C
for 15 s; 60˚C for 3 min) followed by 72˚C for 7 min. Sequence was
determined at the University of Wisconsin Biotech Center DNA
Sequencing facility.

DNA GEL BLOT ANALYSIS
Genomic DNA (5 μg) was digested with 20 U of restriction enzyme
under manufacturer’s specified conditions for 16 h. Digested
genomic DNA was electrophoresed through 1% agarose TBE gels
and transferred using the neutral transfer protocol supplied with
Hybond N+ membranes (Amersham catalog # rpn203b) accord-
ing to manufacturer’s instructions. After transfer, blots were UV
crosslinked and baked for 2 h at 80˚C. Prehybridization was per-
formed with hybridization buffer (5× SSPE, 5× Denhart’s, 1%
SDS, 100 μg/ml sheared salmon sperm DNA) for 2–5 h at 65˚C.
Hybridizations were performed in hybridization buffer at 65˚C
for 16 h with denatured [α-32P] dCTP (Perkin Elmer catalog #
BLU513H) labeled probes. After hybridization, blots were strin-
gently washed with 0.2× SSC, 0.2% SDS three to four times at
65˚C for 20 min each.

PROBE GENERATION AND LABELING FOR DNA GEL BLOT ANALYSIS
Segments of TCUP were PCR amplified from B73 genomic DNA,
cloned using the pGEM®-T Easy Vector System II kit (Promega
catalog # A1380), and confirmed by sequencing. The clones used
as probes for DNA gel blots are as follows: TCUP5′ bp 9–875;
TCUP internal bp 2203–3439; TCUP 3′ bp 3313–4127. Random
labeling was performed with 25 ng of purified probe using the
Prime-a-Gene 5× labeling buffer (Promega catalog # U1151).

INFORMATIC AND PHYLOGENETIC ANALYSIS
The TCUP sequence (GenBank Accession DQ324364) was
completed by manual assembly of PCR sequences and
sequence from trace archives for BAC clone ZMMBBc0310A01

Frontiers in Plant Science | Plant Genetics and Genomics January 2012 | Volume 3 | Article 6 | 2

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Smith et al. TCUP novel maize hAT transposon

(GenBank AC148160). The translated protein sequence of
TCUP was analyzed for known domains using the BLAST-
based NCBI conserved domain database (Marchler-Bauer and
Bryant, 2004; Marchler-Bauer et al., 2005). The default set-
tings were used for all searches. The position of this
sequence in version 2 of the B73 reference genome (AGPv2;
http://ftp.maizesequence.org/current/assembly/; Schnable et al.,
2009) was determined in February 2011 on chromosome 7
corresponding to contig AC195167 derived from BAC clone
ZMMBBc0310A01. The location of the insertion was confirmed
by identification of the target site duplication (TSD) sequence
AAGCAAAG.

Protein sequences were aligned using ClustalX (Thompson
et al., 1997). The phylogenetic analysis was performed on Clustal
aligned transposase protein sequences according to Xu and
Dooner (2005). All transposases used in the alignment were
derived from putative full-length elements except for the sorghum
sequence translated from TC93360 which appears to be a partial
transposase. The phylogenetic tree was created with the MEGA3
program (Kumar et al., 2004) using the neighbor joining method
by performing 1000 bootstraps. The pairwise deletion method was
selected to handle gaps in the alignments.

The accession numbers used in alignment are as follows:
DQ324364 TCUP Zea mays, S13518 snapdragon Tam3, P08770
Maize Ac ORFA, AAV32822.1 Maize Mx, AAB60236.1 House Fly
Hermes, AAD24567.1 Arabidopsis thaliana Tag2, BAA36225.1 Ipo-
moea purpurea Tip100, CAA66182.1 N. tabacum Slide,AAL93203.1
Bactrocera dorsalis Hopper, CAA93759.1 Tolypocladium inflatum
Restless, P12258 D. melanogaster Hobo, BAB01787.1 A. thaliana
Tip100, TC93360 Sorghum bicolor TCUP-like, BAD93710.1 Oryza
sativa TCUP-like, P0024G09 O. sativa TCUP-like S, AP002071
O. sativa TCUP-like L, 2021344A P. glaucum Pac2, CAB82966.1
A. thaliana, NP191811.1 A. thaliana, AAL31650.1 O. sativa,
BAA96580.1 O. sativa, AAM97760.1 O. sativa, NP920480.1 O.
sativa, NP188098.2 A. thaliana, AF283502 C. parasitica Crypt 1,
BAA32244 F. oxysporum Tfo1, AAA64851 L. cuprina Hermit,
AAD03082 B. tryoni Homer, XP309253.2 A. gambiae, NP192758.1
A. thaliana.

