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Nitrogen is an essential mineral nutrient and it is often transported within living organisms
in its reduced form, as amino acids. Transport of amino acids across cellular membranes
requires proteins, and here we report the phylogenetic analysis across taxa of two amino
acid transporter families, the amino acid permeases (AAPs) and the lysine–histidine-like
transporters (LHTs). We found that the two transporter families form two distinct groups
in plants supporting the concept that both are essential. AAP transporters seem to be
restricted to land plants. They were found in Selaginella moellendorffii and Physcomitrella
patens but not in Chlorophyte, Charophyte, or Rhodophyte algae. AAPs were strongly rep-
resented in vascular plants, consistent with their major function in phloem (vascular tissue)
loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to
land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and
Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13
and phylogenetic analysis indicates that it is basal to land plant LHTs.This is consistent with
the hypothesis that characean algae are ancestral to land plants. LHTs were also found in
both S. moellendorffii and P. patens as well as in monocots and eudicots.To date, AAPs and
LHTs have mainly been characterized in Arabidopsis (eudicots) and these studies provide
clues to the functions of the newly identified homologs.
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INTRODUCTION
Nitrogen is a critical mineral nutrient in all living organisms since
it is required for synthesis of a large number of compounds includ-
ing hormones, nucleotides, and amino acids. As the basic building
blocks of proteins, amino acids are needed for metabolism, cel-
lular structure, growth, and development. Amino acid uptake
into cells and cellular compartments depends on membrane-
integral transporter proteins, and amino acid transporters have
been identified in many organisms including bacteria, fungi, ani-
mals, and plants (Chang et al., 2004; Boudko, 2010). In plants,
amino acid transporters are found in two families within the
amino acid–polyamine–choline (APC) transporter superfamily,
the amino acid/auxin permease (AAAP), and the APC family. The
AAAP family includes transporters from plants, animals, and fungi
(Chang et al., 2004), and in plants contains the amino acid per-
meases (AAPs), lysine–histidine-like transporters (LHTs), proline
transporters (ProTs), γ-aminobutyric acid transporters (GATs),
ANT1-like aromatic, and neutral amino acid transporters and
auxin transporters (AUXs; Wipf et al., 2002; Rentsch et al., 2007).
Cationic amino acid transporters (CATs) belong to the APC family
and are present in both animals and plants1)

This study addresses the phylogeny of the plant AAP and LHT
transporters. These have been characterized in angiosperms (flow-
ering plants), and specifically in eudicots, and detailed overviews

1http://www.tcdb.org/superfamily.php

on their substrate specificity, localization, and biological functions
have recently been presented (see Fischer et al., 2002; Lee and
Tegeder, 2004; Rentsch et al., 2007; Tegeder and Rentsch, 2010;
Tegeder et al., 2011). In Arabidopsis the AAP family consists of
eight members (AtAAP1–8) that generally transport neutral and
acidic amino acids with moderate affinity, with the exception of
AtAAP3 and AtAAP5 that also transport basic amino acids (Fischer
et al., 1995, 2002; Rentsch et al., 2007; Svennerstam et al., 2008).
All Arabidopsis AtAAPs analyzed to date have been localized to the
plasma membrane and they function as H+-coupled amino acid
uptake systems (see Tegeder and Rentsch, 2010). AAPs have been
suggested to be involved in a number of physiological processes
in plants including amino acid uptake from the soil (Hirner et al.,
2006; Lee et al., 2007; Svennerstam et al., 2008), phloem loading or
xylem–phloem transfer (Schulze et al., 1999; Okumoto et al., 2002;
Koch et al., 2003; Tegeder et al., 2007; Tan et al., 2008; Hunt et al.,
2010; Zhang et al., 2010; see also Tegeder and Rentsch, 2010), and
seed loading (Schmidt et al., 2007; Tegeder et al., 2007; Tan et al.,
2008; Sanders et al., 2009).

Much less is known about the LHTs, a family of 10 members
(AtLHT1–10) in Arabidopsis. AtLHT1 was originally described as
a lysine and histidine selective transporter (Chen and Bush, 1997),
but other studies with AtLHT1 and AtLHT2 suggests that LHTs
preferentially transport neutral and acidic amino acids with high
affinity (Lee and Tegeder, 2004; Hirner et al., 2006; Svennerstam
et al., 2007, 2008). Like the AAPs, AtLHTs are localized to the
plasma membrane and transport a broad spectrum of amino acids
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from the cell wall space into the cell (Hirner et al., 2006; Foster
et al., 2008). Based on promoter–GUS studies, LHTs have been
suggested to be involved in import of organic nitrogen into root
and mesophyll cells (Hirner et al., 2006), as well as into pollen and
other cells of reproductive floral tissue (Lee and Tegeder, 2004;
Foster et al., 2008).