RNA EXTRACTIONS
RNA was extracted using the TRIZOL reagent (Invitrogen catalog
# 15596-026) following the manufacturer’s protocol with optional
spin steps included for plant tissue. The callus RNA extraction pro-
tocol had the following modification: callus RNA was extracted
using an extra partitioning with chloroform to reduce phytogel
contamination in the RNA pellet.

REVERSE TRANSCRIPTASE-PCR
Total RNA (5 μg) was DNAse treated [1× RQ1 RNase-Free
DNase 10× buffer, 2 U RQ1 RNase-Free DNase (Promega cat-
alog # M6101)] for 20 min at 37˚C. The cDNA was primed
with Oligo (dT)15 (Promega catalog # C1101). Reverse transcrip-
tion was carried out using 1× M-MLV reaction buffer, 0.5 mM
dNTPs (Promega catalog # U1330), 200 U M-MLV reverse tran-
scriptase (Promega catalog # M1701), 20 U RNAsin (Promega
catalog # N2511). The reaction was incubated at 42˚C for
2 h and then heated to 70˚C for 10 min to stop the reaction.

PCR was performed using the following conditions [1× Tth
Buffer (Epicentre catalog # TTH72250), 2 mM MgCl2, 0.4 μM
primers, 3× Masteramp enhancer, 1 U Tth DNA polymerase]
on 3–6 μl of cDNA and cycled 25 times (94˚C for 35 s, 58˚C
for 45 s, 72˚C for 60 s). The 2.15-kb fragment was amplified
using primers TCUP3′RACE2 ACGATGAAACTGTTGAGATC-
GACTGC and TCUP3′rev.1 ACCACATCAGACTTCAATCTC-
CTCCTC.

5′ AND 3′RAPID AMPLIFICATION OF cDNA ENDS
Rapid amplification of cDNA ends (RACE) was performed
using materials and the protocol from the BD SMART™RACE
cDNA Amplification Kit (BD Biosciences catalog # 634914).
The PCR amplicons from nested PCR were isolated using the
QIAquick Gel Extraction Kit (Qiagen catalog # 28704) and cloned
using the pGEM®-T Easy Vector System II kit (Promega cat-
alog # A1380). The TCUP specific primers used for 5′ RACE
were 5′ TCUP RACE GGTCTAAGCAACCTCATGGCAGCAGCA,
TCUP2R.5′TCCACCTAACCTCCATGTCCAAC, TCUP5′RACE1
ACAAGTTAGGAGGGACAACCCTGTTCA, TCUP5′F-CL307541
CATGTCTCTGGTGGTGGTTTGC, and TCUP5′RACE3 CCTCT-
GATGTGAGTGTCATTAGCATAGTTC. The TCUP specific primers
used for 3′ RACE were TCUPRACE3′ GTGAGTTTGT-
GCTGATGCCACCAGTGCAAG, TCUP3′RACE1 TCCTAGCTC-
CGGTCTCTCCTAGCTCT, TCUP3′RACE2 ACGATGAAACT-
GTTGAGATCGACTGC,and TCUP3′RACE3 CTTACTCCGTTGAG-
GAACCGGGACT.

TRANSPOSON DISPLAY
Transposon display was performed following the protocol
described by Casa et al. (2004) using genomic DNA isolated
from long-term callus lines and inbred plant DNA. The TCUP
specific primers used for transposon display were disTLE3′-
1 ACTGGTAGTGCCGTGCCTGG, disTCUP3′-1nest AGTGC-
CGTGCCGTGCGGCCCGGTT, disTCUP5′-1 TGCCAGTGC-
CGTGCTTTTTAGTG, and disTCUP5′-1nest GTGTTAGTGC-
CATTTGGCCA.

RESULTS
IDENTIFICATION AND CHARACTERIZATION OF TCUP
Tissue Culture Up-Regulated was first identified as TC249207 by
evaluation of EST abundance in BMS suspension cultures using
the TIGR gene index. This was the most abundant transcript from
BMS and there was no evidence of expression in any other tissue
based on this gene index. This observation led to us to name the
element as TCUP. Expression of TCUP in BMS, newly initiated
Hi-II callus cultures, seedling leaf, seedling root, and developing
endosperm was experimentally evaluated by RT-PCR and TCUP
transcription was not detected in seedling, leaf, root, endosperm,
and newly initiated untreated callus. These evaluations supported
that at least one member of the TCUP family is actively transcribed
in BMS callus cultures, and that TCUP is stably quiescent in the
other plant tissues as evaluated by EST and RT-PCR.

A full-length TCUP sequence (GenBank accession DQ324364)
was assembled and confirmed using informatics and targeted
sequencing (Figure 1). The sequence is 4132 bp in length and
contains a single intronless 738 amino acid open reading frame.
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FIGURE 1 | Diagram of the of theTCUP sequence DQ324364.1 drawn to

scale. The DNA sequence of the predicted hAT transposase ORF is
represented as a gray box, the Znf-BED domain is represent by a blue box,
and the hATC domain is represent with a red box. The TSD sequences
(AAGCAAG) are presented as green bars at the 5′ and 3′ ends of the DNA
sequence. The TIR sequence [TATAG(T/A)TGGCCAA] is represented by red
bars at the 5′ and 3′ end of the sequence. The 3′ and 5′subterminal repeat
regions containing 39 repeats of the sequence CGGCAC/CACGGC are
represented by dotted lines with repeats in the sense orientation colored
black and repeats in the antisense orientation colored light blue. The CpG
islands are represent as red dotted lines along the outline of the DNA
sequence. The cut sites of restriction enzymes utilized in the DNA gel blot

analysis in Figure 2 are noted on the diagram (SwaI and EcoRI restriction
enzyme do not cut within the TCUP sequence) and the location of the DNA
gel blot probe sequences are represented as lines above the diagram.
Primers used for RT-PCR related experiments and transposon display are
represented as small arrowheads. RT-PCR and RACE related transcripts are
represent below the DNA sequence with those derived from azadC treated
callus cultures colored red while BMS derived sequences are colored black.
Sequenced 5′ RACE clones are represented by arrows facing the 5′ direction
and 3′ RACE clones are represented by arrows facing in the 3′ direction. The
2.15-kb predicted RT-PCR amplicon derived from the primers utilized in
Figure 6 is represented as a blue bar underneath the sequenced RACE
clones.

The AGP version 2 position of this sequence is on chromosome
7, but bridges several contigs AC195167.2-contig69, AC195167.2-
contig72, and AC195167.2-contig36 within the unordered BAC
clone ZMMBBc0310A01. The assembly of these contigs does not
produce a contiguous sequence suggesting that the assemblies uti-
lized for AGP version 2 of this BAC clone may not be correct. An
alternate assembly for BAC clone ZMMBBc0310A01 was identi-
fied (AC148160.3) that contains a contiguous sequence which is
identical to the TCUP sequenceDQ324364 except for 4 bp.

Protein alignments and conserved domain analysis were used
to characterize the predicted translation products of the TCUP
sequence. This search revealed homology to the hAT family of
transposons. The specific domains contained in TCUP include a
ZnF-BED domain, and a hATC domain. The ZnF-BED domain
is a zinc finger motif responsible for DNA binding and is
present in many types of TEs. This domain is required for
terminal inverted repeat (TIR) and subterminal repeat bind-
ing and gives the unique target specificity to the transposase
(Becker and Kunze, 1997). The hATC domain is present in
all hAT transposases, and is involved in dimerization of the
transposase. This domain is required for proper transposase
function (Essers et al., 2000). These two domains, which are
required for autonomous transposition, are present in the trans-
posases Ac and Tam3 along with other transposases in the hAT
family.

The TCUP sequence is flanked by an 8-bp TSD with per-
fect identity, which is a characteristic of hAT transposons. The
sequence also contains 13 bp imperfect TIRs that vary in sequence
at the sixth base pair where there is a T in the 5′ TIR and an
A at the 3′ TIR. The TIR sequences are not homologous to any
previously reported transposable element indicating that this is
a member of a novel, previously uncharacterized family of TEs.
Analysis of the GC content of TCUP revealed a 60–80% GC con-
tent at the 5′ UTR and regions proximal of TIRs containing two

CpG islands at 47–890 and 1216–1659 bp that is similar to other
characterized hAT transposons. GC rich regions in TEs have been
shown to be important sites of DNA methylation-dependent tran-
scriptional regulation (Chomet et al., 1987; Kunze and Starlinger,
1989; Brutnell and Dellaporta, 1994; Brutnell et al., 1997).

Subterminal repeats are repetitive sequence motifs that are
required for transposase binding that follow the TIR and are
found in autonomous and non-autonomous TEs. In most trans-
posons, subterminal repeats range in size from 5 to 12 bp, are
present within inverted repeats, and can occur five to more than
50 times in some elements (Kunze and Weil, 2002). We there-
fore sought to identify subterminal repeats in TCUP. A CGGCAC
motif was identified which is present 21 times in both forward and
reverse complement orientations in the subterminal regions. The
reverse of this repeat, CACGGC, is also present 18 times in both
the forward and reverse complement orientations. Based on its
abundance and location in the element, the CGGCAC/CACGGC
sequence is the most likely candidate for a transposase binding site.