AAPs and LHTs have not yet been described in any organ-
isms other than angiosperms. With the recent progress in genome
sequencing we are however now in the excellent position to deter-
mine whether AAP and LHT amino acid transporters are present
in ancestors of seed plants and to examine the phylogenetic rela-
tionship of AAP and LHT proteins. Three major clades form
the large monophyletic plant kingdom. These include the green
plants (Viridiplantae), Rhodophytes (red algae), and Glaucophytes
(freshwater microscopic algae; Figure 1; Anderberg et al., 2011).
The green plants are grouped into the Chlorophytes that contain
algae such as Chlamydomonas reinhardtii, and the Streptophytes
with algal species (Charophytes) and land plants (Finet et al.,
2010; Banks et al., 2011). The land plants are divided in non-
vascular plants (Bryophytes; i.e., liverworts, mosses, and horn-
worts) and vascular plants that split into Lycophytes (non-seed
plants) and Euphyllophytes. The Lycophytes contain clubmosses,
quilworts, and spikemosses while Euphyllophytes consist of ferns
(Monilophytes) and seed-bearing plants (Spermatophytes), which
are often grouped into angiosperms (flowering plants) and gym-
nosperms (i.e., cycads, Ginkgo, conifers, and gnetophytes). How-
ever, the evolutionary relationships of Spermatophytes are not
clearly resolved (Magallon and Sanderson, 2002; Mathews, 2009).

FIGURE 1 | Simplified overview of the plant kingdom and analyzed

genera. Taxa containing AAPs and/or LHTs are marked. Note, that genomes
of gymnosperms and monilophytes have not been used for the analysis.

Here, sequences from red algae (Galdieria sulfuraria and
Cyanidioschyzon merolae), green algae (Chlorophytes: Chlamy-
domonas reinhardtii and Volvox carterii; Charophytes: Penium
marinum, Spirogyra praetensis, Coleochaete sp., Chaetosphaerid-
ium globosum, Mesostigma viride, Nitella hyalina, Klebsormidium
flaccidum, Chlorokybus atmosphyticus), and basal non-vascular
(Physcomitrella patens), non-seed vascular (Selaginella moellen-
dorffii), and vascular land plants (eudicots: Arabidopsis thaliana,
Medicago sativa; monocots: Oryza sativa) were analyzed for AAP
and LHT proteins (Figure 1). Phylogenetic reconstruction was
performed to determine diversification of the AAP and LHT amino
acid transporters as well as their lineage association.

RESULTS AND DISCUSSION
AAP AND LHT TRANSPORTERS FORM TWO DISTINCT GROUPS
Database searches for AAP and LHT proteins in red algae, green
algae, basal non-vascular and vascular land plants, and seed plants
resulted in 44 AAP and 39 LHT protein sequences (Figure 2;
Tables 1 and 2). Predicted protein sequences for the AAPs averaged
478 ± 14 amino acids (mean ± SD). The length of LHT sequences
was similar (463 ± 31 amino acids). The LHT sequence from
Klebsormidium flaccidum (KfLHT13) is an incomplete cDNA and
contains the C-terminal 388 amino acids. A maximum-likelihood

FIGURE 2 | Phylogenetic tree of AAP and LHT proteins found across

taxa. A total of 44 AAP and 39 LHT proteins were identified. AAPs and LHTs
form two distinct groups, each sub-divided in clusters or subclusters. The
clusters (numbers) and subclusters (letters) were labeled and color-coded.
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Table 1 | Amino acid permeases protein sequences sorted by subcluster.

Abbreviation Gene Organism Protein size (aa)