The copy number of TCUP was assessed by BAC library screen-
ing and DNA gel blot analysis using 5′, 3′, and internal seg-
ments of TCUP as probes, and by informatics analysis of the
AGP version 2 genome assembly. The ZMMBBb BAC HindIII
B73 library (Tomkins et al., 2002) covering 14 genome equiv-
alents was screened by hybridization using the TCUP internal
probe. The results from the BAC library screen suggest that
an estimated 17 copies (233 positive BACs/14 genome equiva-
lents) that hybridize to the TCUP internal sequence are present
in the B73 genome. The banding pattern of DNA gel blots
digested with the restriction enzymes EcoRI, HindIII, SspI, and
SwaI detected between 13 and 16 partial copies using TCUP5′,
TCUP internal, or TCUP3′ probes (Figure 2). Further analy-
sis of fragment size and band intensity on the DNA gel blots
provided an estimate of three to five putative full-length ele-
ments based on the presence of an equivalent sized band across
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all probes. Evaluation of the AGP version 2 assembly using a
minimum e-value cut off of 1e-10 and minimum identity of
75 identified 70 (DQ324364.1) or 64 (TCUP cds) fragments in
the genome that are greater than 500 bp without another frag-
ment within 3000 bp of said fragment. Of these fragments, two
putative autonomous elements on chromosomes 7 and 8, and
6 putative non-autonomous, but nearly full-length, elements on
chromosomes 1,3,4, 9, and 10 were identified in the maize genome
based on the presence of TIRs and TSD sequences. The puta-
tive autonomous elements contained uninterrupted TCUP trans-
posase ORFs (Table 1). The number of putative autonomous
elements identified by in silico analysis of the maize genome agrees
with the number of sequences observed through DNA gel blot
analysis (Figure 2).

FIGURE 2 | DNA gel blot investigatingTCUP copy number. B73
genomic DNA was digested with four different restriction enzymes. Each
panel is the same DNA gel blot hybridized with different TCUP probes (see
Materials and Methods). Lanes 1, EcoRI, 2, HindIII, 3, SspI, 4, SwaI.

PHYLOGENETIC ANALYSIS REVEALS RELATED SORGHUM AND RICE
TCUP HOMOLOGS THAT ARE EXPRESSED IN CULTURED CELLS AND
REGENERATED PLANTS, RESPECTIVELY
Phylogenetic analysis was performed on the putative TCUP trans-
posase to examine its relationship to a diverse set of hAT trans-
posases (Figure 3). Sequences included in this alignment were
chosen to sample the diversity of hAT elements present in both
plant and animal genomes (Xu and Dooner, 2005). An align-
ment of hAT transposases was used to determine the relationship
of TCUP to groups of transposases within the hAT superfamily
of elements. The interpretation of the grouping of the trans-
posases was based on Xu and Dooner (2005) in which the authors
surveyed a large sample of hAT transposases and categorized
them into five groups (Figure 3). This analysis places TCUP
within the Ac/Tam3 group of transposases in the hAT family.
The TCUP transposase clusters with a group of uncharacterized
sequences from rice and sorghum that are most closely related
to Tam3.

EST distribution for the most closely related sequences was
evaluated in the TIGR Gene Indices (ZmGI release 15.0). Inter-
estingly, the most closely related sorghum sequence TC93360
(SbGI release 8.0) is represented only by ESTs from tissue culture
and the most closely related rice (O. sativa japonica) sequences
TC253370 and TC267041 (OsGI release 16.0) are represented
only by ESTs from regenerated plants. This suggests that this
family of transposons may have a conserved sensitivity across
grasses for activation under the conditions imposed by tissue
culture.

The rice (O. sativa japonica) genomic sequence at NCBI was
queried to identify putative TCUP homologs. Seventeen different
rice sequences with amino acid homology to the TCUP trans-
posase were identified. The rice transposases, when compared
to the maize TCUP element’s predicted hAT transposase ORF,
had 53 and 54% identical and 67 and 72% conserved residues.
The identified rice sequences were separated into two distinct
groups based on protein and nucleotide sequences. The two
groups of rice transposases were 71% identical and had 82%
conserved amino acid residues relative to each other. Group I
is comprised of six sequences 4450 bp in length encoding a 756
amino acid putative transposase. Group II contains 11 sequences
3916 bp in length encoding a 763 amino acid putative trans-
posase. Analysis of the rice transposases found that several ele-
ments from each group still encode uninterrupted open reading
frames containing Znf-BED and hATC domains. The majority of
these sequences however appeared to be derived from immobile

Table 1 | Summary of autonomousTCUP elements in the maize genome (AGPv2).

Sequence 5′ TIR 3′ TIR TSD Chr 5′TIR Start 3′ TIR Stop Length

DQ324364* TATAGTTGGCCAA TTGGCCATCTATA AAGCAAAG 7 4137

TCUP-7a1 TATAGTTGGCCAA TTGGCCATCTATA CCTCGCGG 7 115988344 115992684 4341

TCUP-8a1 TATAGaTGGCCAA TTGGCCAaCTATA TCAGTGGG 8 170041903 170046049 4147

*TCUP sequence determined by targeted sequencing and BAC information prior to whole genome assembly. Position in AGPv2 does not represent actual length due

to assembly of BAC ZMMBBc0310A01 which is inconsistent with our sequence.

TIR, terminal inverted repeat; TSD, target site duplication; Chr, chromosome.
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FIGURE 3 | Phylogenetic analysis of hAT transposases from multiple

genera. The accessions chosen for this tree were based on previous
analysis performed by Xu and Dooner (2005). The different clades of hAT

transposases are marked with brackets. The values in each bracket
represent percentage of times the clade is present among 1000
bootstraps.

FIGURE 4 | Comparison of maizeTCUP and riceTCUP -likeTIRs. Rice
elements are grouped according to size. TIR sequences identical to the maize

TCUP sixth position are in bold. The core 12 bp of similarity is boxed.
Sequences not matching the consensus are shaded in black.

elements lacking the necessary sequence motifs for transposition
or non-autonomous transposons that no longer contain trans-
posase ORFs. The terminal regions of the Group I and Group
II sequences are very similar with Group I possessing 20 bp per-
fect TIRs and Group II having 17 bp perfect TIRs. The TIRs from

these two groups of elements are also most identical and vary at
two base pairs along their regions of homology (Figure 4). A 12-
bp core region of the TIRs is conserved among the rice and maize
TCUP elements (Figure 4). This core region has an A/T variation
at the sixth base pair between the different groups of rice elements
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that is at the same position as the A/T variation in the imperfect
TIRs of TCUP.

The TCUP transposase protein sequence was used to search the
genome sequences of S. bicolor (sorgum), Setaria italica (foxtail
millet), Populus trichocarpa (poplar) and A. thaliana for closely
related sequences. If a protein sequence was identified with at least
40% homology to the maize TCUP transposase, the surrounding
10 kb of DNA sequence was evaluated to identify TIRs. TCUP-like
sequences were identified in sorghum and millet, but not in poplar
(JGI assembly release 1.0) and A. thaliana (TAIR9 assembly).
TCUP sequences encoding putative transposase ORFs with up to
79% identity and 87% conserved amino acids was identified in the
sorghum genome (Sbi1.4) assembly on chromosomes 5, 8, 9, and
10. These sequences were evaluated and contained a putative TIR
sequence that was identical to the maize TCUP TIR. The foxtail
millet genome assembly (JGI assembly release v1.0) also contained
TCUP-like sequences encoding putative transposase ORFs with up
to 79% identity and 88% conserved amino acids.

TCUP EXPRESSION IS INCREASED BY TREATMENT WITH THE DNA
METHYLATION INHIBITOR 5-AZA-2-DEOXYCYTIDINE AND MULTIPLE
ISOFORMS ARE EXPRESSED
Epigenetic derepression of transposons has been implicated as a
mechanism underlying transposon activation. We conducted an
experiment using the DNA methyltransferase inhibitor, 5-aza-2-
deoxycytidine (azadC) to test whether this treatment can activate
TCUP. Previous studies across various organisms (maize by Pan
and Peterson, 1989, snap dragon by Martin et al., 1989, and human
cell lines by Davis et al., 1989; Neidhart et al., 2000) provide a prece-
dent for using azadC to activate TEs through its inhibitory action
on DNA methylation. Suspension cell cultures were prepared from
newly initiated Hi-II callus cells. The suspension cultures were
split into two groups, a control group and a 5-aza-2-deoxycytidine
(azadC) treatment group with three replicates per treatment group
(Figure 5). The effectiveness of the 5-aza-2-deoxycytidine treat-
ment in reducing DNA methylation was verified using a DNA
gel blot of HpaII digested DNA probed with a 5S rDNA probe
(Figure A1 in Appendix). DNA gel blots containing genomic DNA
of azadC treated callus cultures were used to assess changes in DNA
methylation of TCUP sequences caused by the azadC treatments
relative to untreated callus. A reduction in CpG DNA methylation
at the 5S locus was observed in the HpaII digested DNA from the
azadC treated cultures but not in the untreated control cultures.
A reduction in methylation was detected in HpaII digested DNA
but the band is faint indicating that either a portion of cells in the
callus cultures were demethylated and/or that a specific copy of
TCUP was demethylated (Figure A2 in Appendix).