SUBCLUSTER 1

AtAAP7 At5g23810 Arabidopsis thaliana 467

MtAAP7A Medtr3g080570 Medicago truncatula 460

MtAAP7B Medtr5g104490 Medicago truncatula 462

OsAAP7A Os04g39489 Oryza sativa 466

OsAAP7B Os04g56470 Oryza sativa 469

OsAAP7C Os02g49060 Oryza sativa 469

SUBCLUSTER 2A

PpAAP9A Pp1s107_87V61 Physcomitrella patens 515

PpAAP9B Pp1s387_41V61 Physcomitrella patens 500

SmAAP9A 4426761 Selaginella moellendorffii 503

SmAAP9B 1669661 Selaginella moellendorffii 467

SmAAP9C 906611 Selaginella moellendorffii 479

SUBCLUSTER 2B

OsAAP10A Os06g12350 Oryza sativa 507

OsAAP10B Os12g09300 Oryza sativa 468

OsAAP10C Os01g65660 Oryza sativa 465

OsAAP10D Os01g65670 Oryza sativa 466

SmAAP10 4426771 Selaginella moellendorffii 495

SUBCLUSTER 3A

AtAAP2 At5g09220 Arabidopsis thaliana 493

AtAAP3 At1g77380 Arabidopsis thaliana 476

AtAAP4 At5g63850 Arabidopsis thaliana 466

AtAAP5 At1g44100 Arabidopsis thaliana 480

MtAAP2A Medtr4g143430 Medicago truncatula 475

MtAAP2B Medtr5g017170 Medicago truncatula 465

MtAAP2C Medtr3g142750 Medicago truncatula 466

MtAAP2D Medtr3g142780 Medicago truncatula 477

MtAAP2E Medtr3g142720 Medicago truncatula 465

OsAAP3 Os02g01210 Oryza sativa 518

SUBCLUSTER 3B

OsAAP11A Os12g08090 Oryza sativa 475

OsAAP11B Os12g08130 Oryza sativa 475

OsAAP11C Os11g09020 Oryza sativa 476

OsAAP11D Os12g09320 Oryza sativa 468

OsAAP11E Os01g66010 Oryza sativa 488

OsAAP11F Os05g34980 Oryza sativa 496

OsAAP11G Os04g41350 Oryza sativa 471

SUBCLUSTER 4A

OsAAP12A Os06g36180 Oryza sativa 487

OsAAP12B Os06g36210 Oryza sativa 474

OsAAP12C Os06g12330 Oryza sativa 484

MtAAP12A Medtr1g008290 Medicago truncatula 457

MtAAP12B Medtr1g008320 Medicago truncatula 473

SUBCLUSTER 4B

AtAAP1 At1g58360 Arabidopsis thaliana 485

AtAAP6 At5g49630 Arabidopsis thaliana 481

AtAAP8 At1g10010 Arabidopsis thaliana 475

MtAAP6A Medtr1g008410 Medicago truncatula 481

MtAAP6B Medtr3g127950 Medicago truncatula 491

OsAAP6 Os07g04180 Oryza sativa 487

1Phytozome gene identifier.
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Table 2 | Lysine–histidine-like transporters protein sequences sorted by subcluster.

Abbreviation Gene Organism Protein size (aa)1

SUBCLUSTER 1

AtLHT1 At5G40780 Arabidopsis thaliana 446

AtLHT2 At1G24400 Arabidopsis thaliana 441

AtLHT3 At1G61270 Arabidopsis thaliana 451

AtLHT5 At1G67640 Arabidopsis thaliana 441

AtLHT6 At3G01760 Arabidopsis thaliana 455

AtLHT8 At1G71680 Arabidopsis thaliana 448

AtLHT9 At1G25530 Arabidopsis thaliana 440

AtLHT10 At1G48640 Arabidopsis thaliana 453

MtLHT1A Medtr2g122930 Medicago truncatula 453

MtLHT1B Medtr6g025000 Medicago truncatula 484

MtLHT2A AC233656_24.1 Medicago truncatula 471

MtLHT2B Medtr3g103290 Medicago truncatula 436

MtLHT3 Medtr8g109640 Medicago truncatula 425

MtLHT8 Medtr3g013200 Medicago truncatula 469

MtLHT9A Medtr1g117410 Medicago truncatula 437

MtLHT9B Medtr1g117800 Medicago truncatula 437

MtLHT9C Medtr1g117420 Medicago truncatula 437

MtLHT9D Medtr1g117790 Medicago truncatula 437

OsLHT1 Os08g03350 Oryza sativa 447

OsLHT2 Os12g14100 Oryza sativa 446

OsLHT8 Os05g14820 Oryza sativa 456

OsLHT9 Os04g38860 Oryza sativa 444

PpLHT11A Pp1s79_71V6.12 Physcomitrella patens 480

PpLHT11B Pp1s105_62V6.12 Physcomitrella patens 465

PpLHT11C Pp1s5_176V6.12 Physcomitrella patens 453

SmLHT11A 2709792 Selaginella moellendorffii 473

SmLHT11B 1272602 Selaginella moellendorffii 430

SUBCLUSTER 2

PpLHT11A Pp1s79_71V6.12 Physcomitrella patens 480

PpLHT11B Pp1s105_62V6.12 Physcomitrella patens 465

PpLHT11C Pp1s5_176V6.12 Physcomitrella patens 453

SmLHT11A 2709792 Selaginella moellendorffii 473

SmLHT11B 1272602 Selaginella moellendorffii 430

SmLHT11C 754582 Selaginella moellendorffii 427

SmLHT11D 1734524 Selaginella moellendorffii 468

SmLHT11E 1272720 Selaginella moellendorffii 450

SUBCLUSTER 3

AtLHT4 At1G47670 Arabidopsis thaliana 519

AtLHT7 At4G35180 Arabidopsis thaliana 478

MtLHT4A Medtr2g014200 Medicago truncatula 520

MtLHT4B Medtr2g013940 Medicago truncatula 520

MtLHT7 Medtr5g023220 Medicago truncatula 534

OsLHT4A Os12g30040 Oryza sativa 508

OsLHT7 Os04g47420 Oryza sativa 512

PpLHT4 Pp1s77_57V6.12 Physcomitrella patens 559

SUBCLUSTER 4

KfLHT13 kfla_Contig1880 Klebsormidium flaccidum (388)

1Partial sequences are listed in parentheses.
2Phytozome gene identifier.