RT-PCR analysis of RNA isolated from suspension cultures
treated with azadC, untreated suspension cultures, long-term cul-
tured BMS callus, and whole plant seedlings was used to assess
TCUP expression. The initial experiments to test for induction
by azadC treatments yielded multiple transcripts in azadC treated
cultures and a single transcript in BMS cultures. To further char-
acterize these transcripts and identify if a transcript containing
an intact ORF was produced, both 5′ and 3′ RACE were per-
formed on treated suspension cultures and long-term BMS callus
to identify transcription start sites and polyadenylation sites. DNA

FIGURE 5 | Diagram of the experimental design used for the 25-μM

5-aza-2-deoxycytosine treatment experiments. Biological replicates
consist of three suspension cultures initiated from three independent Hi-II
A × B explants. Each suspension culture line was initiated with 1.5 g of Hi-II
A × B type II embryogenic tissue and allowed to bulk. The three cultures
were each split into two flasks, one treated 25 μM 5-aza-2-deoxycytosine
and the other left untreated. The liquid medium was replaced with either
media supplemented with 25 μM 5-aza-2-deoxycytosine or untreated
medium every 3 days for 9 days to ensure an adequate length of treatment.

sequencing of cloned RACE PCR products identified the presence
of multiple transcripts in azadC treated suspension cultures with
at least three different polyadenylation sites at 3785, 3810, and
3994 bps, and an abundant BMS transcript with a polyadenylation
site at 3776 bps of the TCUP transposon sequence DQ324364 was
identified (Figure 1; Figure A3 in Appendix). Based on the results
of the sequenced RACE PCR products, primers were designed to
common sequences of the azadC and BMS RACE transcripts. RT-
PCR was again performed on the suspension culture treated with
azadC, untreated suspension cultures, long-term cultured BMS
callus, and whole plant seedlings to confirm the observed TCUP
expression pattern (Figure 6). These results indicate that some
proportion of the transcripts produced in the azadC treated cell
cultures are related to transcripts capable of encoding a functional
transposase while the major transcript present in the long-term
BMS cell culture contain an internal deletion and do appear
capable of producing function TCUP transposase.
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FIGURE 6 | RT-PCR demonstrating multipleTCUP transcripts present in

azadC treated callus. Six separate transcripts are detected with a primer
pair designed to amplify a 2.15-kb internal region of the TCUP coding
sequence. Actin is shown as a control. Abbreviations: A1–A3, independent
25 μM azadC treated Hi-II A × B tissue culture cell lines; C1–C3,
independent untreated Hi-II A × B tissue culture cell lines; P, Hi-II A × B
seedling; B, BMS callus.

EVIDENCE OF TCUP TRANSPOSITION
Tissue Culture Up-Regulated transcription was detected in long-
term maize cell lines. We therefore sought to determine if TCUP
also transposed in long-term cultured cells. Several independent
Hi-II A × B cell lines ranging in age from 2 to 3 years following
initiation and a 28-year long-term BMS cell line were analyzed
for transposition using transposon display. Since cultured cells
contain two homologous chromosomes and may be a mosaic of
cell types, it is most likely that transposition events will appear
as new bands without loss of existing bands. Transposon display
using 3′ specific primers detected an increase of four copies of
TCUP in line H6 and an increase in copy number in BMS tis-
sue culture (Figure 7). New insertions were not detected in callus
lines I2, I3, I5, I6, I9, I10, H3, and seedlings from genotypes Hi-II-
A, Hi-II-B, Hi-II-A × B, B73, BMS + B chromosomes, BMS − B
chromosomes. Transposon display using the 5′ specific primers
did not detect any changes or mobility of TCUP. The new copies
of TCUP were present in all three H6 culture biological replicates,
indicating that the transposition likely occurred near the time of
culture initiation. It is not possible to determine the timing of
transposition in the BMS cell lines.

One of the novel bands in the H6 lines was confirmed to
be novel TCUP insertions by excising the novel bands, reampli-
fying the PCR product, and sequencing the cloned PCR prod-
ucts. The sequenced clone contained 35 bps of TCUP sequence
containing the primer sequence and 11 bps of TCUP sequence
that corresponded to the TIR except for a C/T transversion at
the fifth position in lines H6-2, H6-3, and H6-4 and 222 bp of
genomic DNA sequence. Primers were designed from the flank-
ing genomic sequence and PCR was performed using both the
3′ primary and nested TCUP specific primers. Amplification was
detected in H6 lines but not in B73, Hi-A × B, BMS callus, and two

FIGURE 7 | 3′ TCUP transposon display performed on genomic DNA

from Hi-II A × B callus lines, B73 seedlings, BMS seedlings, and BMS

callus. (A) Independent Hi-II A × B callus lines compared to Hi-II A × B and
B73 seedlings. DNA from biological replicates was used to confirm the
consistency of the transposon display results. Tissue culture lines are
represented by I or H followed by the biological replicated number. Samples
within each tissue line were: I2-1 and I2-5, I3-1 and I3-5, I5-2 and I5-6, I6-2,
I6-3, and I6-4, I7-1 and I7-2, I9-2 and I9-3, I10-2 and I10-3, H3-3 and H3-6,
H6-2, H6-3, and H6-4. (B) BMS seedling tissue from lines with and without
B chromosomes compared to BMS callus lines. Novel bands are marked
with an arrow and line H6 is marked with an asterisk.

independent Hi-II A × B callus lines with both primers indicating
the uniqueness of this insertion (Figure 8).

DISCUSSION
TCUP IS A NOVEL MAIZE hAT TRANSPOSON
Tissue Culture Up-Regulated expands the list of TEs that are active
in maize and is different from previously reported transposons as
indicated by its novel TIRs. Activation of transposons by tissue
culture is a common occurrence in plant cell culture, but does not
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FIGURE 8 | Reamplification of the novelTCUP transposon site that

was cloned and sequenced from the transposon display gel

fragments. PCR was performed on undigested genomic DNA to confirm
the novel sequence was present in H6 genomic DNA and not in other callus
or plant genomics DNA. Lane 1 B73 seedling, lane 2 Hi-II A × B seedling,
lane 3 Hi-II A × B callus line H3-6, lane 4 Hi-II A × B callus line H6-2, lane 5
Hi-II A × B callus line H6-3, lane 6 Hi-II A × B callus line H6-4, lane 7 Hi-II
A × B callus line I9-9, lane 8 BMS callus.

affect all transposons equally. The reactivation of the Ac and Spm
transposons occurred at a frequency of 3 and 1% in regenerated
plants (Peschke et al., 1987, 1991). In rice, the Ping transposase is
activated in anther culture leading to a 20% increase in the trans-
position frequency of the MITE mPing, which could be one of
the sources leading to increased mutation rates in the rice haploid
breeding program (Kikuchi et al., 2003). The rice retrotranspo-
son, Tos17, is the transposon with highest known activity in tissue
culture with almost every regenerated plant containing 5–30 new
copies of the Tos17 element (Hirochika et al., 1996). The TCUP
element was found to have transposed in one Hi-II A × B cell line
out of the nine screened, and had also transposed in BMS callus
indicating that it may be activated at a higher frequency in maize
tissue culture than Ac or Spm elements.

EPIGENETIC CHANGES ASSOCIATED WITH TISSUE CULTURE MAY LEAD
TO TCUP ACTIVATION
Epigenetic changes are associated with the tissue culture
process and have been implicated as a significant source of

somaclonal variation. Epigenetic changes are reversible alterations
in phenotype or gene expression that are stably inherited through
mitosis or meiosis and not due to changes in primary DNA
sequence. The mechanisms that cause the epigenetic repression
or cycling of gene expression have been attributed to DNA methy-
lation, RNA interference, and modification of histone tails. These
epigenetic pathways are critical in repressing the transcription of
repetitive sequences such as TEs (Chomet et al., 1987; Banks et al.,
1988; Lippman et al., 2003, 2004; Zilberman et al., 2003). DNA
methylation and RNA interference pathways are linked in plants
by RNA dependent DNA methylation that is involved with the reg-
ulation of heterochromatin and gene silencing (Mette et al., 2000).
Transcriptional repression of TEs, such as class 2 transposons, is
associated with the production of 24 nt sRNAs, DNA methylation
of the corresponding genomic sequence, and H3K9me2 (Lippman
et al., 2004; Zilberman et al., 2007; Tanurdzic et al., 2008; Cantu
et al., 2010).

Changes in the pattern of DNA methylation are thought to be
a major source of epigenetic variation leading to somaclonal vari-
ation (Kaeppler and Phillips, 1993; Phillips et al., 1994; Kaeppler
et al., 2000). Tissue culture induction is known to cause a general
shift toward a hypomethylated genome (Kaeppler and Phillips,
1993; Koukalova et al., 2005; Law and Suttle, 2005) likely through
the loss of DNA methylation of repetitive sequences within hete-
rochromatin rather than genic sequences (Tanurdzic et al., 2008).
The age of a culture is also associated with increased somaclonal
variation which may be due in part to a gradual overall demethy-
lation of low copy sequences and subsequent activation of TEs
(Fukui, 1983; Hirochika et al., 1996). Increased transpositional
activation of Ac is associated with tissue culture induced demethy-
lation and increased with tissue culture age (Dennis and Brettell,
1990). The observation of TCUP transcription in long-term BMS
cell cultures and azadC treated cell cultures is consistent with the
role of transposons in somaclonal variation.

Both class 1 retrotransposons and class 2 transposons are
known to become active from biotic and abiotic stresses. Some
of the class 2 transposons known to be activated by tissue cul-
ture are Ac (Peschke et al., 1987), Spm (Peschke et al., 1991), Slide
(Grappin et al., 1996), and Ping (Kikuchi et al., 2003). Retro-
transposons are also activated by tissue culture stress and the
majority of TEs known to be activated by tissue culture fall into
this group. These activation events are associated with changes in
DNA methylation. They include tobacco elements Tnt1 (Grand-
bastien et al., 1989) and Tto1 (Hirochika, 1993), and the rice
elements Tos17 (Hirochika et al., 1996) and Karma (Komatsu et al.,
2003).