tree was constructed using PhyML 3.0 (Guindon et al., 2010) based
on the alignment of full-length AAP and LHT sequences and

the truncated KfLHT13 (Figure 2). In addition, trees were made
using alignments in which the variable-length N- and C-terminal

Frontiers in Plant Science | Plant Physiology February 2012 | Volume 3 | Article 21 | 4

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Tegeder and Ward Amino acid transporter evolution

regions of the alignment were removed (data not shown). These
trees did not differ from those based on full-length AAPs and LHTs,
and KfLHT13 (Figures 2–4). Both AAPs and LHTs were found in
eudicots, monocots, Selaginella and Physcomitrella, but AAPs and
LHTs form two distinct groups supporting functional differences
between the two transporter families in the analyzed organisms
(see also Figure 1). The absence of AAP or LHT genes in Chloro-
phytes is consistent with the hypothesis that chlorophyte algae are
not ancestors of land plants (Turmel et al., 1999; Karol et al., 2001;
Kapraun, 2007).

AAPs EVOLVED AT THE SAME TIME AS LAND PLANTS
When searching the databases, AAP proteins were found in non-
vascular land plants (Physcomitrella patens; 2 proteins), non-seed
vascular plants (Selaginella moellendorffii, 4 proteins), and seed
plants including Arabidopsis thaliana (8 proteins), Oryza sativa
(19 proteins), and Medicago truncatula (11 proteins). No AAPs
were found in algal sequences of Rhodophytes (Galdieria and
Cyanidioschyzon), Chlorophytes (Chlamydomonas and Volvox), or
Charophytes (Penium, Spirogyra, Coleochaete, Chaetosphaeridium,
Nitella, Klebsormidium, and Chlorokybus). However, the Charo-
phyte search was based on EST sequences, and until the whole
genome sequences are available we cannot rule out that AAPs are
present in Charophytes. The identified AAP proteins are grouped
into four main clusters (1, 2, 3, and 4), with cluster 2–4 being sub-
divided into two subclusters A and B (Table 1; Figure 3). Cluster
1, 3, and 4 only contain AAPs of seed plants while cluster 2 con-
tains non-vascular and non-seed vascular plant, and angiosperm
proteins.

Cluster 1 contains proteins from monocots and eudicots that
are related to Arabidopsis AtAAP7. It holds AtAAP7 and two Med-
icago proteins (MtAAP7A and 7B) consistent with a genome dupli-
cation in legumes relative to Arabidopsis (Cannon et al., 2006). In
addition, it includes three rice AAPs (OsAAP7A–7C) that likely
represent an amplification of AAP7 genes in monocots. While the
specific function of AtAAP7 and related proteins is still unknown,
the phylogenetic analysis supports that they are important for seed
plants since they are maintained in both monocot and eudicot
lineages.

Cluster 2 contains AAP proteins from non-vascular and non-
seed plants, and monocots, but lacks eudicot proteins. Sub-
cluster 2A includes proteins only from the moss Physcomitrella
patens (PpAAP9A and 9B) and spikemoss Selaginella moellen-
dorffii (SmAAP9A–9C), but no proteins from seed plants, sug-
gesting differences in amino acid transporter function between
early and higher land plants. Differences in function might be
based on (i) differences in phloem loading or source-sink trans-
port between Spermatophytes that have complex leaf venation and
the Bryophytes and Lycophytes with no vasculature or microphylls
with only a single vascular strands (Reinhart and Thomas, 1981;
Aldous, 2002; Beerling, 2005), or on (ii) differences in reproduc-
tion (flower versus spores and spore-bearing structures; Prigge
and Bezanilla, 2010). For example, specific transporters might be
needed for uptake of amino acids into moss sporophytes (Caussin
et al., 1983).

In contrast, subcluster 2B contains four proteins from rice
(OsAAP10A–10D) and one from S. moellendorffii. It is interesting

FIGURE 3 | Phylogenetic analysis of AAP proteins found in Arabidopsis

thaliana (At), Oryza sativa (Os), Medicago truncatula (Mt), Selaginella

moellendorffii (Sm), and Physcomitrella patens (Pp). Multiple protein
sequence alignment was done using CLUSTAL X (Thompson et al., 2007). A
maximum-likelihood tree was constructed using PhyML 3.0 (Guindon et al.,
2010). Numbers at the nodes indicate SH-like branch support (Shimodaira
and Hasegawa, 1999; Buckley et al., 2001). Values above 0.9 (in bold) show
significant phylogenetic support. Accession numbers of sequences (see
Table 1) are provided after the species transporter names. The clusters
(numbers) and subclusters (letters) are labeled.

that cluster 2 lacks eudicot representation, which indicates that
AAPs of this type were lost from eudicot genomes after divergence
from monocots. This also suggests that AAPs in cluster 2 represent
the earliest AAP sequences. No information is available concern-
ing the function of AAPs in cluster 2. However, the presence of
monocot AAPs indicates that an essential amino acid transport
activity, required for non-vascular and non-seed vascular plants,
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FIGURE 4 | Phylogenetic analysis of LHT proteins found in Arabidopsis

thaliana (At), Oryza sativa (Os), Medicago truncatula (Mt), Selaginella

moellendorffii (Sm), Physcomitrella patens (Pp), and Klebsormidium

flaccidum (Kf). Multiple protein sequence alignment was done using
CLUSTAL X (Thompson et al., 2007). A maximum-likelihood tree was

constructed using PhyML 3.0 (Guindon et al., 2010). Numbers at the nodes
indicate SH-like branch support (Shimodaira and Hasegawa, 1999; Buckley
et al., 2001). Values above 0.9 (in bold) show significant phylogenetic support.
Accession numbers of sequences (seeTable 2) are provided after the species
transporter names. The clusters are numbered.

was maintained in monocots and likely replaced in eudicots by
other AAPs or amino acid transporters in other families.

Cluster 3 contains only monocot and eudicot sequences. Sub-
cluster 3A includes Arabidopsis AtAAP3 and AtAAP5 and one
related rice protein (OsAAP3), as well as Arabidopsis AtAAP2 and
AtAAP4 and five legume/Medicago AAPs (MtAAP2A–2E). All of
the Arabidopsis AtAAPs in subcluster 3A appear to be involved in
loading of amino acids into the phloem. With the evolution of
vascular plants, two vascular tissues were established, the xylem
and the phloem. While the xylem functions in water and nutri-
ent transport from the root to the shoot, phloem is important
for long-distance transport of nutrients from source (e.g., mature
leaves or roots) to sinks such as developing roots, flowers and seeds.
In most herbaceous plants such as Arabidopsis, rice, or Medicago,
phloem loading follows the apoplasmic route, where nutrients are
loaded from the apoplast into the sieve element-companion cell
complex of the collection phloem (Rennie and Turgeon, 2009).
In addition, xylem to phloem amino acid transfer might occur

along the transport pathway from source to sink (Pate et al., 1975,
1977). These loading steps into the collection or transport phloem
require the activity of plasma membrane transporters.

In Arabidopsis, AtAAP3 function in the phloem seems to be
restricted to the root (Okumoto et al., 2004), while AtAAP5 prob-
ably functions in import of amino acids into the companion cells
(Brady et al., 2007; Zhang et al., 2008) of different organs including
roots and leaves (Fischer et al., 1995; Cartwright et al., 2009; see also
Tegeder and Rentsch, 2010). Preliminary results from the Tegeder
lab indicate that AtAAP4 also plays a role in leaf phloem loading
(Garneau and Tegeder, unpublished). AtAAP2 on the other hand is
essential for phloem loading along the transport path (Hirner et al.,
1998; Zhang et al., 2010). One rice and five Medicago proteins are
related to the Arabidopsis phloem loaders and we cautiously spec-
ulate that they are involved in amino acid import into the sieve ele-
ment/companion cells complex in legumes and monocot species.
This prediction however requires proof through cellular and sub-
cellular localization studies, and functional analysis in plants in
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future. Nevertheless, it receives some support from the fact that
other legume AAPs, specifically Phaseolus vulgaris PvAAP1 and
Pisum sativum PsAAP1, have also been localized to the phloem
and group within cluster 3A (Tegeder et al., 2007; Tan et al., 2008).

Cluster 3B only contains seven rice proteins (OAAP11A–11G);
eudicots are not represented. It is possible that this large group
of monocot AAPs all function in phloem loading of amino acids
in different tissues considering the similarity of subcluster 3B to
3A and the presence of only one rice AAP (and multiple eudicot
sequences) in 3A. Note that the placement of OsAAP3 in clus-
ter 3A only has weak phylogenetic support. Further, the lack of
Selaginella and Physcomitrella sequences in cluster 3B suggests that
AAPs developed independently in monocots, rather than the alter-
native, that AAPs of this group were lost in eudicots. None of the
currently known eudicot amino acid transporters including AAPs
from Arabidopsis (Figure 3), tomato (LeAAPs), potato (StAAPs),
pea (PsAAPs), faba bean (VfAAPs), canola (BnAAPs), and Rici-
nus (RcAAPs) falls into cluster 3B (see Tan et al., 2008), providing
further support for this hypothesis. Future research needs to deter-
mine if the monocot AAP proteins of cluster 3B differ in function
from eudicot AAP proteins.