The activation of TEs could be one consequence of altered
DNA methylation patterns. Important interactions occur between
transposases and methylated cytosine residues in transposon regu-
latory sequences. This is true of both Ac/Ds and En/Spm elements,
where transpositional activity is dependent on the level of DNA
methylation (Chomet et al., 1987; Banks et al., 1988). The transpo-
sitional activity of Ac is strongly correlated with DNA methylation
present at the 5′ TIR and several different Ac alleles exist because
of the different cytosine residues methylated in the subtermi-
nal repeat region of the element (Chomet et al., 1987; Brutnell
and Dellaporta, 1994; Brutnell et al., 1997). Changes in DNA
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methylation, often observed as a decrease, occur as a result of the
tissue culture process (Kaeppler and Phillips, 1993). Since TCUP
was first discovered as a transcribed element in long-term tissue-
cultured cell lines, possibly by the demethylation associated with
tissue culture age, we used pharmacological treatments to reduce
DNA methylation in young Hi-II A × B callus and test if induc-
tion of TCUP transcription may occur within a hypomethylated
genomic environment.

AzadC and its analog 5-azacytidine (azaC) have been used to
activate TEs in maize (Pan and Peterson, 1989), snap dragon (Mar-
tin et al., 1989), and human cell lines (Davis et al., 1989; Neidhart
et al., 2000) through its inhibitory action on DNA methylation.
Treatment with azaC was associated with new excision, integra-
tion, and/or demethylation events of endogenous Tam3 element
in snap dragon (Martin et al., 1989) and activation of transcript
of L1 elements in human fibroblasts treated with azadC (Neidhart
et al., 2000). We hypothesized that azadC treatment would cause
a general decrease in DNA methylation mimicking the effect of
tissue culture age, which is associated with hypomethylation, and
activate TCUP in young cell cultures. AzadC treatments caused
transcription of a quiescent TCUP in treated Hi-II A × B recently
cultured suspension cell lines and not in untreated controls. Fur-
ther research is necessary to characterize the role of DNA methyla-
tion in TCUP expression. However, it is well established that DNA
methylation plays an important role in regulating expression and
movement of other class II TEs including Ac (Dennis and Brettell,
1990), Spm (Banks et al., 1988), and Mu (Chandler and Walbot,

1986) and class I retrotransposons (Hsiao et al., 1986; Hirochika
et al., 2000). At least four different transcripts are detected by RT-
PCR, which could be related to transcriptional activation of both
autonomous and non-autonomous TCUP elements through the
genome wide demethylation caused by the azadC treatments. It
has been observed that crossing an active Ac element into a back-
ground with silent Ds elements will induce transcription of the
Ds elements (Kunze and Weil, 2002). Treatment with azadC may
have activated a silenced TCUP element capable of trans activat-
ing other TCUP sequences creating the large number of different
transcripts.

In summary, we have identified a novel hAT transposon with
homology to Tam3 that exhibits differential transcription in
long-term maize tissue-cultured cell lines. The element is also
transcribed in newly initiated cultures in response to treatment
with the DNA methylation inhibitor, 5-aza-2-deoxycytidine, when
compared to untreated cultures. Mobility of TCUP was demon-
strated in two independent long-term cell lines. TCUP has close
relatives in rice and sorghum and EST evidence supports expres-
sion associated with tissue culture in these species. This research
implicates TCUP and its related elements in rice and sorghum as
a novel family of transposons that are highly sensitive to the tissue
culture environment.
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APPENDIX

FIGURE A1 | DNA gel blot comparing DNA methylation at the 5S

ribosomal DNA loci in untreated and 5-aza-2-deoxycytidine treated

Hi-II A × B tissue-cultured cell lines. The plant and callus DNA was
digested with HpaII to examine and CpG methylation respectively. An
increase in number and intensity of low molecular weight bands in the
HpaII digested DNA indicates a decrease in DNA methylation. Hi-II A × B
genomic DNA isolated from 14-day-old seedlings (S), from independent
untreated control cultures (C1–C3), from independent 5-aza-2-deoxycytidine
cultures (A1–A3).

FIGURE A2 | DNA gel blot of untreated and 5-aza-2-deoxycytidine

treated Hi-II A × B suspension cultures hybridized with theTCUP

internal probe. HpaII digested genomic DNA of three independent
untreated cultures (C1–C3) and three independent 5-aza-2-deoxycytidine
treated cultures (A1–A3). An arrow marks the location of novel bands
present in the HpaII digested DNA.
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FIGURE A3 | Results of nested 3′RACE demonstrating the single BMS

transcript in lane 2, and azadC transcripts labeled A–D (lanes 3–5). Lane
1 is a ddH2O negative control. These bands were cloned and sequenced to
identify the polyadenylation sites present in the TCUP transcripts.
Sequencing of these PCR products along with 5′ RACE products were used
to generate the primers used to amplify the transcripts in Figure 6.
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