Amino acid permeases in cluster 4 are also divided into two
subclusters. Cluster 4A holds three rice (OsAAP12A–12C) and
two Medicago AAPs (MtAAP12A and 12B) with unknown func-
tion. Subcluster 4B contains Arabidopsis AtAAP6 related proteins
and is branched into a group with AtAAP6 and two (duplicated)
Medicago proteins, a related single rice protein (OsAAP6), and
a group harboring Arabidopsis amino acid transporters AtAAP1
and AtAAP8. AtAAP6 is localized to the leaf xylem parenchyma
(Okumoto et al., 2002). Although not directly involved in phloem
loading, it is predicted to be important for xylem to phloem trans-
fer of amino acids in Arabidopsis (Okumoto et al., 2002; Hunt et al.,
2010),and the AAP6 relatives in legumes and monocots might have
similar functions. It is interesting that one group within cluster 4B
only contains two Arabidopsis transporters. It seems that Arabidop-
sis has gained two extra copies of AtAAP6: AtAAP1 and AtAAP8.
Both AtAAP1 and AtAAP8 proteins are involved in seed loading,
rather than phloem loading of amino acids (Schmidt et al., 2007;
Sanders et al., 2009), supporting that they are AAP6 paralogs. It
is tempting to hypothesize that monocot AAPs in group 4A func-
tion in seed loading as nothing is known to date concerning the
function of OsAAP12A, B, or C.

Nevertheless, it is important to point out that AAP expression is
generally not phloem or seed specific (see Ortiz-Lopez et al., 2000;
Rentsch et al., 2007; Tegeder and Rentsch, 2010). For example,
Arabidopsis AAPs (i.e., AtAAP1 and AtAAP5) are also expressed
in root epidermal and cortex cells suggesting that they fulfill addi-
tional functions in plants including amino acid uptake from the
soil (Lee et al., 2007; Svennerstam et al., 2008; Cartwright et al.,
2009). Further, the function of AAPs and other amino acid trans-
porters including LHTs seems to be influenced by the physiology
of the plant as nitrogen starvation and nitrate re-feeding affects
their expression patterns (Liu and Bush, 2006).

In angiosperm,analysis of the relatedness of the rice and legume
AAPs with Arabidopsis proteins might help with prediction of their
function. For example a placement of rice and/or Medicago pro-
teins with Arabidopsis AAP2, 3, 4, 5, and 6 might suggest a function

in phloem loading. Interestingly, rice lacks close relatives of AAP2
and AAP4, and Medicago has no AAP3 and AAP5 phloem load-
ers. Some of the duplicated Arabidopsis AAPs may be functionally
redundant. At least for AtAAP3 this appears to be the case, since
mutant analysis did not result in a functional phenotype (Oku-
moto et al., 2004). On the other hand, some of the evolved AAPs
in legumes (Medicago) and monocots seem not to be present in
Arabidopsis/non-legume dicots (see Figure 3, subcluster 2B, 3B,
and 4A) further supporting differences in AAP function among
angiosperms. This is also in agreement with the large variation
in the number of AAP proteins between Arabidopsis (8 proteins),
Medicago (11 proteins), and rice (19 proteins). For example mono-
cots might require additional or different amino acid transporters
than eudicots due to differences in morphology and physiology
between these distinct groups of seed plants. In legumes, addi-
tional AAP proteins might be needed for amino acid transport
processes related to N2 fixation and nodule function.

Taken together, AAPs are mainly found in euphyllophytes,
including monocots and eudicots/legumes, which is in agreement
with the main functions of AAPs in phloem and seed loading in
support of amino acid translocation from source to sink (seeds).
Non-vascular and non-seed vascular plants only have AAPs that
are more closely related to AAP7, a transporter that remains to be
characterized and might differ in function from the other AAPs.

LHTs EVOLVED PRIOR TO LAND PLANTS
Phylogenetic analysis revealed that LHTs are present in Charo-
phytes (Klebsormidium flaccidum, 1 protein), non-vascular land
plants (P. patens, 4 proteins), non-seed vascular plants (S. moel-
lendorffii, 5 proteins), and seed plants (A. thaliana, 10 proteins; O.
sativa, 6 proteins; M. truncatula, 13 proteins), demonstrating that
LHTs evolved before the occurrence of early land plants (Table 2).
The identified LHT proteins group into four clusters (Table 2;
Figure 4). Cluster 1 includes LHT proteins of euphyllophytes, clus-
ter 2 has five Selaginella and three Physcomitrella LHT proteins,
cluster 3 contains euphyllophyte sequences and one Physcomitrella
LHT and cluster 4 only contains one Klebsormidium protein.

Cluster 1 contains 8 of the 10 Arabidopsis AtLHTs, including
AtLHT1, 2, 3, 5, 6, 8, 9, and 10. It appears that a duplication event
has occurred in Arabidopsis and placement of the LHT proteins
suggests that AtLHT2 and AtLHT5, AtLHT1 and AtLHT10, and
AtLHT3 and AtLHT6, respectively are the result of such duplica-
tion. Relatives of AtLHTs are present in Medicago and 10 of the
13 MtLHTs are present in cluster 1. The presence of only four rice
LHT sequences in group 1 indicates that LHTs were not as exten-
sively duplicated in monocots as in eudicots. Recent studies have
shown that Arabidopsis LHT transporters of cluster 1 including
AtLHT1, 2, 4, 5, and 6 are expressed in male and female floral tis-
sue, such as anther tissue, tapetum, mature pollen, pollen tubes,
and pistil transmitting tissue (Hirner et al., 2006; Foster et al.,
2008; see also Tegeder and Rentsch, 2010), and it was suggested
that they might be essential for successful sexual plant reproduc-
tion. This is also in agreement with the observation that LHTs
of cluster 1 are only present in flowering plant species. However,
experimental proof for LHT function in reproduction is still miss-
ing, and AtLHTs of cluster 1 seem to have additional functions in
plants as they are expressed in other organs besides flowers (Hirner
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et al., 2006; see Arabidopsis eFP Browser, Winter et al., 2007). As
for example recently demonstrated for AtLHT1, the transporter
is important for amino acid uptake into root and mesophyll cells
(Hirner et al., 2006; Svennerstam et al., 2008). LHT8 and LHT9
proteins of cluster 1 form separate subgroups. One group includes
Arabidopsis AtLHT8 and an ortholog each in rice and Medicago,
and the second group contains Arabidopsis AtLHT9, rice OsLHT9,
and four closely related Medicago MtLHT9 transporters. Localiza-
tion of these transporters has not been resolved and similar to most
other LHTs, their physiological functions remain to be elucidated.

Cluster 2 includes three P. patens (PpLHT11A–C) and five S.
moellendorffii LHT11 proteins (SmLHT11A–E) but none from
Spermatophytes. LHT11 genes may have evolved independently
in Physcomitrella and Selaginella suggesting that in early land
plants these LHTs serve functions in cellular amino acid transport
processes that are not required in higher plants (see above). How-
ever, as in seed plants, Bryophytes and Lycophytes seem to need
both LHTs and AAPs for growth and development (Figures 1–4).

Cluster 3 contains LHT4 and LHT7 proteins from angiosperms
and Physcomitrella PpLHT4. Recent expression studies suggest
that Arabidopsis AtLHT4 and AtLHT7 might be involved in repro-
duction, specifically in anther and pollen development (Bock et al.,
2006; Foster et al., 2008). However, at least AtLHT4 has most cer-
tainly additional functions since it is also expressed in root and
stem (Winter et al., 2007). This might explain its phylogenetic
divergence from other LHTs and its placement with PpLHT4. In
early land plants, transporters may be critical for amino acid move-
ment over relatively short distances. As plants colonized dry land,
translocation of amino acids from source to sink cells occurred
probably by cell to cell transport (symplasmic) and between cells
(apoplasmic), especially in non-vascular mosses (Trachtenberg
and Zamski, 1978; Reinhart and Thomas, 1981). Uptake of the
apoplasmic amino acids required membrane proteins including
H+-coupled, high affinity LHT symporters, as indicated by the
phylogenetic analysis.

Cluster 4 only contains a LHT protein from green algae Kleb-
sormidium called KfLHT13, suggesting its evolutionary divergence
from LHTs of land plants and differences in function. While we
are not aware of amino acid transport studies in Charophytes,
research with Chlorophytes such a Chlamydomonas and Chlorella
spp. and marine microalgae demonstrate that in algae differ-
ent transport systems are present (Kirk and Kirk, 1978a; Cho
et al., 1981; Cho and Komor, 1985; Shehawy and Kleiner, 2001;
Kato et al., 2006; see also Flynn and Butler, 1986 and references
within). Although an LHT transporter was only found in Kleb-
sormidium, the screened charophyte sequences were obtained from
EST projects and we predict that LHTs are also present in other
charophytes besides Klebsormidium. Placement of KfLHT13 fur-
ther supports that LHTs have evolved before land plants and that
their function is important to green algae as well.

Gene function of lysine–histidine-like transporters was likely
important in ancestors of plants, as a gene is detected in a charo-
phyte, contributing to its high affinity and substrate selectivity for
neutral and acid amino acids. Localization and expression studies
of Arabidopsis AtLHTs suggest that, in addition to other func-
tions, LHTs have a major role in sexual plant reproduction in seed
plants. This also indicates a difference in LHT function between

angiosperms and non-seed/non-land plants. While LHT functions
still need to be demonstrated in planta, this is in agreement with
the phylogenetic analysis showing a grouping of angiosperm LHTs
while LHT proteins from non-vascular and non-seed plants, and
green algae are present in separate groups.

Based on the phylogeny, genes in the LHT family of land plants
likely arose from an ancestral gene similar to the charophyte LHT.
The ancestral gene diversified as plants colonized dry land, as seen
by the presence of multiple LHT in moss, a non-vascular plant. In
contrast, no algal genes encoding AAP transporters were detected
in our analysis of the Charophytes, but it may be too early to con-
clude whether genes belonging to the AAP family are present, as
the charophyte genome has not been sequenced completely. Algae
generally acquire amino acids from the environment for growth,
and some variation with respect of the kind and amount of amino
acids that are taken up has been observed between and within
species (Cho et al., 1981; Cho and Komor, 1983, 1985; Flynn and
Butler, 1986; Kato et al., 2006). In addition, leakage of amino acids
from the cells into the apoplast might occur and requires trans-
porters for retrieval. Physiological studies have demonstrated that
in algae active transport systems with varying specificity and affini-
ties (high and low) are present (Kirk and Kirk, 1978a,b; Sauer et al.,
1983; Cho and Komor, 1985; Shehawy and Kleiner, 2001; Kato
et al., 2006; see also Flynn and Butler, 1986), which might point
to the presence of both, LHT and AAP transporters, or additional
amino acid transporters in Charophyte algae.

CONCLUSION
Recent functional studies support that AAP and LHT proteins have
essential roles in transport of a broad range of amino acids in eudi-
cots (see Tegeder and Rentsch, 2010). Here, phylogenetic analysis
supports that AAPs, which generally present moderate and low
affinity systems for neutral and acidic amino acids, are important
to land plants with a main function in phloem loading and that
they are not required in red algae or green algae (Charophytes or
Chlorophytes). In contrast, LHTs are found in green algae, non-
seed plants and angiosperms suggesting the need for high affinity
amino acid transporters across the different organisms.

Both AAPs and LHTs were found in all land plants analyzed
consistent with essential and distinct functions for both trans-
porter families. To date, information on the role of AAP and LHT
transporters is almost exclusively based on studies in Arabidopsis
and in some cases in legumes, and suggests differences between
AAPs and LHTs in substrate selectivity, transport affinity and cel-
lular function (see Rentsch et al., 2007; Tegeder and Rentsch, 2010;
see also above). However, phylogenetic analyses indicates that
function of some AAP and LHT transporters diverged in mono-
cots, non-seed vascular plants, non-vascular plants and green
algae, and future studies need to address the role of the amino
acid transporters across land plants and in green algae.

MATERIALS AND METHODS
IDENTIFICATION AND ANNOTATION OF AAP AND LHT PROTEINS
Genome sequences are available for Arabidopsis thaliana, rice
(Oryza sativa), Medicago truncatula, Selaginella moellendorffii,
Physcomitrella patens, Chlamydomonas reinhardtii, and Volvox
carterii. AAP and LHT sequences were selected from rice, M.
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truncatula, S. moellendorffii, and P. patens predicted protein
sequences using BLAST searches with known Arabidopsis AAP
and LHT transporters (see Tables 1 and 2) on the Phytozome
website2. The same database was searched for AAP and LHT pro-
tein sequences from the Chlorophytes C. reinhardtii and V. carterii.
Dr. Charles F. Delwiche and Dr. James Thierer, University of Mary-
land provided support by screening their EST (Expressed Sequence
Tag) databases for AAP and LHT relatives in charophytes,
specifically in Penium marinum, Spirogyra praetensis, Coleochaete
sp., and Chaetosphaeridium globosum, Mesostigma viride, Nitella
hyalina, Klebsormidium flaccidum, Chlorokybus atmosphyticus3.
In addition, the genome (protein) sequences of the red algae
Galdieria sulfuraria available through http://genomics.msu.edu/
cgi-bin/galdieria/blast.cgi (Barbier et al., 2005) and Cyani-
dioschyzon merolae at http://merolae.biol.s.u-tokyo.ac.jp/and were
searched for the presence of AAPs and LHTs.

SEQUENCE ALIGNMENTS AND PHYLOGENETIC ANALYSIS
Multiple protein sequence alignments were generated with Clustal
X (Thompson et al., 2007) and, for comparison, with MUSCLE
(Edgar, 2004). Phylogenetic analysis was performed through the
iPlant Collaborative website4. Maximum-likelihood analysis was
done using PhyML 3.0 (Guindon and Gascuel, 2003; Guindon
et al., 2010) and statistical analysis of phylogenetic trees was
performed using a Shimodaira–Hasegawa-like test (SH-like test;

2http://phytozome.net
3http://www.clfs.umd.edu/labs/delwiche/Charophyte.html
4http://www.iplantcollaborative.org/

Shimodaira and Hasegawa, 1999; Buckley et al., 2001). The values
for SH-like branch support are presented at the nodes on the trees.
Values above 0.9 show significant phylogenetic support. Trees were
visualized using the FigTree program5

NAMING OF AAP AND LHT TRANSPORTERS
The identified AAP and LHT sequences were named based on clus-
tering with Arabidopsis AtAAP and AtLHT protein sequences. In
Arabidopsis 8 AAP (AtAAP1–8) and 10 LHT (AtLHT1–10) trans-
porters have been previously identified (see Rentsch et al., 2007).
Phylogenetic grouping was used to name the transporters from
other species. In cases where more than one Arabidopsis rela-
tive was found from a given species, letter labeling was chosen in
addition. For example, three rice relatives of AtAAP7 were named
OsAAP7A, 7B, and 7C. Transporters that did not group with Ara-
bidopsis proteins were given numbers not found for the Arabidopsis
transporters such as AAP9 or LHT11.
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